1
|
Li Y, Qin T, Xu L, Ma Y, Guo H, Xiong J, Zhang P, Zhao Z, Liu X, Liu Y, Zou J, Chen L, Wei Y. Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO 2 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39824766 DOI: 10.1021/acs.est.4c12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO2 nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu+-Ov-Ce3+ interfacial structural units as active sites can capture electrons to achieve activation of the NO and O2 molecules. Among all of the synthesized catalysts, the Cu10/CeO2 catalyst exhibits superior catalytic performance (T50 = 351 °C) along with remarkable tolerance to H2O and SO2 in the removal of soot particles. Through a combination of comprehensive characterizations and density functional theory calculations, it is proposed that the interfacial Cu+-Ov-Ce3+ site, acting as an electron enrichment center, can capture electrons from the Cu d-band and Ce d/f-band to obtain high delocalized electron density, and then enhance the oxidation of NO to NO2, which plays a crucial role in the NOx-assisted catalytic mechanism for soot oxidation. This study presents a novel strategy for developing highly efficient catalysts that exhibit resistance to H2O and SO2, aimed at enhancing the removal of soot particles.
Collapse
Affiliation(s)
- Yuanfeng Li
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China
| | - Tian Qin
- School of Chemistry and Chemical, In-situ Center for Physical Science, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Linsheng Xu
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China
| | - Yaxiao Ma
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China
| | - Haoqi Guo
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- School of Chemistry and Chemical, In-situ Center for Physical Science, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Liwei Chen
- School of Chemistry and Chemical, In-situ Center for Physical Science, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China
| |
Collapse
|
2
|
Chen L, Zhang L, Wang C, Kong F, Duan H, Yang D. Support effect on methane combustion over iridium catalysts: Unraveling the metal-support interaction mechanism. J Colloid Interface Sci 2025; 684:291-299. [PMID: 39798425 DOI: 10.1016/j.jcis.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The redox properties of iridium (Ir) active component are critically important in methane combustion. Interface engineering is highly effective in modulating the redox properties of active metals via tailoring the metal-support interaction (MSI). Herein, Ir catalysts supported on different carriers (TiO2, CeO2, Al2O3) were synthesized and evaluated for methane combustion. The methane combustion performance varied depending on the support, following the order: Ir/TiO2 > Ir/CeO2 > Ir/Al2O3 catalysts. Detailed experimental characterizations indicate that, compared with stronger Ir-CeO2 and Ir-Al2O3 interfaces, the unique moderate Ir-TiO2 interface facilitates the generation of an electron-rich Ir structure with a higher Irδ+ ratio. Theoretical simulations further suggest that the initial cleavage of the CH bond in methane molecules is favored at the superior Ir-TiO2 interface. The more reactive Irδ+ species with electron-rich structures in Ir/TiO2 catalysts not only greatly enhance their redox performance but also lower the activation energy barrier for methane activation, ultimately leading to improved catalytic activity in the total oxidation of methane. This work provides valuable insights for the ingenious catalyst design of more efficient Ir-based catalysts for methane combustion through tailoring MSI.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China
| | - Lijie Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071 China
| | - Chuanhui Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China
| | - Fanxin Kong
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China
| | - Huimei Duan
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China.
| | - Dongjiang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China; Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211 China.
| |
Collapse
|
3
|
Gao C, Wang H, Zhou B, Wang B, Wang R, Long Y, Wang D, Peng Y, Li J. Palladium-assisted NO x storage and release on Ce xZr 1-xO 2 for passive NO x adsorber in diesel exhaust aftertreatment. COMMUNICATIONS ENGINEERING 2024; 3:164. [PMID: 39528686 PMCID: PMC11555237 DOI: 10.1038/s44172-024-00311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Understanding Pd effects on NOx storage and release is crucial for designing passive NOx adsorber (PNA) to control NOx emissions during diesel cold-starts. Herein, we report two oxidation states of Pd species on CexZr1-xO2 regulated by metal-support interaction. Pdδ+ (0 < δ < 2) in Pd/Ce0.25Zr0.75O2 exhibits a high affinity for O2 adsorption, which promotes the oxidation of adsorbed NO to nitrates at 100 °C. These nitrates are thermally unstable due to electron transfer from the Pd atom to the N-O bond, facilitating the decomposition of nitrates to NO2 above 200 °C. In contrast, Pd2+ in Pd/Ce0.75Zr0.25O2 prefer to NO adsorption. A large amount of adsorbed NO and nitrites accumulate on Pd2+ and Ce4+ results in high levels of NO release below 200 °C. For the potential application in PNA, Pd/Ce0.25Zr0.75O2 is recommended due to its proper NOx release temperature as well as better water and SO2 resistance.
Collapse
Affiliation(s)
- Chuan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Houlin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Bin Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Bin Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, China
| | - Rong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yunpeng Long
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Dong Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Zhang B, Yang J, Mu Y, Ji X, Cai Y, Jiang N, Xie S, Qian Q, Liu F, Tan W, Dong L. Fabrication of Highly Dispersed Ru Catalysts on CeO 2 for Efficient C 3H 6 Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19533-19544. [PMID: 39324746 DOI: 10.1021/acs.est.4c07159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Emissions of volatile organic compounds (VOCs) threaten both the environment and human health. To realize the elimination of VOCs, Ru/CeO2 catalysts have been intensively investigated and applied. Although it has been widely acknowledged that the catalytic performance of platinum group metal catalysts was highly determined by their dispersion and coordination environment, the most reactive structures on Ru/CeO2 catalysts for VOCs oxidation are still ambiguous. In this work, starting from Ce-BTC (BTC = 1,3,5-benzenetricarboxylic acid) materials, atomically dispersed Ru catalysts and agglomerated Ru catalysts were successfully created via one-step hydrothermal method (Ru-CeO2-BTC) and conventional incipient wetness impregnation method (Ru/CeO2-BTC), respectively. In a typical model reaction of C3H6 oxidation, atomically dispersed Ruδ+ species with the formation of abundant Ru-O-Ce linkages on Ru-CeO2-BTC were found to perform much better than agglomerated RuOx species on Ru/CeO2-BTC. Further characterizations and mechanism study disclosed that Ru-CeO2-BTC catalyst with atomically dispersed Ru ions and more superior low temperature redox performance compared to Ru/CeO2-BTC could better facilitate the adsorption/activation of C3H6 and the decomposition/desorption of intermediates, thus exhibiting superior C3H6 oxidation activity. This work elucidated the reactive sites on Ru/CeO2 catalysts in the C3H6 oxidation reaction and provided insightful guidance for designing efficient Ru/CeO2 catalysts to eliminate VOCs.
Collapse
Affiliation(s)
- Bifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiawei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yibo Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaohua Xie
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, California 92521, United States
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Fudong Liu
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, California 92521, United States
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Leybo D, Etim UJ, Monai M, Bare SR, Zhong Z, Vogt C. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis. Chem Soc Rev 2024; 53:10450-10490. [PMID: 39356078 PMCID: PMC11445804 DOI: 10.1039/d4cs00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 10/03/2024]
Abstract
Supported metal catalysts are essential to a plethora of processes in the chemical industry. The overall performance of these catalysts depends strongly on the interaction of adsorbates at the atomic level, which can be manipulated and controlled by the different constituents of the active material (i.e., support and active metal). The description of catalyst activity and the relationship between active constituent and the support, or metal-support interactions (MSI), in heterogeneous (thermo)catalysts is a complex phenomenon with multivariate (dependent and independent) contributions that are difficult to disentangle, both experimentally and theoretically. So-called "strong metal-support interactions" have been reported for several decades and summarized in excellent review articles. However, in recent years, there has been a proliferation of new findings related to atomically dispersed metal sites, metal oxide defects, and, for example, the generation and evolution of MSI under reaction conditions, which has led to the designation of (sub)classifications of MSI deserving to be critically and systematically evaluated. These include dynamic restructuring under alternating redox and reaction conditions, adsorbate-induced MSI, and evidence of strong interactions in oxide-supported metal oxide catalysts. Here, we review recent literature on MSI in oxide-supported metal particles to provide an up-to-date understanding of the underlying physicochemical principles that dominate the observed effects in supported metal atomic, cluster, and nanoparticle catalysts. Critical evaluation of different subclassifications of MSI is provided, along with discussions on the formation mechanisms, theoretical and characterization advances, and tuning strategies to manipulate catalytic reaction performance. We also provide a perspective on the future of the field, and we discuss the analysis of different MSI effects on catalysis quantitatively.
