1
|
Zhao Q, Zhao X, Liu Z, Ge Y, Ruan J, Cai H, Zhang S, Ye C, Xiong Y, Chen W, Meng G, Liu Z, Zhang J. Constructing Pd and Cu Crowding Single Atoms by Protein Confinement to Promote Sonogashira Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402971. [PMID: 39011789 DOI: 10.1002/adma.202402971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/23/2024] [Indexed: 07/17/2024]
Abstract
For multicenter-catalyzed reactions, it is important to accurately construct heterogeneous catalysts containing multiple active centers with high activity and low cost, which is more challenging compared to homogeneous catalysts because of the low activity and spatial confinement of active centers in the loaded state. Herein, a convenient protein confinement strategy is reported to locate Pd and Cu single atoms in crowding state on carbon coated alumina for promoting Sonogashira reaction, the most powerful method for constructing the acetylenic moiety in molecules. The single-atomic Pd and Cu centers take advantage in not only the maximized atomic utilization for low cost, but also the much-enhanced performance by facilitating the activation of aryl halides and alkynes. Their locally crowded dispersion brings them closer to each other, which facilitates the transmetallation process of acetylide intermediates between them. Thus, the Sonogashira reaction is drove smoothly by the obtained catalyst with a turnover frequency value of 313 h-1, much more efficiently than that by commercial Pd/C and CuI catalyst, conventional Pd and Cu nanocatalysts, and mixed Pd and Cu single-atom catalyst. The obtained catalyst also exhibits the outstanding durability in the recycling test.
Collapse
Affiliation(s)
- Qinying Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Xudong Zhao
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Zhiyi Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yi Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jiaxiong Ruan
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Hongyi Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Shasha Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zhiliang Liu
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
2
|
Im J, Cheong SH, Dang HT, Kim NK, Hwang S, Lee KB, Kim K, Lee H, Lee U. Economically viable co-production of methanol and sulfuric acid via direct methane oxidation. Commun Chem 2023; 6:282. [PMID: 38123721 PMCID: PMC10733281 DOI: 10.1038/s42004-023-01080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The direct oxidation of methane to methanol has been spotlighted research for decades, but has never been commercialized. This study introduces cost-effective process for co-producing methanol and sulfuric acid through a direct oxidation of methane. In the initial phase, methane oxidation forms methyl bisulfate (CH3OSO3H), then transformed into methyl trifluoroacetate (CF3CO2CH3) via esterification, and hydrolyzed into methanol. This approach eliminates the need for energy-intensive separation of methyl bisulfate from sulfuric acid by replacing the former with methyl trifluoroacetate. Through the superstructure optimization, our sequential process reduces the levelized cost of methanol to nearly two-fold reduction from the current market price. Importantly, this process demonstrates adaptability to smaller gas fields, assuring its economical operation across a broad range of gas fields. The broader application of this process could substantially mitigate global warming by utilizing methane, leading to a significantly more sustainable and economically beneficial methanol industry.
Collapse
Affiliation(s)
- Jaehyung Im
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seok-Hyeon Cheong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Energy & Environmental Technology, KIST School, University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Huyen Tran Dang
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Energy & Environmental Technology, KIST School, University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sungwon Hwang
- Department of Chemical Engineering, Inha University, Incheon, Republic of Korea
| | - Ki Bong Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyeongsu Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea.
| | - Hyunjoo Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea.
- Division of Energy & Environmental Technology, KIST School, University of Science and Technology, 02792, Seoul, Republic of Korea.
| | - Ung Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Jia Q, Ma X, Chen H, Li X, Huang MH. Unusual 3,4-Oxidative Coupling Polymerization on 1,2,5-Trisubstituted Pyrroles for Novel Porous Organic Polymers. ACS Macro Lett 2023; 12:1358-1364. [PMID: 37733801 DOI: 10.1021/acsmacrolett.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Porous organic polymers (POPs) have demonstrated promising task-specific applications due to their structure designability and thus functionality. Herein, an unusual 3,4-polymerization on 1,2,5-trisubstituted pyrroles has been developed to give linear polypyrrole-3,4 in high efficiency, with Mn of 20000 and PDI of 1.7. This novel polymerization technique was applied to prepare a series of polypyrrole-based POPs (PY-POP-1-4), which exhibited high BET surface areas (up to 762 m2 g-1) with a meso-micro-supermicro hierarchically porous structure. Furthermore, PY-POPs were doped in the mixed matrix membranes based on the polysulfone matrix to enhance the gas permeability and gas pair selectivity, with H2/N2 selectivity up to 84.6 and CO2/CH4 and CO2/N2 selectivity up to 46.8 and 39.6.
