1
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Amenaghawon AN, Ayere JE, Amune UO, Otuya IC, Abuga EC, Anyalewechi CL, Okoro OV, Okolie JA, Oyefolu PK, Eshiemogie SO, Osahon BE, Omede M, Eshiemogie SA, Igemhokhai S, Okedi MO, Kusuma HS, Muojama OE, Shavandi A, Darmokoesoemo H. A comprehensive review of recent advances in the applications and biosynthesis of oxalic acid from bio-derived substrates. ENVIRONMENTAL RESEARCH 2024; 251:118703. [PMID: 38518912 DOI: 10.1016/j.envres.2024.118703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Organic acids are important compounds with numerous applications in different industries. This work presents a comprehensive review of the biological synthesis of oxalic acid, an important organic acid with many industrial applications. Due to its important applications in pharmaceuticals, textiles, metal recovery, and chemical and metallurgical industries, the global demand for oxalic acid has increased. As a result, there is an increasing need to develop more environmentally friendly and economically attractive alternatives to chemical synthesis methods, which has led to an increased focus on microbial fermentation processes. This review discusses the specific strategies for microbial production of oxalic acid, focusing on the benefits of using bio-derived substrates to improve the economics of the process and promote a circular economy in comparison with chemical synthesis. This review provides a comprehensive analysis of the various fermentation methods, fermenting microorganisms, and the biochemistry of oxalic acid production. It also highlights key sustainability challenges and considerations related to oxalic acid biosynthesis, providing important direction for further research. By providing and critically analyzing the most recent information in the literature, this review serves as a comprehensive resource for understanding the biosynthesis of oxalic acid, addressing critical research gaps, and future advances in the field.
Collapse
Affiliation(s)
- Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria.
| | - Joshua Efosa Ayere
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Ubani Oluwaseun Amune
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | - Ifechukwude Christopher Otuya
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emmanuel Christopher Abuga
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Chinedu Lewis Anyalewechi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Federal Polytechnic Oko, Anambra State, Nigeria
| | - Oseweuba Valentine Okoro
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Jude A Okolie
- Engineering Pathways, Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Peter Kayode Oyefolu
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Steve Oshiokhai Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Blessing Esohe Osahon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Melissa Omede
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Stanley Aimhanesi Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Shedrach Igemhokhai
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Petroleum Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Maxwell Ogaga Okedi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University, Tallahassee, FL 2310-6046, USA
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| | - Obiora Ebuka Muojama
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487-0203, USA
| | - Amin Shavandi
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
3
|
Chen H, Iyer J, Liu Y, Krebs S, Deng F, Jentys A, Searles DJ, Haider MA, Khare R, Lercher JA. Mechanism of Electrocatalytic H 2 Evolution, Carbonyl Hydrogenation, and Carbon-Carbon Coupling on Cu. J Am Chem Soc 2024; 146:13949-13961. [PMID: 38739624 PMCID: PMC11117180 DOI: 10.1021/jacs.4c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon-carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer-Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C-C bond, which is rate-determining. The C-C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.
Collapse
Affiliation(s)
- Hongwen Chen
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Jayendran Iyer
- Renewable
Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, QLD, Australia
| | - Yue Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, China
| | - Simon Krebs
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Fuli Deng
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Andreas Jentys
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Debra J. Searles
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, QLD, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, QLD, Australia
- ARC Centre
of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane 4072, QLD, Australia
| | - M. Ali Haider
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
- Renewable
Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Indian
Institute of Technology Delhi−Abu Dhabi, Khalifa City B, Abu Dhabi, United Arab Emirates
| | - Rachit Khare
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Johannes A. Lercher
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland 99352, Washington, United States
| |
Collapse
|
4
|
Perumal SK, Lee S, Yu H, Heo J, Kang MJ, Kim Y, Park M, Lee H, Kim HS. Synergistic Interaction between Ruthenium Catalysts and Grafted Niobium on SBA-15 for 2,5-Furandicarboxylic Acid Production Using 5-Hydroxymethylfurfural. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7353-7363. [PMID: 38315818 DOI: 10.1021/acsami.3c18720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This study entailed the synthesis of Ru nanocatalyst decorated on Nb-grafted SBA-15. A Nb-grafted SBA-15 support with varying Nb contents was utilized as a support for the Ru nanoparticles. The effect of Nb grafting on the immobilized Ru nanoparticle catalyst was systematically investigated, and its catalytic performance in the synthesis of furandicarboxylic acid using 5-hydroxymethylfurfural under base-free reaction conditions was evaluated. The results indicate the increased productivity of the Ru@Nb-grafted SBA-15 catalyst with a yield exceeding 95%, representing a significant advancement in catalysis. This study also affords insights into the complex relationship between the catalytic activity and selectivity and its unique surface attributes. Moreover, acidic sites were created, and the electron density within the active sites was modulated by monomeric Nb oxide species on the SBA-15. Additionally, the role of high-electron-density Ru atoms in facilitating the efficient adsorption and activation of the reactant, resulting in enhanced catalytic efficacy, was highlighted.