Collapse
Affiliation(s)
- Denis Leybo
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ubong J Etim
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Matteo Monai
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ziyi Zhong
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Charlotte Vogt
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
6
|
Lv Y, Li A, Ye J, Wang H, Hu P, Wang KW, Guo Y, Tang X, Dai S. Exploring the Facet-Dependent Structural Evolution of Pt/CeO 2 Catalysts Induced by Typical Pretreatments for CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43556-43564. [PMID: 39132739 DOI: 10.1021/acsami.4c07578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Atomic-scale insights into the interactions between metals and supports play a crucial role in optimizing catalyst design, understanding catalytic mechanisms, and enhancing chemical conversion processes. The effects of oxide support on the dynamic behavior of supported metal species during pretreatments or reactions have been attracting a lot of attention; however, very less systematic integrations are carried out experimentally using real catalysts. In this study, we here utilized facet-controlled CeO2 as examples to explore their influence on the supported Pt species (1.0 wt %) during the reducing and oxidizing pretreatments that are typically applied in heterogeneous catalysts. By employing a combination of microscopy, spectroscopy, and first-principles calculations, it is demonstrated that the exposed crystal facets of CeO2 govern the evolution behavior of supported Pt species under different environmental conditions. This leads to distinct local coordinations and charge states of the Pt species, which directly influence the catalytic reactivity and can be leveraged to control the catalytic performance for CO oxidation reactions.
Collapse
Affiliation(s)
- Yao Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Aoran Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiajie Ye
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haifeng Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Peijun Hu
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, BelfastBT9 5AG, U.K
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Wang W, Qiu R, Li C, Zhong R, Wang H, Qi J. Advancing catalytic oxidation of lean methane over cobalt-manganese oxide via a phase-engineered amorphous/crystalline interface. Chem Commun (Camb) 2024; 60:8896-8899. [PMID: 39086323 DOI: 10.1039/d4cc02696a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
CoMnOx catalysts were prepared using a microwave (MW)/ultrasonic (US)-assisted method. Amorphous/crystalline regions in CoMnOx (MW = 250 W US = 300 W) increased the oxygen vacancy content and CoMnOx exhibited excellent activity for methane oxidation (T90 = 330 °C). A new approach is provided here to improve the activity of transition metal catalysts.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China.
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Ruishan Qiu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China.
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Chenqi Li
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China.
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Ruixia Zhong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China.
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Li Q, Si W, Peng Y, Wang Y, Li J. Tuning Pd species via electronic metal-support interaction for methane combustion. J Colloid Interface Sci 2024; 667:12-21. [PMID: 38615619 DOI: 10.1016/j.jcis.2024.03.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Utilizing catalytic combustion to convert methane (CH4) into CO2 and H2O stands as one of the most effective approaches for mitigating unburnt CH4 emissions from natural gas engines. Supported Pd catalysts have been extensively researched for their role in low-temperature CH4 combustion, with their catalytic activity greatly influenced by metal-support interactions. Surface interaction Pd phases, as a special type of Pd species originating from metal-support interactions on supported Pd catalysts, show controversial catalytic performance in CH4 combustion. Moreover, the impact of electronic metal-support interactions (EMSI, which refers to metal-support interactions associated with electron transfer) remains unclear. Hence, we opted for Ce-Zr solid solutions with different Ce:Zr molar ratios as supports and synthesized a range of supported Pd catalysts with varying EMSI intensities. Characterization revealed that as the oxygen vacancy concentration on the support increased, electron transfer weakened, leading to a higher Pd-O-Ce content, resulting in a lower CH4 activation barrier and better catalytic performance. This study offers a promising approach for regulating EMSI and active Pd species on supported catalysts in practical applications.
Collapse
Affiliation(s)
- Qi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Liang L, Xiong S, Xu Y. Low Content Ga 2O 3 Enables the Direct Methane Conversion. ACS OMEGA 2024; 9:25027-25033. [PMID: 38882109 PMCID: PMC11170737 DOI: 10.1021/acsomega.4c02136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
The direct conversion of methane (CH4), a main greenhouse gas, to value-added chemicals has attracted increasing attention in order to alleviate the current energy crisis and environmental concern. Nevertheless, the oriented conversion of CH4 to target product is formidably challenging due to the inertness of CH4. In this work, we demonstrate that zeolite modified by a low amount of Ga2O3 (GS-1) can serve as a highly active and stable catalyst for direct conversion to hydrogen (H2) and solid carbon. The optimal GS-1 with 0.62 wt % of Ga displays a CH4 conversion rate of 70.6 mol/gGa/h with a H2 productivity of 134 mol/gGa/h at 800 °C. Analysis on NH3 temperature-programmed desorption (TPD) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) suggests that the introduction of Ga2O3 can poison the acidic site of zeolite and promote the dehydrogenation of CH4. This work reports a highly active and stable catalyst for direct methane conversion, which may provide a feasible strategy for the sustainable utilization of CH4.