Collapse
Affiliation(s)
- Qiong Jia
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Hanyuan Chen
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| | - Xiaodong Li
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| | - Mu-Hua Huang
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| |
Collapse
|
4
|
Meng B, Liu L, Shen X, Fan W, Li S. Pyridine N-Oxide-Promoted Cobalt-Catalyzed Dioxygen-Mediated Methane Oxidation. J Org Chem 2023. [PMID: 37486801 DOI: 10.1021/acs.joc.3c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The partial oxidation of methane with O2 is significant due to its potential of providing abundant chemical feedstock. Only a few examples realized this type of reaction in homogeneous solvent systems, most of which are in low efficiency. Herein, we present a pyridine N-oxide-promoted cobalt-catalyzed O2-mediated methane oxidation to produce methylene bis(trifluoroacetate) with productivity over 500 molester molmetal-1 h-1.
Collapse
Affiliation(s)
- Bingyin Meng
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Luyao Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaotong Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wu Fan
- Key Laboratory of Tobacco Flavor Basic Research, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Suhua Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Andrade LS, Lima HH, Silva CT, Amorim WL, Poço JG, López-Castillo A, Kirillova MV, Carvalho WA, Kirillov AM, Mandelli D. Metal–organic frameworks as catalysts and biocatalysts for methane oxidation: The current state of the art. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Ji Y, Blankenship AN, van Bokhoven JA. Heterogeneous Mn-Based Catalysts for the Aerobic Conversion of Methane-to-Methyl Trifluoroacetate. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Yinjie Ji
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Andrea N. Blankenship
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
7
|
Zhang SS, Yi J, Cao T, Guan JP, Sun JQ, Zhao QY, Qiu YJ, Ye CL, Xiong Y, Meng G, Chen W, Lin Z, Zhang J. Inserting Single-Atom Zn by Tannic Acid Confinement To Regulate the Selectivity of Pd Nanocatalysts for Hydrogenation Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206052. [PMID: 36549675 DOI: 10.1002/smll.202206052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Precisely controlling the selectivity of nanocatalysts has always been a hot topic in heterogeneous catalysis but remains difficult owing to their complex and inhomogeneous catalytic sites. Herein, an effective strategy to regulate the chemoselectivity of Pd nanocatalysts for selective hydrogenation reactions by inserting single-atom Zn into Pd nanoparticles is reported. Taking advantage of the tannic acid coating-confinement strategy, small-sized Pd nanoparticles with inserted single-atom Zn are obtained on the O-doped carbon-coated alumina. Compared with the pure Pd nanocatalyst, the Pd nanocatalyst with single-atom Zn insertion exhibits prominent selectivity for the hydrogenation of p-iodonitrobenzene to afford the hydrodeiodination product instead of nitro hydrogenation ones. Further computational studies reveal that the single-atom Zn on Pd nanoparticles strengthens the adsorption of the nitro group to avoid its reduction and increases the d-band center of Pd atoms to facilitate the reduction of the iodo group, which leads to enhanced selectivity. This work provides new guidelines to tune the selectivity of nanocatalysts with guest single-atom sites.