Collapse
Affiliation(s)
- Santhana Krishnan Perumal
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Sangyeob Lee
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyejin Yu
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeseong Heo
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Myung Jong Kang
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Yeonjoon Kim
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Myeongkee Park
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Hangil Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyun Sung Kim
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
van Strien N, Niskanen J, Berghuis A, Pöhler H, Rautiainen S. Production of 2,5-Furandicarboxylic Acid Methyl Esters from Pectin-Based Aldaric Acid: from Laboratory to Bench Scale. CHEMSUSCHEM 2024; 17:e202300732. [PMID: 37632359 DOI: 10.1002/cssc.202300732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 08/28/2023]
Abstract
2,5-Furandicarboxylic acid (FDCA) is one of the most attractive emerging renewable monomers, which has gained interest especially in polyester applications, such as the production of polyethylene furanoate (PEF). Recently, the attention has shifted towards FDCA esters due to their better solubility as well as the easier purification and polymerisation compared to FDCA. In our previous work, we reported the synthesis of FDCA butyl esters by dehydration of aldaric acids as stable intermediates. Here, we present the synthesis of FDCA methyl esters in high yields from pectin-based galactaric acid using a solid acid catalyst. The process enables high substrate concentrations (up to 20 wt %) giving up to 50 mol % FDCA methyl esters with total furancarboxylates yields of up to 90 mol %. The synthesis was successfully scaled up from gram-scale to kilogram-scale in batch reactors showing the feasibility of the process. The stability of the catalyst was tested in re-use experiments. Purification of the crude product by vacuum distillation and precipitation gave furan-2,5-dimethylcarboxylate with a 98 % purity.
Collapse
Affiliation(s)
- Nicolaas van Strien
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Jukka Niskanen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Anneloes Berghuis
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Holger Pöhler
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Sari Rautiainen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| |
Collapse
|
6
|
Zhang W, Xu X, Yuan Y, Wang Z. Sustainable application of rice-waste for fuels and valuable chemicals-a mini review. Front Chem 2023; 11:1225073. [PMID: 37927567 PMCID: PMC10620727 DOI: 10.3389/fchem.2023.1225073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The global annual production of rice is over 750 million tons, and generates a huge amount of biomass waste, such as straw, husk, and bran, making rice waste an ideal feedstock for biomass conversion industries. This review focuses on the current progress in the transformation of rice waste into valuable products, including biochar, (liquid and gaseous) biofuels, valuable chemicals (sugars, furan derivatives, organic acids, and aromatic hydrocarbons), and carbon/silicon-based catalysts and catalyst supports. The challenges and future prospectives are highlighted to guide future studies in rice waste valorization for sustainable production of fuels and chemicals.
Collapse
Affiliation(s)
- Wenwen Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xiaoyu Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yongjun Yuan
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Zichun Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
7
|
Pedersen S, Batista GMF, Henriksen ML, Hammershøj HC, Hopmann KH, Skrydstrup T. Lignocellulose Conversion via Catalytic Transformations Yields Methoxyterephthalic Acid Directly from Sawdust. JACS AU 2023; 3:1221-1229. [PMID: 37124285 PMCID: PMC10131214 DOI: 10.1021/jacsau.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Poly(ethylene terephthalate) polyester represents the most common class of thermoplastic polymers widely used in the textile, bottling, and packaging industries. Terephthalic acid and ethylene glycol, both of petrochemical origin, are polymerized to yield the polyester. However, an earlier report suggests that polymerization of methoxyterephthalic acid with ethylene glycol provides a methoxy-polyester with similar properties. Currently, there are no established biobased synthetic routes toward the methoxyterephthalic acid monomer. Here, we show a viable route to the dicarboxylic acid from various tree species involving three catalytic steps. We demonstrate that sawdust can be converted to valuable aryl nitrile intermediates through hydrogenolysis, followed by an efficient fluorosulfation-catalytic cyanation sequence (>90%) and then converted to methoxyterephthalic acid by hydrolysis and oxidation. A preliminary polymerization result indicates a methoxy-polyester with acceptable thermal properties.