Collapse
Affiliation(s)
- Lingling Liang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shiyun Xiong
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Wang Y, Xu G, Sun Y, Shi W, Shi X, Yu Y, He H. Creating Atomically Iridium-Doped PdO x Nanoparticles for Efficient and Durable Methane Abatement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10357-10367. [PMID: 38728016 DOI: 10.1021/acs.est.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The urgent environmental concern of methane abatement, attributed to its high global warming potential, necessitates the development of methane oxidation catalysts (MOC) with enhanced low-temperature activity and durability. Herein, an iridium-doped PdOx nanoparticle supported on silicalite-1 zeolite (PdIr/S-1) catalyst was synthesized and applied for methane catalytic combustion. Comprehensive characterizations confirmed the atomically dispersed nature of iridium on the surface of PdOx nanoparticles, creating an Ir4f-O-Pdcus microstructure. The atomically doped Ir transferred more electrons to adjacent oxygen atoms, modifying the electronic structure of PdOx and thus enhancing the redox ability of the PdIr/S-1 catalysts. This electronic modulation facilitated methane adsorption on the Pd site of Ir4f-O-Pdcus, reducing the energy barrier for C-H bond cleavage and thereby increasing the reaction rate for methane oxidation. Consequently, the optimized PdIr0.1/S-1 showed outstanding low-temperature activity for methane combustion (T50 = 276 °C) after aging and maintained long-term stability over 100 h under simulated exhaust conditions. Remarkably, the novel PdIr0.1/S-1 catalyst demonstrated significantly enhanced activity even after undergoing harsh hydrothermal aging at 750 °C for 16 h, significantly outperforming the conventional Pd/Al2O3 catalyst. This work provides valuable insights for designing efficient and durable MOC catalysts, addressing the critical issue of methane abatement.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Guangyan Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
11
|
Chen Y, Rana R, Zhang Y, Hoffman AS, Huang Z, Yang B, Vila FD, Perez-Aguilar JE, Hong J, Li X, Zeng J, Chi M, Kronawitter CX, Wang H, Bare SR, Kulkarni AR, Gates BC. Dynamic structural evolution of MgO-supported palladium catalysts: from metal to metal oxide nanoparticles to surface then subsurface atomically dispersed cations. Chem Sci 2024; 15:6454-6464. [PMID: 38699272 PMCID: PMC11062082 DOI: 10.1039/d4sc00035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Supported noble metal catalysts, ubiquitous in chemical technology, often undergo dynamic transformations between reduced and oxidized states-which influence the metal nuclearities, oxidation states, and catalytic properties. In this investigation, we report the results of in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, and other physical characterization techniques, bolstered by density functional theory, to elucidate the structural transformations of a set of MgO-supported palladium catalysts under oxidative treatment conditions. As the calcination temperature increased, the as-synthesized supported metallic palladium nanoparticles underwent oxidation to form palladium oxides (at approximately 400 °C), which, at approximately 500 °C, were oxidatively fragmented to form mixtures of atomically dispersed palladium cations. The data indicate two distinct types of atomically dispersed species: palladium cations located at MgO steps and those embedded in the first subsurface layer of MgO. The former exhibit significantly higher (>500 times) catalytic activity for ethylene hydrogenation than the latter. The results pave the way for designing highly active and stable supported palladium hydrogenation catalysts with optimized metal utilization.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Rachita Rana
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Yizhi Zhang
- School of Materials Engineering, Purdue University West Lafayette Indiana 47907 USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Zhennan Huang
- Oak Ridge National Laboratory Oak Ridge Tennessee 37830 USA
| | - Bo Yang
- School of Materials Engineering, Purdue University West Lafayette Indiana 47907 USA
| | - Fernando D Vila
- Department of Physics, University of Washington Seattle Washington 98195 USA
| | - Jorge E Perez-Aguilar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Xu Li
- National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jie Zeng
- National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Miaofang Chi
- Oak Ridge National Laboratory Oak Ridge Tennessee 37830 USA
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University West Lafayette Indiana 47907 USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Ambarish R Kulkarni
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Bruce C Gates
- Department of Chemical Engineering, University of California Davis California 95616 USA
| |
Collapse
|
12
|
Yin X, Li J, Liu X, Huang K, Yang Y. Closed-loop process for selective leaching and recovery of palladium from spent auto-exhaust catalysts using iodotrihalide ionic liquids. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133665. [PMID: 38340560 DOI: 10.1016/j.jhazmat.2024.133665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
The recovery of palladium from spent auto-exhaust catalysts (SAE-catalysts) is of great significance for resource sustainability. Herein, we proposed an efficient closed-loop leaching and recovery method for palladium from SAE-catalysts using iodotrihalide ionic liquids (ILs). Recovery design was explored aimed at green leaching and process simplification. Iodotrihalide ILs exhibited exceptional performance in terms of leaching efficiency (99.1%), selectivity (selectivity > 6.8 ×103) and reusability (over 6 cycles). The mechanism study revealed that excellent leaching performance was attributed to the redox and complexation. Additionally, the chemical reaction-controlled model was best suited to describe the leaching process. Notably, under the optimal conditions determined by the response surface methodology, a high-purity Pd(II) solution (purity > 99.8%) was obtained. More significantly, it was ideal for practical applications due to the low-viscosity (36.0 cP), mild (55 °C) and one-step leaching and recovery. In conclusion, this work provides an eco-friendly method for recovering palladium from SAE-catalysts with its non-high corrosiveness and low environmental impact.
Collapse
Affiliation(s)
- Xiaolu Yin
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jun Li
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Xiaoxia Liu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Kaiqiang Huang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
13
|
Tan L, Xiang G, Liu Z. Thermally stable Pd/CeO 2@SiO 2 with a core-shell structure for catalytic lean methane combustion. NANOSCALE 2024. [PMID: 38494927 DOI: 10.1039/d3nr06620g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Noble metal catalysts exhibit high catalytic activity in lean CH4 combustion at low temperatures. However, the high surface energy of noble metal nanoparticles makes them susceptible to deactivation due to migratory-aggregation during the catalytic process. Herein, a core-shell structure with a Pd/CeO2 core and a SiO2 shell (denoted as Pd/CeO2@SiO2) was designed and prepared to enhance the thermal stability for catalytic lean CH4 combustion. A series of characterization methods demonstrated the successful encapsulation of SiO2 and the modified thermal stability. The results of activity tests indicated that Pd/CeO2@SiO2 exhibited the optimal catalytic performance. After seven runs, Pd/CeO2@SiO2 achieved 90% conversion of CH4 at 385 °C compared to Pd/CeO2 at 440 °C. The remarkable catalytic performance was attributed to the synergistic effect of strengthened metal-support interactions and the core-shell structure. On the one hand, the migration and aggregation of Pd nanoparticles were limited due to the protection of the SiO2 shell layer. On the other hand, the SiO2 shell layer further enhanced the interactions between the Pd nanoparticles and CeO2, thus promoting the formation of PdxCe1-xO2-δ solid solutions and active oxygen species, which were beneficial for the improvement of the stability and redox capacity of the catalyst.
Collapse
Affiliation(s)
- Linyan Tan
- Advanced Catalytic Engineering Research Centre of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Ganghua Xiang
- Advanced Catalytic Engineering Research Centre of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Zhigang Liu
- Advanced Catalytic Engineering Research Centre of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
14
|
Ogada J, Ehirim TJ, Ipadeola AK, Haruna AB, Mwonga PV, Abdullah AM, Yang XY, Eid K, Wamwangi DM, Ozoemena KI. Interfacial Electronic Interactions within the Pd-CeO 2/Carbon Onions Define the Efficient Electrocatalytic Ethanol Oxidation Reaction in Alkaline Electrolytes. ACS OMEGA 2024; 9:7439-7451. [PMID: 38405481 PMCID: PMC10882676 DOI: 10.1021/acsomega.3c04427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 02/27/2024]
Abstract
Porous Pd-based electrocatalysts are promising materials for alkaline direct ethanol fuel cells (ADEFCs) and ethanol sensors in the development of renewable energy and point-of-contact ethanol sensor test kits for drunk drivers. However, experimental and theoretical investigations of the interfacial interaction among Pd nanocrystals on supports (i.e., carbon black (CB), onion-like carbon (OLC), and CeO2/OLC) toward ADEFC and ethanol sensors are not yet reported. This is based on the preparation of Pd-CeO2/OLC nanocrystals by the sol-gel and impregnation methods. Evidently, the porous Pd-CeO2/OLC significantly increased membrane-free micro-3D-printed ADEFC performance with a high peak power density (Pmax = 27.15 mW cm-2) that is 1.38- and 7.58-times those of Pd/OLC (19.72 mW cm-2) and Pd/CB (3.59 mW cm-2), besides its excellent stability for 48 h. This is due to the excellent interfacial interaction among Pd, CeO2, and OLC, evidenced by density functional theory (DFT) simulations that showed a modulated Pd d-band center and facile active oxygenated species formation by the CeO2 needed for ethanol fuel cells. Similarly, Pd-CeO2/OLC gives excellent sensitivity (0.00024 mA mM-1) and limit of detection (LoD = 8.7 mM) for ethanol sensing and satisfactory recoveries (89-108%) in commercial alcoholic beverages (i.e., human serum, Amstel beer, and Nederberg Wine). This study shows the excellent possibility of utilizing Pd-CeO2/OLC for future applications in fuel cells and alcohol sensors.