Collapse
Affiliation(s)
- Sha-Sha Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jun Yi
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01002, USA
| | - Tai Cao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian-Ping Guan
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jia-Qiang Sun
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
| | - Qin-Ying Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Ya-Jun Qiu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Chen-Liang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhou Lin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01002, USA
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
8
|
Liu L, Fan W, Li S. NaCl-Promoted Cobalt-Catalyzed Dioxygen-Mediated Methane Oxidation to Methylene Bis(trifluoroacetate) with a Dramatic Salt Effect. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Luyao Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wu Fan
- Key Laboratory of Tobacco Flavor Basic Research, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Suhua Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Nkinahamira F, Yang R, Zhu R, Zhang J, Ren Z, Sun S, Xiong H, Zeng Z. Current Progress on Methods and Technologies for Catalytic Methane Activation at Low Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204566. [PMID: 36504369 PMCID: PMC9929156 DOI: 10.1002/advs.202204566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Methane (CH4 ) is an attractive energy source and important greenhouse gas. Therefore, from the economic and environmental point of view, scientists are working hard to activate and convert CH4 into various products or less harmful gas at low-temperature. Although the inert nature of CH bonds requires high dissociation energy at high temperatures, the efforts of researchers have demonstrated the feasibility of catalysts to activate CH4 at low temperatures. In this review, the efficient catalysts designed to reduce the CH4 oxidation temperature and improve conversion efficiencies are described. First, noble metals and transition metal-based catalysts are summarized for activating CH4 in temperatures ranging from 50 to 500 °C. After that, the partial oxidation of CH4 at relatively low temperatures, including thermocatalysis in the liquid phase, photocatalysis, electrocatalysis, and nonthermal plasma technologies, is briefly discussed. Finally, the challenges and perspectives are presented to provide a systematic guideline for designing and synthesizing the highly efficient catalysts in the complete/partial oxidation of CH4 at low temperatures.
Collapse
Affiliation(s)
- François Nkinahamira
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Ruijie Yang
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong999077P. R. China
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Jingwen Zhang
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Zhaoyong Ren
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Senlin Sun
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Haifeng Xiong
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong999077P. R. China
| |
Collapse
|
10
|
Effects of Cu Species on Liquid-Phase Partial Oxidation of Methane with H2O2 over Cu-Fe/ZSM-5 Catalysts. Catalysts 2022. [DOI: 10.3390/catal12101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, a Cu-promoted Fe/ZSM-5 catalyst was examined to reveal the effects of Cu species in selective oxidation of methane into methane oxygenates using H2O2 in water. Cu/ZSM-5, Cu-Fe/ZSM-5, and Fe/ZSM-5 catalysts were prepared using wet impregnation, solid-state ion exchange, and ion-exchange methods. Various techniques, including nitrogen physisorption, temperature-programmed reduction with H2, UV-vis spectroscopy, and FT-IR spectroscopy after NO adsorption, were utilized to characterize the catalysts. The promotional effect of Cu on the Cu-Fe/ZSM-5 catalyst in terms of methanol selectivity was confirmed. The preparation method has a considerable influence on the catalyst performance, and the ion-exchange method is the most effective. However, leaching of the Cu species was observed during this reaction, which can affect the quantification of formic acid by 1H-NMR. The homogeneous Cu species increase hydrogen peroxide decomposition and CO2 selectivity, which is undesirable for this reaction.
Collapse
|
11
|
Li W, Ye B, Yang J, Wang Y, Yang C, Pan Y, Tang H, Wang D, Li Y. A Single‐Atom Cobalt Catalyst for the Fluorination of Acyl Chlorides at Parts‐per‐Million Catalyst Loading. Angew Chem Int Ed Engl 2022; 61:e202209749. [DOI: 10.1002/anie.202209749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Hao Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bo‐Chao Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 China
| | - Jiarui Yang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Ye Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chang‐Jie Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
12
|
Li WH, Ye BC, Yang J, Wang Y, Yang CJ, Pan YM, Tang HT, Wang D, Li Y. A Single‐Atom Cobalt Catalyst for the Fluorination of Acyl Chlorides at Parts‐per‐Million Catalyst Loading. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen-Hao Li