Collapse
Affiliation(s)
- Simon
S. Pedersen
- Carbon
Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience
Center, Department of Chemistry, Aarhus
University; Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Gabriel M. F. Batista
- Carbon
Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience
Center, Department of Chemistry, Aarhus
University; Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Martin L. Henriksen
- Department
of Biological and Chemical Engineering, Aarhus University; Aabogade
40, 8200 Aarhus
N, Denmark
| | - Hans Christian
D. Hammershøj
- Carbon
Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience
Center, Department of Chemistry, Aarhus
University; Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kathrin H. Hopmann
- Department
of Chemistry, UiT - The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Troels Skrydstrup
- Carbon
Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience
Center, Department of Chemistry, Aarhus
University; Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Xiong L, Qi H, Zhang S, Zhang L, Liu X, Wang A, Tang J. Highly Selective Transformation of Biomass Derivatives to Valuable Chemicals by Single-Atom Photocatalyst Ni/TiO 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209646. [PMID: 36721913 DOI: 10.1002/adma.202209646] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Selective CC cleavage of the biomass derivative glycerol under mild conditions is recognized as a promising yet challenging synthesis route to produce value-added chemicals. Here, a highly selective catalyst for the transformation of glycerol to the high-value product glycolaldehyde is presented, which is composed of nickel single atoms confined to the surface of titanium dioxide. Driven by light, the catalyst operates under ambient conditions using air as a green oxidant. The optimized catalyst shows a selectivity of over 60% to glycolaldehyde, resulting in 1058 µmol gCat -1 h-1 production rate, and ≈3 times higher turnover number than NiOx -nanoparticle-decorated TiO2 photocatalyst. Diverse operando and in situ spectroscopies unveil the unique function of the Ni single atom, which can significantly promote oxygen adsorption, work as an electron sink, and accelerate the production of superoxide radicals, thereby improving the selectivity toward glycolaldehyde over other by-products.
Collapse
Affiliation(s)
- Lunqiao Xiong
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Haifeng Qi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Shengxin Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Leilei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| |
Collapse
|
9
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
10
|
Catalytic conversion of biomass-derived compoUnds to various amino acids: status and perspectives. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
p-Xylene Oxidation to Terephthalic Acid: New Trends. Molecules 2023; 28:molecules28041922. [PMID: 36838910 PMCID: PMC9961377 DOI: 10.3390/molecules28041922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Large-scale terephthalic acid production from the oxidation of p-xylene is an especially important process in the polyester industry, as it is mainly used in polyethylene terephthalate (PET) manufacturing, a polymer that is widely used in fibers, films, and plastic products. This review presents and discusses catalytic advances and new trends in terephthalic acid production (since 2014), innovations in terephthalic acid purification processes, and simulations of reactors and reaction mechanisms.
Collapse
|
12
|
Guo L, Zhang X, Gan L, Pan L, Shi C, Huang Z, Zhang X, Zou J. Advances in Selective Electrochemical Oxidation of 5-Hydroxymethylfurfural to Produce High-Value Chemicals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205540. [PMID: 36480314 PMCID: PMC9896064 DOI: 10.1002/advs.202205540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The conversion of biomass is a favorable alternative to the fossil energy route to solve the energy crisis and environmental pollution. As one of the most versatile platform compounds, 5-hydroxymethylfural (HMF) can be transformed to various value-added chemicals via electrolysis combining with renewable energy. Here, the recent advances in electrochemical oxidation of HMF, from reaction mechanism to reactor design are reviewed. First, the reaction mechanism and pathway are summarized systematically. Second, the parameters easy to be ignored are emphasized and discussed. Then, the electrocatalysts are reviewed comprehensively for different products and the reactors are introduced. Finally, future efforts on exploring reaction mechanism, electrocatalysts, and reactor are prospected. This review provides a deeper understanding of mechanism for electrochemical oxidation of HMF, the design of electrocatalyst and reactor, which is expected to promote the economical and efficient electrochemical conversion of biomass for industrial applications.