Collapse
Affiliation(s)
- Jimodo
J. Ogada
- School
of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
- School
of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Tobechukwu J. Ehirim
- School
of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Adewale K. Ipadeola
- School
of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
- Gas
Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
- Center
for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Aderemi B. Haruna
- School
of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Patrick V. Mwonga
- School
of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | | | - Xiao-Yu Yang
- School
of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Kamel Eid
- Gas
Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Daniel M. Wamwangi
- School
of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Kenneth I. Ozoemena
- School
of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
15
|
Wang L, Ma Z, Xue J, Yuan Z, Chen LW, Li S. Construction of a Metal-Silica Interface for Semihydrogenation of Alkynes. Inorg Chem 2024; 63:3452-3459. [PMID: 38315063 DOI: 10.1021/acs.inorgchem.3c04176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Fabricating optimum surface structures represents an attractive approach for synthesizing supported catalysts with high activity and specific selectivity. New active sites could be flexibly constructed via the strong metal-support interaction under the redox condition. Herein, we demonstrated the formation of a new Rh-Si surface on a silica-modified carbon nanotube supported Rh catalyst under the high-temperature reduction condition as well as a thin amorphous silica coating layer and weak chemisorption toward the CO molecule. The electronic interactions between Rh and Si, along with the particular structure, guarantee desirable catalytic performance for the semihydrogenation of phenylacetylene under mild conditions. This facile approach might be extensively used in constructing new active sites with robust activity and specific selectivity in diverse heterogeneous catalysis systems.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zequan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zaihao Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lin-Wei Chen
- School of Pharmacy & Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shuohao Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
16
|
Wang P, Shi R, Zhao J, Zhang T. Photodriven Methane Conversion on Transition Metal Oxide Catalyst: Recent Progress and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305471. [PMID: 37882341 PMCID: PMC10885660 DOI: 10.1002/advs.202305471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Indexed: 10/27/2023]
Abstract
Methane as the main component in natural gas is a promising chemical raw material for synthesizing value-added chemicals, but its harsh chemical conversion process often causes severe energy and environment concerns. Photocatalysis provides an attractive path to active and convert methane into various products under mild conditions with clean and sustainable solar energy, although many challenges remain at present. In this review, recent advances in photocatalytic methane conversion are systematically summarized. As the basis of methane conversion, the activation of methane is first elucidated from the structural basis and activation path of methane molecules. The study is committed to categorizing and elucidating the research progress and the laws of the intricate methane conversion reactions according to the target products, including photocatalytic methane partial oxidation, reforming, coupling, combustion, and functionalization. Advanced photocatalytic reactor designs are also designed to enrich the options and reliability of photocatalytic methane conversion performance evaluation. The challenges and prospects of photocatalytic methane conversion are also discussed, which in turn offers guidelines for methane-conversion-related photocatalyst exploration, reaction mechanism investigation, and advanced photoreactor design.
Collapse
Affiliation(s)
- Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
17
|
Wang H, Gao C, Wang R, Yuan J, Zhou B, Si W, Li J, Peng Y. Influence of Oxygen Vacancy-Induced Coordination Change on Pd/CeO 2 for NO Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2133-2143. [PMID: 38237035 DOI: 10.1021/acs.est.3c08582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The byproduct formation in environmental catalysis is strongly influenced by the chemical state and coordination of catalysts. Herein, two Pd/CeO2 catalysts (PdCe-350 and PdCe-800) with varying oxygen vacancies (Ov) and coordination numbers (CN) of Pd were prepared to investigate the mechanism of N2O and NH3 formation during NO reduction by CO. PdCe-350 exhibits a higher density of Ov and Pd sites with higher CN, leading to an enhanced metal-support interaction by electron transformation from the support to Pd. Consequently, PdCe-350 displayed increased levels of byproduct formation. In situ spectroscopies under dry and wet conditions revealed that at low temperatures, the N2O formation strongly correlated with the Ov density through the decomposition of chelating nitro species on PdCe-350. Conversely, at high temperatures, it was linked to the reactivity of Pd species, primarily facilitated by monodentate nitrates on PdCe-800. In terms of NH3 formation, its occurrence was closely associated with the activation of H2O and C3H6, since a water-gas shift or hydrocarbon reforming could provide hydrogen. Both bridging and monodentate nitrates showed activity in NH3 formation, while hyponitrites were identified as key intermediates for both catalysts. The insights provide a fundamental understanding of the intricate relationship among the local coordination of Pd, surface Ov, and byproduct distribution.
Collapse
Affiliation(s)
- Houlin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chuan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jin Yuan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Bin Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Sun Y, Xu G, Wang Y, Shi W, Yu Y, He H. In Situ Synthesis of Encapsulated Pd@silicalite-2 for Highly Stable Methane Catalytic Combustion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20370-20379. [PMID: 37947383 DOI: 10.1021/acs.est.3c05634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Methane emissions from vehicles have made a significant contribution to the greenhouse effect, primarily due to its high global warming potential. Supported noble metal catalysts are widely employed in catalytic combustion of methane in vehicles, but they still face challenges such as inadequate low-temperature activity and deactivation due to sintering under harsh operating conditions. In the present work, a series of encapsulated structured catalysts with palladium nanoparticles confined in hydrophobic silicalite-2 were prepared by an in situ synthesis method. Based on various characterization methods, including XRD, HR-TEM, XPS, H2-TPR, O2-TPD, H2O-TPD, CH4-TPR, Raman, and in situ DRIFTS-MS, it was confirmed that PdOx nanoparticles were mainly encapsulated inside the silicalite-2 zeolite, which further maintained the stability of the nanoparticles under harsh conditions. Specifically, the 3Pd@S-2 sample exhibited high catalytic activity for methane oxidation even after harsh hydrothermal aging at 750 °C for 16 h and maintained long-term stability at 400 °C for 130 h during wet methane combustion. In situ Raman spectroscopy has confirmed that PdOx species act as active species for methane oxidation. During this reaction, methane reacts with PdOx to produce CO2 and H2O, while simultaneously reducing PdOx to metallic Pd species, which is further reoxidized by oxygen to replenish the PdOx catalyst.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Guangyan Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Wang
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Wei Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Ma X, Zhang L, Liu R, Li X, Yan H, Zhao X, Yang Y, Zhu H, Kong X, Yin J, Zhou H, Li X, Kong L, Hao H, Zhong D, Dai F. A Multifunctional Co-Based Metal-Organic Framework as a Platform for Proton Conduction and Ni trophenols Reduction. Inorg Chem 2023. [PMID: 38015879 DOI: 10.1021/acs.inorgchem.3c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The design and development of proton conduction materials for clean energy-related applications is obviously important and highly desired but challenging. An ultrastable cobalt-based metal-organic framework Co-MOF, formulated as [Co2(btzip)2(μ2-OH2)] (namely, LCUH-103, H2btzip = 4, 6-bis(triazol-1-yl)-isophthalic acid) had been successfully synthesized via the hydrothermal method. LCUH-103 exhibits a three-dimensional framework and a one-dimensional microporous channel structure with scu topology based on the binuclear metallic cluster {Co2}. LCUH-103 indicated excellent chemical and thermal stability; peculiarly, it can retain its entire framework in acid and alkali solutions with different pH values for 24 h. The excellent stability is a prerequisite for studying its proton conductivity, and its proton conductivity σ can reach up to 1.25 × 10-3 S·cm-1 at 80 °C and 100% relative humidity (RH). In order to enhance its proton conductivity, the proton-conducting material Im@LCUH-103 had been prepared by encapsulating imidazole molecules into the channels of LCUH-103. Im@LCUH-103 indicated an excellent proton conductivity of 3.18 × 10-2 S·cm-1 at 80 °C and 100% RH, which is 1 order of magnitude higher than that of original LCUH-103. The proton conduction mechanism was systematically studied by various detection means and theoretical calculations. Meanwhile, LCUH-103 is also an excellent carrier for palladium nanoparticles (Pd NPs) via a wetness impregnation strategy, and the nitrophenols (4/3/2-NP) reduction in aqueous solution by Pd@LCUH-103 indicated an outstanding conversion efficiency, high rate constant (k), and exceptional cycling stability. Specifically, the k value of 4-NP reduction by Pd@LCUH-103 is superior to many other reported catalysts, and its k value is as high as 1.34 min-1 and the cycling stability can reach up to 6 cycles. Notably, its turnover frequency (TOF) value is nearly 196.88 times more than that of Pd/C (wt 5%) in the reaction, indicating its excellent stability and catalytic activity.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Ronghua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xin Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Yikai Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xiangjin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Jie Yin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Huawei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Lingqian Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Dichang Zhong
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and EngineeringTianjin University of TechnologyTianjin300384, China
| | - Fangna Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong266580, China
| |
Collapse
|
20
|
Chen X, Shi X, Chen P, Liu B, Liu M, Chen L, Ye D, Tu X, Fan W, Wu J. Unlocking High-Efficiency Methane Oxidation with Bimetallic Pd-Ce Catalysts under Zeolite Confinement. ACS ENVIRONMENTAL AU 2023; 3:223-232. [PMID: 37483303 PMCID: PMC10360205 DOI: 10.1021/acsenvironau.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/25/2023]
Abstract
Catalytic complete oxidation is an efficient approach to reducing methane emissions, a significant contributor to global warming. This approach requires active catalysts that are highly resistant to sintering and water vapor. In this work, we demonstrate that Pd nanoparticles confined within silicalite-1 zeolites (Pd@S-1), fabricated using a facile in situ encapsulation strategy, are highly active and stable in catalyzing methane oxidation and are superior to those supported on the S-1 surface due to a confinement effect. The activity of the confined Pd catalysts was further improved by co-confining a suitable amount of Ce within the S-1 zeolite (PdCe0.4@S-1), which is attributed to confinement-reinforced Pd-Ce interactions that promote the formation of oxygen vacancies and highly reactive oxygen species. Furthermore, the introduction of Ce improves the hydrophobicity of the S-1 zeolite and, by forming Pd-Ce mixed oxides, inhibits the transformation of the active PdO phase to inactive Pd(OH)2 species. Overall, the bimetallic PdCe0.4@S-1 catalyst delivers exceptional outstanding activity and durability in complete methane oxidation, even in the presence of water vapor. This study may provide new prospects for the rational design of high-performance and durable Pd catalysts for complete methane oxidation.