- Tsinghua University Department of Chemistry CHINA
| | - Bo-Chao Ye
- Guangxi Normal University School of Chemistry and Pharmaceutical Sciences CHINA
| | - Jiarui Yang
- Tsinghua University Department of Chemistry CHINA
| | - Ye Wang
- Tsinghua University Department of Chemistry CHINA
| | - Chang-Jie Yang
- Guangxi Normal University School of Chemistry and Pharmaceutical Sciences CHINA
| | - Ying-Ming Pan
- Guangxi Normal University School of Chemistry and Pharmaceutical Sciences CHINA
| | - Hai-Tao Tang
- Guangxi Normal University School of Chemistry and Pharmaceutical Sciences CHINA
| | - Dingsheng Wang
- Tsinghua University Department of Chemistry Haidian 100084 Beijing CHINA
| | - Yadong Li
- Tsinghua University Department of Chemistry CHINA
| |
Collapse
|
13
|
Singh A, Singh N, Kaur N, Jang DO. Gold nanoparticles supported on ionic‐liquid‐functionalized cellulose (Au@CIL): a heterogeneous catalyst for the selective reduction of aromatic nitro compounds. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anoop Singh
- Department of Chemistry Indian Institute of Technology Ropar Punjab India
| | - Narinder Singh
- Department of Chemistry Indian Institute of Technology Ropar Punjab India
| | - Navneet Kaur
- Department of Chemistry Panjab University Chandigarh India
| | - Doo Ok Jang
- Department of Chemistry Yonsei University Wonju Korea
| |
Collapse
|
14
|
Methane Oxidation to Methyl Trifluoroacetate by Simple Anionic Palladium Catalyst: Comprehensive understanding of K2S2O8-based Methane Oxidation in CF3CO2H. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Li WH, Yang J, Wang D, Li Y. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Liu L, Fan W, Chen W, Chen X, Li S. KF-Promoted copper-catalyzed highly efficient and selective oxidation of methane and other alkanes with a dramatic additive effect. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00474c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Selective oxidation of methane is traditionally challenging. Now using KF could dramatic improve the efficiency of copper catalyzed methane oxidation with K2S2O8 as oxidant. The role of KF is conjectured to promote [SO4˙]− to escape the solvent cage.
Collapse
Affiliation(s)
- Luyao Liu
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Wu Fan
- Key Laboratory of Tobacco Flavor Basic Research
- Zhengzhou Tobacco Research Institute of CNTC
- Zhengzhou 450001
- China
| | - Wei Chen
- Department of Colorectal Surgery & Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease & Guangdong Research Institute of Gastroenterology
- The Sixth Affiliated Hospital of Sun Yat-Sen University
- Guangzhou 510655
- China
| | - Xiaoyan Chen
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Suhua Li
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
- Key Lab of Functional Molecular Engineering of Guangdong Province
| |
Collapse
|
17
|
Sun Y, Lu Z, Ma W, Wang R, Zhang C, Liu J. A porous organic polymer nanosphere-based fluorescent biosensing platform for simultaneous detection of multiplexed DNA via electrostatic attraction and π–π stacking interactions. RSC Adv 2021; 11:38820-38828. [PMID: 35493231 PMCID: PMC9044239 DOI: 10.1039/d1ra07435k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
One key challenge in oligonucleotide sequence sensing is to achieve multiplexed DNA detection in one sensor. Herein, a simple and efficient fluorescent biosensing platform is constructed to simultaneously detect multiplexed DNA depending on porous organic polymer (POP) nanospheres. The developed sensor is based on the concept that the POP nanospheres can efficiently quench the fluorescence emission of dye-labeled single-stranded DNA (ssDNA). Fluorescence quenching is achieved by the non-covalent assembly of multiple probes on the surface of POP nanospheres through electrostatic attraction and π–π stacking interactions, in which the electrostatic attraction plays a more critical role than π–π stacking. The formed dsDNA could be released off the surface of POP via hybridizing with the target DNA. Consequently, the target DNA can be quickly detected by fluorescence recovery. The biosensor could sensitively and specifically identify three target DNAs in the range of 0.1 to 36 nM, and the lowest detection limits are 50 pM, 100 pM, and 50 pM, respectively. It is noteworthy that the proposed platform is successfully applied to detect DNA in human serum. We perceive that the proposed sensing system represents a simple and sensitive strategy towards simultaneous and multiplexed assays for DNA monitoring and early clinical diagnosis. This communication reports a simple and efficient fluorescent biosensing platform to simultaneously detect multiplexed DNA depending on porous organic polymer (POP) nanospheres by electrostatic attraction and π–π stacking interaction.![]()
Collapse
Affiliation(s)
- Yujie Sun
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenzhong Lu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wenlin Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Rui Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|