Collapse
Affiliation(s)
- Lei Guo
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiaoxue Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Li Gan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhen‐Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
13
|
Yu L, Ren Z, Yang Y, Wei M. Directed Preparation of Biomass-based Polyester Monomers by Catalytic Conversion. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Djellabi R, Aboagye D, Galloni MG, Vilas Andhalkar V, Nouacer S, Nabgan W, Rtimi S, Constantí M, Medina Cabello F, Contreras S. Combined conversion of lignocellulosic biomass into high-value products with ultrasonic cavitation and photocatalytic produced reactive oxygen species - A review. BIORESOURCE TECHNOLOGY 2023; 368:128333. [PMID: 36403911 DOI: 10.1016/j.biortech.2022.128333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The production of high-value products from lignocellulosic biomass is carried out through the selective scission of crosslinked CC/CO bonds. Nowadays, several techniques are applied to optimize biomass conversion into desired products with high yields. Photocatalytic technology has been proven to be a valuable tool for valorizing biomass at mild conditions. The photoproduced reactive oxygen species (ROSs) can initiate the scission of crosslinked bonds and form radical intermediates. However, the low mass transfer of the photocatalytic process could limit the production of a high yield of products. The incorporation of ultrasonic cavitation in the photocatalytic system provides an exceptional condition to boost the fragmentation and transformation of biomass into the desired products within a lesser reaction time. This review critically discusses the main factors governing the application of photocatalysis for biomass valorization and tricks to boost the selectivity for enhancing the yield of desired products. Synergistic effects obtained through the combination of sonolysis and photocatalysis were discussed in depth. Under ultrasonic vibration, hot spots could be produced on the surface of the photocatalysts, improving the mass transfer through the jet phenomenon. In addition, shock waves can assist the dissolution and mixing of biomass particles.
Collapse
Affiliation(s)
- Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain.
| | - Dominic Aboagye
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Melissa Greta Galloni
- Chemistry Department, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | | | - Sana Nouacer
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Chemistry Department, Faculty of Sciences, Badji-Mokhtar University, Annaba BP12 2300, Algeria; École Nationale Supérieure des Mines et Métallurgie, ENSMM, Ex CEFOS Chaiba BP 233 RP Annaba, Sidi Amar W129, Algeria
| | - Walid Nabgan
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, Geneva 1201, Switzerland
| | - Magda Constantí
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | | | - Sandra Contreras
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| |
Collapse
|
15
|
Nejrotti S, Antenucci A, Pontremoli C, Gontrani L, Barbero N, Carbone M, Bonomo M. Critical Assessment of the Sustainability of Deep Eutectic Solvents: A Case Study on Six Choline Chloride-Based Mixtures. ACS OMEGA 2022; 7:47449-47461. [PMID: 36591154 PMCID: PMC9798394 DOI: 10.1021/acsomega.2c06140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
An outline of the advantages, in terms of sustainability, of Deep Eutectic Solvents (DESs) is provided, by analyzing some of the most popular DESs, obtained by the combination of choline chloride, as a hydrogen bond acceptor, and six hydrogen bond donors. The analysis is articulated into four main issues related to sustainability, which are recurrently mentioned in the literature, but are often taken for granted without any further critical elaboration, as the prominent green features of DESs: their low toxicity, good biodegradability, renewable sourcing, and low cost. This contribution is intended to provide a more tangible, evidence-based evaluation of the actual green credentials of the considered DESs, to reinforce or question their supposed sustainability, also in mutual comparison with one another.