Collapse
Affiliation(s)
- Xiaomai Chen
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuefeng Shi
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bowen Liu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Meiyin Liu
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Longwen Chen
- College
of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Daiqi Ye
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Wei Fan
- Department
of Chemical Engineering, University of Massachusetts—Amherst, Amherst, Massachusetts 01003, United States
| | - Junliang Wu
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment,
Guangdong Provincial Key Laboratory of Atmospheric Environment and
Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
Meng H, Yang Y, Shen T, Liu W, Wang L, Yin P, Ren Z, Niu Y, Zhang B, Zheng L, Yan H, Zhang J, Xiao FS, Wei M, Duan X. A strong bimetal-support interaction in ethanol steam reforming. Nat Commun 2023; 14:3189. [PMID: 37268617 DOI: 10.1038/s41467-023-38883-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
The metal-support interaction (MSI) in heterogeneous catalysts plays a crucial role in reforming reaction to produce renewable hydrogen, but conventional objects are limited to single metal and support. Herein, we report a type of RhNi/TiO2 catalysts with tunable RhNi-TiO2 strong bimetal-support interaction (SBMSI) derived from structure topological transformation of RhNiTi-layered double hydroxides (RhNiTi-LDHs) precursors. The resulting 0.5RhNi/TiO2 catalyst (with 0.5 wt.% Rh) exhibits extraordinary catalytic performance toward ethanol steam reforming (ESR) reaction with a H2 yield of 61.7%, a H2 production rate of 12.2 L h-1 gcat-1 and a high operational stability (300 h), which is preponderant to the state-of-the-art catalysts. By virtue of synergistic catalysis of multifunctional interface structure (Rh-Niδ--Ov-Ti3+; Ov denotes oxygen vacancy), the generation of formate intermediate (the rate-determining step in ESR reaction) from steam reforming of CO and CHx is significantly promoted on 0.5RhNi/TiO2 catalyst, accounting for its ultra-high H2 production.
Collapse
Affiliation(s)
- Hao Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Tianyao Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng-Shou Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
22
|
Xia T, Wu Z, Gao E, Zhu J, Yao S, Li J. Nano-Au supported on CeO2 for plasma catalytic degradation of n-undecane: Enhancement of activity and stability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
23
|
Li Y, Fei N, Li W, Cao Y, Ge X, Dai S, Yan K, Yuwen Q, Zhou X, Yuan W, Duan X. H2 activation on metal oxides promoted by highly dispersed Pd. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
24
|
Facet-dependent Pd0-O2−-Ce3+ active site for selective hydrogenation of linoleate ester to cis oleic acid ester. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
25
|
Li Y, Qin T, Ma Y, Xiong J, Zhang P, Lai K, Liu X, Zhao Z, Liu J, Chen L, Wei Y. Revealing Active Edge Sites Induced by Oriented Lattice Bending of Co-CeO2 Nanosheets for Boosting Auto-Exhaust Soot Oxidation. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
26
|
Dardun V, Pinto T, Benaillon L, Veyre L, Galipaud J, Camp C, Meille V, Thieuleux C. Easy preparation of small crystalline Pd 2Sn nanoparticles in solution at room temperature. Dalton Trans 2023; 52:2157-2163. [PMID: 36723026 DOI: 10.1039/d2dt03476j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe here a simple protocol yielding small (<2 nm) crystalline Pd2Sn nanoparticles (NPs) along with Pd homologues for sake of comparison. These NPs were obtained via an organometallic approach using Pd2(dba)3·dba (dba = dibenzylideneacetone) in THF with 2 equivalents of tributyltin hydride under 4 bars of H2 at room temperature. The Pd NP homologues were prepared similarly, using Pd2(dba)3·dba with 2 equivalents of n-octylsilane. These NPs were found to be crystalline and very small with a similar mean size (ca. 1.5 nm). These NPs were finally used as nanocatalysts in solution for a benchmark Suzuki-Miyaura cross-coupling reaction. The Pd2Sn NPs were found to be more active than Pd NPs analogues, exhibiting remarkable performances with Pd loading as low as 13 ppb. This result demonstrates a beneficial effect of tin on palladium in catalysis.
Collapse
Affiliation(s)
- Vincent Dardun
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Tania Pinto
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Loïc Benaillon
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Laurent Veyre
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Jules Galipaud
- Université de Lyon, Ecole Centrale de Lyon, Laboratory of Tribology and System Dynamics, LTDS UMR CNRS 5513, 36 avenue Guy de Collongues, 69134 Ecully Cedex, France.,Université de Lyon, INSA-Lyon, UCBL, MATEIS UMR CNRS 5510, Villeurbanne, France
| | - Clément Camp
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Valérie Meille
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France.
| | - Chloé Thieuleux
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| |
Collapse
|
27
|
Nkinahamira F, Yang R, Zhu R, Zhang J, Ren Z, Sun S, Xiong H, Zeng Z. Current Progress on Methods and Technologies for Catalytic Methane Activation at Low Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204566. [PMID: 36504369 PMCID: PMC9929156 DOI: 10.1002/advs.202204566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Methane (CH4 ) is an attractive energy source and important greenhouse gas. Therefore, from the economic and environmental point of view, scientists are working hard to activate and convert CH4 into various products or less harmful gas at low-temperature. Although the inert nature of CH bonds requires high dissociation energy at high temperatures, the efforts of researchers have demonstrated the feasibility of catalysts to activate CH4 at low temperatures. In this review, the efficient catalysts designed to reduce the CH4 oxidation temperature and improve conversion efficiencies are described. First, noble metals and transition metal-based catalysts are summarized for activating CH4 in temperatures ranging from 50 to 500 °C. After that, the partial oxidation of CH4 at relatively low temperatures, including thermocatalysis in the liquid phase, photocatalysis, electrocatalysis, and nonthermal plasma technologies, is briefly discussed. Finally, the challenges and perspectives are presented to provide a systematic guideline for designing and synthesizing the highly efficient catalysts in the complete/partial oxidation of CH4 at low temperatures.
