1
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Bera S, Kabadwal LM, Banerjee D. Harnessing alcohols as sustainable reagents for late-stage functionalisation: synthesis of drugs and bio-inspired compounds. Chem Soc Rev 2024; 53:4607-4647. [PMID: 38525675 DOI: 10.1039/d3cs00942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Alcohol is ubiquitous with unparalleled structural diversity and thus has wide applications as a native functional group in organic synthesis. It is highly prevalent among biomolecules and offers promising opportunities for the development of chemical libraries. Over the last decade, alcohol has been extensively used as an environmentally friendly chemical for numerous organic transformations. In this review, we collectively discuss the utilisation of alcohol from 2015 to 2023 in various organic transformations and their application toward intermediates of drugs, drug derivatives and natural product-like molecules. Notable features discussed are as follows: (i) sustainable approaches for C-X alkylation (X = C, N, or O) including O-phosphorylation of alcohols, (ii) newer strategies using methanol as a methylating reagent, (iii) allylation of alkenes and alkynes including allylic trifluoromethylations, (iv) alkenylation of N-heterocycles, ketones, sulfones, and ylides towards the synthesis of drug-like molecules, (v) cyclisation and annulation to pharmaceutically active molecules, and (vi) coupling of alcohols with aryl halides or triflates, aryl cyanide and olefins to access drug-like molecules. We summarise the synthesis of over 100 drugs via several approaches, where alcohol was used as one of the potential coupling partners. Additionally, a library of molecules consisting over 60 fatty acids or steroid motifs is documented for late-stage functionalisation including the challenges and opportunities for harnessing alcohols as renewable resources.
Collapse
Affiliation(s)
- Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Spinello BJ, Strong ZH, Ortiz E, Evarts MM, Krische MJ. Intermolecular Metal-Catalyzed C‒C Coupling of Unactivated Alcohols or Aldehydes for Convergent Ketone Construction beyond Premetalated Reagents. ACS Catal 2023; 13:10976-10987. [PMID: 38464997 PMCID: PMC10923551 DOI: 10.1021/acscatal.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Intermolecular metal-catalyzed C‒C couplings of unactivated primary alcohols or aldehydes to form ketones are catalogued. Reactions are classified on the basis of pronucleophile. Protocols involving premetalated reagents or reactants that incorporate directing groups are not covered. These methods represent an emerging alternative to classical multi-step protocols for ketone construction that exploit premetalated reagents, and/or steps devoted to redox manipulations and carboxylic acid derivatization.
Collapse
Affiliation(s)
- Brian J Spinello
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Zachary H Strong
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Maddie M Evarts
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
4
|
Liu F, Cheng Z, Fang Y, Wang X, Zhao L, Rong ZQ. Metal-Catalyst-Controlled Divergent Synthesis of γ-Butyrolactones via Intramolecular Coupling of Epoxides with Alcohols. Org Lett 2023; 25:3618-3622. [PMID: 37184068 DOI: 10.1021/acs.orglett.3c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A metal-controlled divergent protocol for the synthesis of α- and β-substituted γ-butyrolactones was developed through intramolecular coupling of epoxides with alcohols. This method provides an efficient and practicable way to afford γ-butyrolactones with good efficiency, excellent regioselectivity, and broad substrate scope.
Collapse
Affiliation(s)
- Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zifan Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Yiyun Fang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Lingzi Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
5
|
Shui L, Liu F, Wang X, Ma C, Qiang Q, Shen M, Fang Y, Ni SF, Rong ZQ. Ligand-Induced chemodivergent nickel-catalyzed annulations via tandem isomerization/esterification and direct O-allylic substitution: Divergent access to 3,4-dihydrocoumarins and 2H-chromenes. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Zhao F, Tan B, Li Q, Tan Q, Huang H. Progress in C-C and C-Heteroatom Bonds Construction Using Alcohols as Acyl Precursors. Molecules 2022; 27:8977. [PMID: 36558110 PMCID: PMC9781314 DOI: 10.3390/molecules27248977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Acyl moiety is a common structural unit in organic molecules, thus acylation methods have been widely explored to construct various functional compounds. While the traditional Friedel-Crafts acylation processes work to allow viable construction of arylketones under harsh acid conditions, recent progress on developing acylation methods focused on the new reactivity discovery by exploiting versatile and easily accessible acylating reagents. Of them, alcohols are cheap, have low toxicity, and are naturally abundant feedstocks; thus, they were recently used as ideal acyl precursors in molecule synthesis for ketones, esters, amides, etc. In this review, we display and discuss recent advances in employing alcohols as unusual acyl sources to form C-C and C-heteroatom bonds, with emphasis on the substrate scope, limitations, and mechanism.
Collapse
Affiliation(s)
- Feng Zhao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Bin Tan
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qing Li
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qi Tan
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
7
|
Qu J, Yan Z, Wang X, Deng J, Liu F, Rong ZQ. Nickel-catalyzed cross-coupling of epoxides with aryltriflates: rapid and regioselective construction of aryl ketones. Chem Commun (Camb) 2022; 58:9214-9217. [PMID: 35894937 DOI: 10.1039/d2cc02891c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aryl ketones are one of the most important classes of organic compounds, and widely present in various pharmacological compounds, biologically active molecules and functional materials. Presented herein is a facile synthetic method for the construction of ketones via Ni-catalyzed cross coupling of epoxides with aryltriflates. A range of easily accessible epoxides can be highly regioselectively converted to the corresponding aryl ketones with good yields in a redox neutral fashion.