Collapse
Affiliation(s)
- Stefano Nejrotti
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Achille Antenucci
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
- Centro
Ricerche per la Chimica Fine s.r.l. for Silvateam s.p.a., Via Torre 7, San Michele Mondovì (CN) 12080, Italy
| | - Carlotta Pontremoli
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Lorenzo Gontrani
- Department
of Chemical Science and Technologies, University
of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - Nadia Barbero
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
- Institute
of Science, Technology and Sustainability
for the Development of Ceramic Materials (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Marilena Carbone
- Department
of Chemical Science and Technologies, University
of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - Matteo Bonomo
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
| |
Collapse
|
16
|
Noto N, Saito S. Arylamines as More Strongly Reducing Organic Photoredox Catalysts than fac-[Ir(ppy) 3]. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Naoki Noto
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Susumu Saito
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
17
|
Gao D, Han F, Waterhouse GI, Li Y, Zhang L. A highly efficient iron phthalocyanine-intercalated CuFe-LDH catalyst for the selective oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furanic acid. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. Targeting Valuable Chemical Commodities: Hydrazine-mediated Diels-Alder Aromatization of Biobased Furfurals. CHEMSUSCHEM 2022; 15:e202201139. [PMID: 35833422 PMCID: PMC9804822 DOI: 10.1002/cssc.202201139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
A hydrazine-mediated approach towards renewable aromatics production via Diels-Alder aromatization of readily available, biobased furfurals was explored as alterative to the more classical approaches that rely on reactive but uneconomical reduced dienes (e. g., 2,5-dimethylfuran). To enable cycloaddition chemistry with these otherwise unreactive formyl furans, substrate activation by N,N-dimethyl hydrazone formation was investigated. The choice of the reaction partner was key to the success of the transformation, and in this respect acrylic acid showed the most promising results in the synthesis of aromatics. This strategy allowed for selectivities up to 60 % for a complex transformation consisting of Diels-Alder cycloaddition, oxabridge opening, decarboxylation, and dehydration. Exploration of the furfural scope yielded generic structure-reactivity-stability relationships. The proposed methodology enabled the redox-efficient, operationally simple, and mild synthesis of renewable (p-disubstituted) aromatics of commercial importance under remarkably mild conditions.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628 CADelft (TheNetherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628 CADelft (TheNetherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| |
Collapse
|
19
|
Righetti GIC, Truscello A, Li J, Sebastiano R, Citterio A, Gambarotti C. Sustainable synthesis of zwitterionic galactaric acid monoamides as monomers of hydroxylated polyamides. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Grazia Isa. C. Righetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Ada Truscello
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Jiemeng Li
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Roberto Sebastiano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Attilio Citterio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Cristian Gambarotti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
20
|
Rajput BS, Hai TAP, Burkart MD. High Bio-Content Thermoplastic Polyurethanes from Azelaic Acid. Molecules 2022; 27:molecules27154885. [PMID: 35956835 PMCID: PMC9370010 DOI: 10.3390/molecules27154885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
To realize the commercialization of sustainable materials, new polymers must be generated and systematically evaluated for material characteristics and end-of-life treatment. Polyester polyols made from renewable monomers have found limited adoption in thermoplastic polyurethane (TPU) applications, and their broad adoption in manufacturing may be possible with a more detailed understanding of their structure and properties. To this end, we prepared a series of bio-based crystalline and amorphous polyester polyols utilizing azelaic acid and varying branched or non-branched diols. The prepared polyols showed viscosities in the range of 504–781 cP at 70 °C, with resulting TPUs that displayed excellent thermal and mechanical properties. TPUs prepared from crystalline azelate polyester polyol exhibited excellent mechanical properties compared to TPUs prepared from amorphous polyols. These were used to demonstrate prototype products, such as watch bands and cup-shaped forms. Importantly, the prepared TPUs had up to 85% bio-carbon content. Studies such as these will be important for the development of renewable materials that display mechanical properties suitable for commercially viable, sustainable products.