Collapse
Affiliation(s)
- François Nkinahamira
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Ruijie Yang
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong999077P. R. China
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Jingwen Zhang
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Zhaoyong Ren
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Senlin Sun
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Haifeng Xiong
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong999077P. R. China
| |
Collapse
|
28
|
Yang W, Polo-Garzon F, Zhou H, Huang Z, Chi M, Meyer H, Yu X, Li Y, Wu Z. Boosting the Activity of Pd Single Atoms by Tuning Their Local Environment on Ceria for Methane Combustion. Angew Chem Int Ed Engl 2023; 62:e202217323. [PMID: 36478096 DOI: 10.1002/anie.202217323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Supported Pd single atom catalysts (SACs) have triggered great research interest in methane combustion yet with contradicting views on their activity and stability. Here, we show that the Pd SAs can take different electronic structure and atomic geometry on ceria support, resulting in different catalytic properties. By a simple thermal pretreatment to ceria prior to Pd deposition, a unique anchoring site is created. The Pd SA, taking this site, can be activated to Pdδ+ (0<δ<2) that has greatly enhanced activity for methane oxidation: T50 lowered by up to 130 °C and almost 10 times higher turnover frequency compared to the untreated catalyst. The enhanced activity of Pdδ+ site is related to its oxygen-deficient local structure and elongated interacting distance with ceria, leading to enhanced capability in delivering reactive oxygen species and decomposing reaction intermediates. This work provides insights into designing highly efficient Pd SACs for oxidation reactions.
Collapse
Affiliation(s)
- Weiwei Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Felipe Polo-Garzon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hua Zhou
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Zhennan Huang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Harry Meyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xinbin Yu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yuanyuan Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
29
|
He C, Shi Y, Feng B, Ruan S, Qin C, Xu K, Zhang L. Catalytic combustion kinetics of methyl butanoate over Pd/γ-Al2O3 catalysts: an experimental and theoretical study. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Zhao H, Bian L, Du J, Zhao Y. Moderating the interaction among Pd, CeO 2, and Al 2O 3 for improved three-way catalysts. Dalton Trans 2022; 51:18562-18571. [PMID: 36444876 DOI: 10.1039/d2dt02693g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Pd distribution and the CeO2-Al2O3 combination are among the decisive factors for the performance of commercial three-way catalysts. Generally, the sufficient doping of Pd into ceria-based oxides and the intimate interaction between CeO2 and Al2O3 could both benefit the three-way catalytic reactions. However, in the present work, the moderate doping of Pd into CeO2 and less intimate CeO2-Al2O3 interaction were found to be responsible for the much higher catalytic activity (the decrease in T50 was 52, 119, or 55 °C for C3H6, CO, or NO) in PdCe/Al2O3-CP than PdCe/Al2O3-Imp, for which the Pd and Ce species were co-loaded onto Al2O3 through the co-precipitation or impregnation method, respectively. It was intriguing to find that the co-precipitated PdCeOx in PdCe/Al2O3-CP showed less sufficient doping of Pd into CeO2 than the co-impregnated PdCeOx in PdCe/Al2O3-Imp; as a result, both a higher fraction of highly active metallic Pd and a higher Pd dispersion were realized in PdCe/Al2O3-CP. Moreover, due to the less intimate CeO2-Al2O3 interaction, specifically the less severe penetration of the Pd and Ce species into Al2O3, PdCe/Al2O3-CP showed higher Pd dispersion, specific surface area, pore volume and size than PdCe/Al2O3-Imp. The presence of more abundant reactive Pd0, and the higher accessibility of the active Pd and CeO2 sites, together with improved redox properties and enriched oxygen vacancies contributed much to the enhanced three-way catalytic activity of PdCe/Al2O3-CP. Additionally, simultaneously optimizing the Pd distribution and the CeO2-Al2O3 combination in a single step, as reported in this work, is also highly desirable in industry.
Collapse
Affiliation(s)
- Han Zhao
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China. .,Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Longchun Bian
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Junchen Du
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China.
| | - Yunkun Zhao
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China.
| |
Collapse
|
31
|
Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nat Commun 2022; 13:4244. [PMID: 35869061 PMCID: PMC9307766 DOI: 10.1038/s41467-022-31966-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/06/2022] [Indexed: 01/19/2023] Open
Abstract
AbstractMetal-support interaction predominately determines the electronic structure of metal atoms in single-atom catalysts (SACs), largely affecting their catalytic performance. However, directly tuning the metal-support interaction in oxide supported SACs remains challenging. Here, we report a new strategy to subtly regulate the strong covalent metal-support interaction (CMSI) of Pt/CoFe2O4 SACs by a simple water soaking treatment. Detailed studies reveal that the CMSI is weakened by the bonding of H+, generated from water dissociation, onto the interface of Pt-O-Fe, resulting in reduced charge transfer from metal to support and leading to an increase of C-H bond activation in CH4 combustion by more than 50 folds. This strategy is general and can be extended to other CMSI-existed metal-supported catalysts, providing a powerful tool to modulating the catalytic performance of SACs.
Collapse
|
32
|
Effect of Pd precursors on the catalytic properties of Pd/CeO2 catalysts for CH4 and CO oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Deng Y, Liu S, Fu L, Yuan Y, Zhao A, Wang D, Zheng H, Ouyang L, Yuan S. Crystal plane induced metal-support interaction in Pd/Pr-CeO2 catalyst boosts H2O-assisted CO oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Construction of bimetallic Pt–Pd/CeO2–ZrO2–La2O3 catalysts with different Pt/Pd ratios and its structure–activity correlations for three-way catalytic performance. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Tang Z, Zhang T, Luo D, Wang Y, Hu Z, Yang RT. Catalytic Combustion of Methane: From Mechanism and Materials Properties to Catalytic Performance. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ziyu Tang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Tao Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Decun Luo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Yongjie Wang
- School of Science, Harbin Institute of Technology, Shenzhen518055, China
| | - Zhun Hu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, Michigan48109-2136, United States
| |
Collapse
|
36
|
Bezkrovnyi O, Bruix A, Blaumeiser D, Piliai L, Schötz S, Bauer T, Khalakhan I, Skála T, Matvija P, Kraszkiewicz P, Pawlyta M, Vorokhta M, Matolínová I, Libuda J, Neyman KM, Kȩpiński L. Metal-Support Interaction and Charge Distribution in Ceria-Supported Au Particles Exposed to CO. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7916-7936. [PMID: 36117879 PMCID: PMC9476549 DOI: 10.1021/acs.chemmater.2c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ- atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy.
Collapse
Affiliation(s)
- Oleksii Bezkrovnyi
- W.
Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Albert Bruix
- Departament
de Ciència de Materials i Química Física and
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Dominik Blaumeiser
- Interface
Research and Catalysis, Erlangen Center for Interface Research and
Catalysis, Friedrich-Alexander Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Lesia Piliai
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Simon Schötz
- Interface
Research and Catalysis, Erlangen Center for Interface Research and
Catalysis, Friedrich-Alexander Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Tanja Bauer
- Interface
Research and Catalysis, Erlangen Center for Interface Research and
Catalysis, Friedrich-Alexander Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Ivan Khalakhan
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Tomáš Skála
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Peter Matvija
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Piotr Kraszkiewicz
- W.
Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Mirosława Pawlyta
- Materials
Research Laboratory, Silesian University
of Technology, Gliwice 44-100, Poland
| | - Mykhailo Vorokhta
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Iva Matolínová
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Jörg Libuda
- Interface
Research and Catalysis, Erlangen Center for Interface Research and
Catalysis, Friedrich-Alexander Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Konstantin M. Neyman
- Departament
de Ciència de Materials i Química Física and
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- ICREA
(Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain
| | - Leszek Kȩpiński
- W.
Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| |
Collapse
|
37
|
In Situ DRIFTS Study of Single-Atom, 2D, and 3D Pt on γ-Al2O3 Nanoflakes and Nanowires for C2H4 Oxidation. Processes (Basel) 2022. [DOI: 10.3390/pr10091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Up to now, a great number of catalysts have been reported that are active in the oxidation of volatile organic compounds (VOCs). However, supported noble-metal catalysts (especially Pt-based catalysts) are still the most excellent ones for this reaction. In this study, Pt species supported on γ-Al2O3 and ranging from single-atom sites to clusters (less than 1 nm) and 1–2 nm nanoparticles were prepared and investigated for oxidizing C2H4. The Pt-loaded γ-Al2O3 nanoflakes (PtAl-NF) and Pt-loaded γ-Al2O3 nanowires (PtAl-NW) were successfully prepared. The samples were characterized using XRD, TEM, XPS, HAADF-STEM, and in situ DRIFTS. Based on in situ DRIFTS, a simple surface reaction mechanism was developed. The stable intermediates CO on single-atom Pt, subnanometer Pt particles, and fully exposed Pt clusters could be explained by the strong binding of CO molecule poisoning Pt sites. Moreover, the oxidation of C2H4 was best achieved by Pt particles that were 1–2 nm in size and the catalytic activity of PtAl-NF was better when it had less Pt. Lastly, the most exposed (110) facets of γ-Al2O3 nanoflakes were more resistant to water than the majorly exposed (100) facets of γ-Al2O3 nanowires.
Collapse
|
38
|
Du P, Qi R, Zhang Y, Gu Q, Xu X, Tan Y, Liu X, Wang A, Zhu B, Yang B, Zhang T. Single-atom-driven dynamic carburization over Pd1–FeOx catalyst boosting CO2 conversion. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Li C, Tang S, Tang B, Li W, Yuan L. The effects of alkali metal ions on the physiochemical and catalytic properties of Pd/NiAlOx catalysts for lean methane oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Peng S, Ma Z, Ma J, Wang H, Chen J, Wei H, Li Y, Ao Z, Wang B. Influence of carrier effect on Pd/Al 2O 3 for methane complete catalytic oxidation. Front Chem 2022; 10:978698. [PMID: 36082198 PMCID: PMC9445149 DOI: 10.3389/fchem.2022.978698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pd/Al2O3 catalysts modified by different chemical elements (Mg, Si, Ce, and Zr) were tested for methane (CH4) catalytic combustion, and PdO nanoparticles loaded on modified Al2O3 were systematically studied. These conditions assess the carrier effects of Pd/Al2O3 and acid strength influences on CH4 combustion. We observed carrier effects on activation energy through tuning Pd 3d binding energies (BEs) and on pre-exponential factors (A) through Pd dispersion and acidity on supports. When the BE of Pd 3d5/2 is 337.3 eV, PdO nanoparticles loaded on modified Al2O3 have excellent activity in cracking the C-H bond of CH4, which leads to the lowest activation energy (E a ), regardless of the size effect of the PdO nanoparticle. Furthermore, a theoretical construction that acid sites on catalysts promote the reversible elementary step (2Pd-OH ↔ Pd-O* + Pd* + H2O) right shifts improving the A dependency on the quantity of exposed Pd* and Pd-O*. As a result, Al2O3, as the carrier, not only modifies the electronic characteristics and size of supported PdO nanoparticles but also participates in the reaction process via acid sites on the surface of Al2O3.
Collapse
Affiliation(s)
- Shengpan Peng
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Ziran Ma
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Jing Ma
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Hongyan Wang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Jingyun Chen
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Hui Wei
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Yonglong Li
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Zhimin Ao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Baodong Wang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| |
Collapse
|
41
|
Li F, Lei L, Yi J, Dou C, Meng Z, Wang P. Performance, Structure and Mechanisms of Pd Catalyst Supported on M-Doped (M = La, Ba and K) CeO2 for Methane Oxidation. Catal Letters 2022. [DOI: 10.1007/s10562-022-04124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
The effects of facet-dependent palladium-titania interactions on the activity of Pd/Rutile catalysts for lean methane oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Wang Z, Zhu J, Zu X, Wu Y, Shang S, Ling P, Qiao P, Liu C, Hu J, Pan Y, Zhu J, Sun Y, Xie Y. Selective CO
2
Photoreduction to CH
4
via Pd
δ
+
‐Assisted Hydrodeoxygenation over CeO
2
Nanosheets. Angew Chem Int Ed Engl 2022; 61:e202203249. [DOI: 10.1002/anie.202203249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiqiang Wang
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Xiaolong Zu
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Yang Wu
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Shu Shang
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Peiquan Ling
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Chengyuan Liu
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Jun Hu
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Yang Pan
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Junfa Zhu
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Yongfu Sun
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 China
| | - Yi Xie
- Hefei National Research Center for Physical Science at Microscale National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 China
| |
Collapse
|
44
|
Cheng L, Yue X, Fan J, Xiang Q. Site-Specific Electron-Driving Observations of CO 2 -to-CH 4 Photoreduction on Co-Doped CeO 2 /Crystalline Carbon Nitride S-Scheme Heterojunctions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200929. [PMID: 35476265 DOI: 10.1002/adma.202200929] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Photoexcited dynamic modulation, maximizing the effective utilization of photoinduced electron-hole pairs, dominates the multiple electrons-involving reduction pathways for terminal CH4 evolution during CO2 photoreduction. Yet, the site-specific regulation of directional charge transfer by modification of an S-scheme heterojunction has seldom been discussed. Herein, an atomic-level tailoring strategy by anchoring single-atomic Co into CeO2 co-catalyst rather than carbon nitride supports, which can selectively favor CO2 -to-CH4 photoreduction, is reported. Through in situ dynamic tracking investigations, this study identifies that surface Co-embedded bimetallic CeCo conjunction is the key feature driving a strong interconnection of dynamical charge states through S-scheme heterojunctions. The Co-embedded modification into CeO2 co-catalysts is demonstrated to have a critical effect on directional charge control, accelerating the driving of electrons from the carbon nitride donations to site-specific Co hubs, which thereby promotes electronic transferability for electrons-involving CH4 formation. As a result, an unprecedented CH4 yield (181.7 µmol g-1 ) is obtained with a high turnover number (411.4) through a fully gas-solid reaction, demonstrating its potential toward targeted CH4 formation without adding any sacrificial agent.
Collapse
Affiliation(s)
- Lei Cheng
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| | - Xiaoyang Yue
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| |
Collapse
|
45
|
You R, Wu Z, Yu J, Wang F, Chen S, Han ZK, Yuan W, Yang H, Wang Y. Revealing Surface Restraint-Induced Hexagonal Pd Nanocrystals via In Situ Transmission Electron Microscopy. NANO LETTERS 2022; 22:4333-4339. [PMID: 35584407 DOI: 10.1021/acs.nanolett.2c00411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Achieving metal nanocrystals with metastable phase draws much attention due to their anticipated fascinating properties, wheras it is still challenging because their polymorphism nature and phase transition mechanism remain elusive. Here, phase stability of face-centered cubic (fcc) Pd nanocrystals was studied via in situ spherical aberration (Cs)-corrected transmission electron microscopy (TEM). By constructing a well-defined Pd/C composite structure, Pd nanocrystals encapsulated by graphite, the dispersion process of fcc Pd was observed through a nucleation and growth process. Interestingly, Cs-corrected scanning TEM analysis demonstrated that the newly formed Pd nanocrystals could adopt a metastable hexagonal phase, which was considered challenging to obtain. Accordingly, formation mechanism of the hexagonal Pd nanocrystals was proposed, which involved the combined effect of two factors: (1) templating of graphite and (2) size effect. This work is expected to offer new insight into the polymorphism of Pd nanocrystals and pave the way for the future design of metastable metal nanomaterials.