Collapse
|
21
|
Hurtado B, Arias KS, Climent MJ, Concepción P, Corma A, Iborra S. Selective Conversion of HMF into 3-Hydroxymethylcyclopentylamine through a One-Pot Cascade Process in Aqueous Phase over Bimetallic NiCo Nanoparticles as Catalyst. CHEMSUSCHEM 2022; 15:e202200194. [PMID: 35362654 PMCID: PMC9401071 DOI: 10.1002/cssc.202200194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
5-hydroxymethylfurfural (HMF) has been successfully valorized into 3-hydroxymethylcyclopentylamine through a one-pot cascade process in aqueous phase by coupling the hydrogenative ring-rearrangement of HMF into 3-hydroxymethylcyclopentanone (HCPN) with a subsequent reductive amination with ammonia. Mono- (Ni@C, Co@C) and bimetallic (NiCo@C) nanoparticles with different Ni/Co ratios partially covered by a thin carbon layer were prepared and characterized. Results showed that a NiCo catalyst, (molar ratio Ni/Co=1, Ni0.5 Co0.5 @C), displayed excellent performance in the hydrogenative ring-rearrangement of HMF into HCPN (>90 % yield). The high selectivity of the catalyst was attributed to the formation of NiCo alloy structures as hydrogenating sites that limited competitive reactions such as the hydrogenation of furan ring and the over-reduction of the formed HPCN. The subsequent reductive amination of HPCN with aqueous ammonia was performed giving the target cyclopentylaminoalcohol in 97 % yield. Moreover, the catalyst exhibited high stability maintaining its activity and selectivity for repeated reaction cycles.
Collapse
Affiliation(s)
- Beatriz Hurtado
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Karen S. Arias
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Maria J. Climent
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Patricia Concepción
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Avelino Corma
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Sara Iborra
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| |
Collapse
|
22
|
Wan Y, Lee JM. Recent Advances in Reductive Upgrading of 5-Hydroxymethylfurfural via Heterogeneous Thermocatalysis. CHEMSUSCHEM 2022; 15:e202102041. [PMID: 34786865 DOI: 10.1002/cssc.202102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The catalytic conversion of 5-hydroxymethylfufural (HMF), one of the vital platform chemicals in biomass upgrading, holds great promise for producing highly valuable chemicals through sustainable routes, thereby alleviating the dependence on fossil feedstocks and reducing CO2 emissions. The reductive upgrading (hydrogenation, hydrogenolysis, ring-opening, ring-rearrangement, amination, etc.) of HMF has exhibited great potential to produce monomers, liquid fuel additives, and other valuable chemicals. Thermocatalytic conversion has a significant advantage over photocatalysis and electrocatalysis in productivity. In this Review, the recent achievements of thermo-reductive transformation of HMF to various chemicals using heterogeneous catalytic systems are presented, including the catalytic systems (catalyst and solvent), reaction conditions, (reaction temperature, pressure, etc.), and reaction mechanisms. The current challenges and future opportunities are discussed as well, aiming at guiding the catalyst design and practical scalable productions.
Collapse
Affiliation(s)
- Yan Wan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
23
|
Huang Z, Wang J, Lei J, Zhao W, Chen H, Yang Y, Xu Q, Liu X. Recent Advances in the Catalytic Hydroconversion of 5-Hydroxymethylfurfural to Valuable Diols. Front Chem 2022; 10:925603. [PMID: 35720994 PMCID: PMC9204135 DOI: 10.3389/fchem.2022.925603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Biomass, a globally available resource, is a promising alternative feedstock for fossil fuels, especially considering the current energy crisis and pollution. Biomass-derived diols, such as 2,5-bis(hydroxymethyl)furan, 2,5-bis(hydroxymethyl)-tetrahydrofuran, and 1,6-hexanediol, are a significant class of monomers in the polyester industry. Therefore, the catalytic conversion of biomass to valuable diols has received extensive research attention in the field of biomass conversion and is a crucial factor in determining the development of the polyester industry. 5-Hydroxymethylfurfural (HMF) is an important biomass-derived compound with a C6-furanic framework. The hydroconversion of HMF into diols has the advantages of being simple to operate, inexpensive, environmentally friendly, safe, and reliable. Therefore, in the field of diol synthesis, this method is regarded as a promising approach with significant industrialization potential. This review summarizes recent advances in diol formation, discusses the roles of catalysts in the hydroconversion process, highlights the reaction mechanisms associated with the specificities of each active center, and provides an outlook on the challenges and opportunities associated with the research on biomass-derived diol synthesis.
Collapse
Affiliation(s)
- Zexing Huang
- National and Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Jianhua Wang
- National and Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Jing Lei
- Chenzhou Gao Xin Material Co., Ltd., Chenzhou, China
| | - Wenguang Zhao
- National and Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Hao Chen
- Chenzhou Gao Xin Material Co., Ltd., Chenzhou, China
| | - Yongjun Yang
- Chenzhou Gao Xin Material Co., Ltd., Chenzhou, China
- *Correspondence: Yongjun Yang, ; Xianxiang Liu,
| | - Qiong Xu
- National and Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Xianxiang Liu
- National and Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
- *Correspondence: Yongjun Yang, ; Xianxiang Liu,
| |
Collapse
|
24
|
Xu M, Hua Y, Fu X, Liu J. Efficient Photocatalytic Carbonyl Alkylative Amination Enabled by Titanium‐Dioxide‐Mediated Decarboxylation. Chemistry 2022; 28:e202104394. [DOI: 10.1002/chem.202104394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Mei Xu
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
| | - Ying Hua
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
| | - Xin Fu
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
| | - Jie Liu
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University 410082 Changsha P.R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University 410082 Changsha P.R. China
| |
Collapse
|
25
|
Chen Z, Zeng X, Li X, Lv Z, Li J, Zhang Y. Strong Metal Phosphide-Phosphate Support Interaction for Enhanced Non-Noble Metal Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106724. [PMID: 34791708 DOI: 10.1002/adma.202106724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Strong metal-support interaction (SMSI) is crucial for supported catalysts in heterogeneous catalysis. Here is the first report on strong metal phosphide-phosphate support interaction (SMPSI). The key to SMPSI is the activation of P species on the support, which leads to simultaneous generation of metal phosphide nanoparticles (NPs) and core-shell nanostructures formed by support migration onto the NPs. The encapsulation state of metal phosphide and charge transfer are identical to those of classical SMSIs and can be optimally regulated. Furthermore, the strong interactions of Co2 PL /MnP-3 not only significantly enhance the anti-oxidation and anti-acid capability of non-noble metal but also exhibit excellent catalytic activity and stability toward hydrogenating a wide range of compounds into value-added fine chemicals with 100% selectivity, which is even better than Pd/C and Pt/C. The SMPSI construction can be generally extended to other systems such as Ni2 PL /Mn3 (PO4 )2 , Co2 PL /LaPO4 , and CoPL /CePO4 . This study provides a new approach for the rational design of advanced non-noble metal catalysts and introduce a novel paradigm for the strong interaction between NPs and support.
Collapse
Affiliation(s)
- Zemin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiang Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinyu Li
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhenxing Lv
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jiong Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ying Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
26
|
Ortiz MS, Alvarado JG, Zambrano F, Marquez R. Surfactants produced from carbohydrate derivatives: A review of the biobased building blocks used in their synthesis. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Ronald Marquez
- TotalEnergies SE Pôle d'Etudes et de Recherche de Lacq Lacq France
- Laboratoire commun TotalEnergies/ESPCI Paris, Physico‐Chimie des Interfaces Complexes CHEMSTARTUP Lacq France
| |
Collapse
|
27
|
Grømer B, Yoshioka S, Saito S. Selective Reduction of Carboxylic Acids to Alcohols in the Presence of Alcohols by a Dual Bulky Transition-Metal Complex/Lewis Acid Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bendik Grømer
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shota Yoshioka
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
28
|
Yang Z, He Y, Tang P, Zhu B, Zhang G, He J. Molybdenum carbide anchored on glucose-derived carbon (β-Mo 2C@C) as a bifunctional catalyst for conversion of fructose to 2,5-diformylfuran. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00180b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum carbide anchored on glucose-derived carbon (β-Mo2C@C) has been successfully synthesized and applied as a bifunctional catalyst for one-pot conversion of fructose to DFF.
Collapse
Affiliation(s)
- Zhenzhen Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Yuhan He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Pengfei Tang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Bangchong Zhu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Genlei Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Jianbo He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, PR China
| |
Collapse
|
29
|
Ye B, Zhang W, Zhou R, Jiang Y, Zhong Z, Hou Z. Dehydration of fructose to 5-hydroxymethylfurfural over a mesoporous sulfonated high-crosslinked polymer in different solvents. NEW J CHEM 2022. [DOI: 10.1039/d2nj00142j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SHCP was active and stable for dehydration of fructose to 5-HMF in DIO/H2O as H2O depressed oligomerization of 5-HMF.