Collapse
Affiliation(s)
- Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhemin Wu
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Yu
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shiyuan Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhong-Kang Han
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
46
|
Sun Y, Wang Z, Zhu J, Zu X, Wu Y, Shang S, Ling P, Qiao P, Liu C, Hu J, Pan Y, Zhu J, Xie Y. Selective CO2 Photoreduction to CH4 via Pdᵟ+‐assisted Hydrodeoxygenation over CeO2 Nanosheets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yongfu Sun
- University of Science & Technology of China Hefei National Laboratory for Physical Sciences at Microscale No.96, JinZhai Road Baohe District 230026 Hefei CHINA
| | - Zhiqiang Wang
- University of Science and Technology of China hefei national laboratory for physical science at microscale CHINA
| | - Juncheng Zhu
- University of Science and Technology of China hefei national laboratory for physical science at microscale CHINA
| | - Xiaolong Zu
- University of Science and Technology of China hefei national laboratory for physical science at microscale CHINA
| | - Yang Wu
- University of Science and Technology of China hefei national laboratory for physical science at microscale CHINA
| | - Shu Shang
- University of Science and Technology of China hefei national laboratory for physical science at microscale CHINA
| | - Peiquan Ling
- University of Science and Technology of China hefei national laboratory for physical science at microscale CHINA
| | - Panzhe Qiao
- Chinese Academy of Sciences shaihai synchrotron radiation CHINA
| | - Chengyuan Liu
- University of Science and Technology of China hefei national laboratory for physical science at microscale CHINA
| | - Jun Hu
- University of Science and Technology of China hefei national laboratory for physical science at microscale CHINA
| | - Yang Pan
- University of Science and Technology of China national synchrotron radiation laboratory CHINA
| | - Junfa Zhu
- University of Science and Technology of China hefei national laboratory for physical science at microscale CHINA
| | - Yi Xie
- University of Science and Technology of China hefei national laboratory for physical science at microscale CHINA
| |
Collapse
|
47
|
Chen L, Wu XP, Gong XQ. Unique catalytic mechanisms of methanol dehydrogenation at Pd-doped ceria: A DFT+U study. J Chem Phys 2022; 156:134701. [PMID: 35395884 DOI: 10.1063/5.0085913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pd-doped ceria is highly active in promoting oxidative dehydrogenation (ODH) reactions and also a model single atom catalyst (SAC). By performing density functional theory calculations corrected by on-site Coulomb interactions, we systematically studied the physicochemical properties of the Pd-doped CeO2(111) surface and the catalytic methanol to formaldehyde reaction on the surface. Two different configurations were located for the Pd dopant, and the calculated results showed that doping of Pd will make the surface more active with lower oxygen vacancy formation energies than the pristine CeO2(111). Moreover, two different pathways for the dehydrogenation of CH3OH to HCHO on the Pd-doped CeO2(111) were determined, one of which is the conventional two-step process (stepwise pathway) with the O-H bond of CH3OH being broken first followed by the C-H bond cleavage, while the other is a novel one-step process (concerted pathway) involving the two H being dissociated from CH3OH simultaneously even with a lower energy barrier than the stepwise one. With electronic and structural analyses, we showed that the direct reduction of Pd4+ to Pd2+ through the transfer of two electrons can outperform the separated Ce4+ to Ce3+ processes with the help of configurational evolution at the Pd site, which is responsible for the existence of such one-step dehydrogenation process. This novel mechanism may provide an inspiration for constructing ceria-based SAC with unique ODH activities.
Collapse
Affiliation(s)
- Lu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
48
|
Li Q, Chu X, Wang Y, Yang Q, Su Z, Peng Y, Si W, Li J. Metal–Support Interactions within a Dual-Site Pd/YMn 2O 5 Catalyst during CH 4 Combustion. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xuefeng Chu
- Key Laboratory of Architectural Cold Climate Energy Management, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Ya Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qilei Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ziang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
49
|
Chen Y, Chen J, Zhang J, Xue Y, Wang G, Wang R. Anchoring Highly Dispersed Pt Electrocatalysts on TiO x with Strong Metal-Support Interactions via an Oxygen Vacancy-Assisted Strategy as Durable Catalysts for the Oxygen Reduction Reaction. Inorg Chem 2022; 61:5148-5156. [PMID: 35289604 DOI: 10.1021/acs.inorgchem.2c00329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pt electrocatalysts with high activity and durability have still crucial issues for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). In this study, a novel catalyst consisting of Pt nanoparticles (NPs) on TiOx/C composites (TiOx-Vo-H/C) with abundant oxygen vacancies (Vo) is proposed, which is abbreviated as PTO-Vo-H/C. The introduction of Vo helps anchor highly dispersed Pt NPs with low loading and strengthen the strong metal-support interaction (SMSI), which benefits to the enhanced ORR catalytic activity. Moreover, the accelerated durability test (ADT) demonstrates the higher retention of ORR activity for PTO-Vo-H/C. Experimental and theoretical analyses reveal that electronic interactions between Pt NPs and TiOx/C composite support give rise to an electron-rich Pt NPs and strong SMSI effect, which is favorable for the electron transfer and stabilization of Pt NPs. More importantly, the assembled PEMFC with PTO-Vo-H/C shows only 6.9% of decay on maximum power density after 3000 ADT cycles while the performance of Pt/C sharply decreased. This work provides a new insight into the unique vacancy regulation of dispersive Pt on metal oxides for superior ORR performance.
Collapse
Affiliation(s)
- Yihan Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China.,Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Yali Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China.,Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| |
Collapse
|
50
|
Xia T, Yao S, Wu Z, Li G, Li J. High ratio of Ce 3+/(Ce 3++Ce 4+) enhanced the plasma catalytic degradation of n-undecane on CeO 2/γ-Al 2O 3. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127700. [PMID: 34799160 DOI: 10.1016/j.jhazmat.2021.127700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
n-Undecane (C11) is the main component of volatile organic compounds (VOCs) emitted from the printing industry, and its emission to the atmosphere should be controlled. In this study, a dielectric barrier discharge reactor coupled with CeO2/γ-Al2O3 catalysts was used to degrade C11. The effect of the chemical state of CeO2 on C11 degradation was evaluated by varying the CeO2 loading on γ-Al2O3. The C11 conversion and COx selectivity were as high as 92% and 80%, respectively, under mild reaction conditions of energy density 34 J/L and 423 K to degrade 134 mg/m3 C11 in a simulated air using 10 wt%CeO2 impregnated on γ-Al2O3. After analyses using in-situ plasma diffuse reflectance Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry, it was found that most of C11 were degraded to CO2, and the main by-products on catalyst surfaces were alcohols and ketones. It was concluded from X-ray photoemission spectroscopy that the good performance of the 10 wt%CeO2/γ-Al2O3 catalyst was due to its high Ce3+/(Ce3++Ce4+) ratio as well as the oxygen vacancies. The Ce3+/(Ce3++Ce4+) ratio of CeO2 on γ-Al2O3 is crucial for the degradation of C11, providing a further roadmap for the plasma catalytic oxidation of alkanes.
Collapse
Affiliation(s)
- Tongtong Xia
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China
| | - Shuiliang Yao
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China.
| | - Zuliang Wu
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China
| | - Guojian Li
- Engineering Research Center of Construction Technology of Precast Concrete of Zhejiang Province, Hangzhou 310018, China
| | - Jing Li
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China; Engineering Research Center of Construction Technology of Precast Concrete of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|