Collapse
Affiliation(s)
- Boyong Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Wenyang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Ruru Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Yuanyuan Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Zixin Zhong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Zhaoyin Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
- Center of Chemistry for Frontier Technologies, Departemnt of Chemistry, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
30
|
He W, Zhang C, Zhang W, Zhu Y, Fang Z, Zhao L, Guo K. The integration of catalyst design and process intensification in the efficient synthesis of 5-hydroxymethyl-2-furancarboxylic acid from fructose. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Desmons S, Grayson-Steel K, Nuñez-Dallos N, Vendier L, Hurtado J, Clapés P, Fauré R, Dumon C, Bontemps S. Enantioselective Reductive Oligomerization of Carbon Dioxide into l-Erythrulose via a Chemoenzymatic Catalysis. J Am Chem Soc 2021; 143:16274-16283. [PMID: 34546049 DOI: 10.1021/jacs.1c07872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A cell-free enantioselective transformation of the carbon atom of CO2 has never been reported. In the urgent context of transforming CO2 into products of high value, the enantiocontrolled synthesis of chiral compounds from CO2 would be highly desirable. Using an original hybrid chemoenzymatic catalytic process, we report herein the reductive oligomerization of CO2 into C3 (dihydroxyacetone, DHA) and C4 (l-erythrulose) carbohydrates, with perfect enantioselectivity of the latter chiral product. This was achieved with the key intermediacy of formaldehyde. CO2 is first reduced selectively by 4e- by an iron-catalyzed hydroboration reaction, leading to the isolation and complete characterization of a new bis(boryl)acetal compound derived from dimesitylborane. In an aqueous buffer solution at 30 °C, this compound readily releases formaldehyde, which is then involved in selective enzymatic transformations, giving rise either (i) to DHA using a formolase (FLS) catalysis or (ii) to l-erythrulose with a cascade reaction combining FLS and d-fructose-6-phosphate aldolase (FSA) A129S variant. Finally, the nature of the synthesized products is noteworthy, since carbohydrates are of high interest for the chemical and pharmaceutical industries. The present results prove that the cell-free de novo synthesis of carbohydrates from CO2 as a sustainable carbon source is a possible alternative pathway in addition to the intensely studied biomass extraction and de novo syntheses from fossil resources.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France.,TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | | | - Nelson Nuñez-Dallos
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France.,Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France
| | - John Hurtado
- Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Pere Clapés
- Biological Chemistry Department, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
32
|
Synthesis and characterization of a new polymeric catalyst and used for the synthesis of imidazole derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04577-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Song L, Wang R, Che L, Jiang Y, Zhou M, Zhao Y, Pang J, Jiang M, Zhou G, Zheng M, Zhang T. Catalytic Aerobic Oxidation of Lignocellulose-Derived Levulinic Acid in Aqueous Solution: A Novel Route to Synthesize Dicarboxylic Acids for Bio-Based Polymers. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lei Song
- Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, People’s Republic of China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Rui Wang
- Division of Energy Materials, Dalian Institute of Chemical Physicals, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Li Che
- Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, People’s Republic of China
| | - Yu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Mo Zhou
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yu Zhao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Min Jiang
- Division of Energy Materials, Dalian Institute of Chemical Physicals, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Guangyuan Zhou
- Division of Energy Materials, Dalian Institute of Chemical Physicals, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
34
|
Yang Z, Zhu B, He Y, Zhang G, Cui P, He J. Synthesis and characterization of an α-MoO 3 nanobelt catalyst and its application in one-step conversion of fructose to 2,5-diformylfuran. NEW J CHEM 2021. [DOI: 10.1039/d1nj02679h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
α-MoO3 nanobelts have been successfully synthesized and applied as a bifunctional catalyst for one-step conversion of fructose to DFF under atmospheric air.
Collapse
Affiliation(s)
- Zhenzhen Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
- School of Materials Science and Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Bangchong Zhu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yuhan He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Genlei Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jianbo He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
35
|
Zhou Y, Shen Y, Luo X. Critical practices in conducting electrochemical conversion of 5-hydroxymethylfurfural. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00692d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work systematically studied the effects of various experimental parameters on the catalytic activity and product yield of HMF conversion and affords a rigorous assessment protocol for conducting electrochemical conversion of HMF.
Collapse
Affiliation(s)
- Yongfang Zhou
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Yi Shen
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center),
| | - Xuanli Luo
- Advanced Materials Research Group
- Faculty of Engineering
- University of Nottingham
- Nottingham
- UK
| |
Collapse
|