Collapse
Affiliation(s)
- Jinglin Qu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Zijuan Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| |
Collapse
|
8
|
Wang X, Wang X, Pan H, Ming X, Zhang Z, Wang T. Palladium-Catalyzed Oxidative Nonclassical Heck Reaction of Arylhydrazines with Allylic Alcohols via C-N Bond Cleavage: Access to β-Arylated Carbonyl Compounds. J Org Chem 2022; 87:10173-10184. [PMID: 35877650 DOI: 10.1021/acs.joc.2c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient palladium-catalyzed oxidative nonclassical Heck reaction of arylhydrazines with allylic alcohols via C-N bond cleavage has been successfully developed. This method provides a series of β-arylated carbonyl compounds with broad functional group tolerance under base-free, simple, and mild open air reaction conditions. In the reaction, arylhydrazines with the smaller molecular weight of the leaving group were employed as the "green" arylation reagent, which released N2 and water as the byproducts under air. Mechanistic studies suggested that an aryl radical process and Pd-H complex migration reinsertion were involved. Moreover, the synthesis of the antiarrhythmic drug propafenone was completed with this transformation as the key step.
Collapse
Affiliation(s)
- Xiaoshuo Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| | - Xiaojing Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| | - Hongwu Pan
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| | - Xiayi Ming
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| | - Zhenming Zhang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiang xi 330022, P. R. China
| |
Collapse
|
9
|
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
10
|
Bai N, Wang X, Wang Z, Liu F, Rong ZQ. Redox-neutral remote amidation of alkenyl alcohols via long-range isomerization/transformation. Org Chem Front 2022. [DOI: 10.1039/d2qo01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and straightforward approach for the construction of amides via redox-neutral Ru-catalyzed cross-coupling reaction of long-range alkenyl alcohols with amines to realize remote site-selective functionalization has been developed.
Collapse
Affiliation(s)
- Na Bai
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zhenchao Wang
- College of Pharmacy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
11
|
Hong CM, Zhuang X, Luo Z, Xiong SQ, Liu ZQ, Li QL, Zou FF, Li QH, Liu TL. Copper-catalyzed transfer methylenation via C(sp 3)–C(sp 3) bond cleavage of alcohols. Org Chem Front 2022. [DOI: 10.1039/d2qo01373h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transfer Methylenation: A copper-catalyzed transfer methylenation via the cleavage of unstrained C(sp3)-C(sp3) bonds is developted. This is a de novo report for transfer hydrocarbylation between alcohols and carbonyl compounds.
Collapse
Affiliation(s)
- Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Si-Qi Xiong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei-Fei Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Yan Z, Liu F, Wang X, Qiang Q, Li Y, Zhang Y, Rong Z. Redox-Neutral Dehydrogenative Cross-Coupling of Alcohols and Amines Enabled by Nickel Catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00004k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is a facile and straightforward synthetic method for the construction of amides via Ni/NHC-catalyzed amidation of alcohols with amines. The strategy exhibits various advantages over existing methods, including...
Collapse
|
13
|
Pan D, Xu S, Tian Q, Li Y. Pd‐Catalyzed Intermolecular Transthiolation of Ar‐OTf Using Methyl 3‐(Methylthio) Propanoate as a Thiol Surrogate. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dandan Pan
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| | - Shasha Xu
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| | - Qingqiang Tian
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| | - Yahui Li
- Department Key Laboratory of Agri-Food Safety of Anhui Province School of Resources and Environment Anhui Agricultural University Hefei 230036 China
| |
Collapse
|
14
|
Spinello BJ, Wu J, Cho Y, Krische MJ. Conversion of Primary Alcohols and Butadiene to Branched Ketones via Merged Transfer Hydrogenative Carbonyl Addition-Redox Isomerization Catalyzed by Rhodium. J Am Chem Soc 2021; 143:13507-13512. [PMID: 34415159 PMCID: PMC8739284 DOI: 10.1021/jacs.1c07230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first examples of rhodium-catalyzed carbonyl addition via hydrogen autotransfer are described, as illustrated in tandem butadiene-mediated carbonyl addition-redox isomerizations that directly convert primary alcohols to isobutyl ketones. Related reductive coupling-redox isomerizations of aldehyde reactants mediated by sodium formate also are reported. A double-labeling crossover experiment reveals that the rhodium alkoxide obtained upon carbonyl addition enacts redox isomerization without dissociation of rhodium at any intervening stage.
Collapse
Affiliation(s)
- Brian J Spinello
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessica Wu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Cho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Kang T, Kim N, Cheng PT, Zhang H, Foo K, Engle KM. Nickel-Catalyzed 1,2-Carboamination of Alkenyl Alcohols. J Am Chem Soc 2021; 143:13962-13970. [PMID: 34415748 DOI: 10.1021/jacs.1c07112] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An alcohol-directed, nickel-catalyzed three-component umpolung carboamination of unactivated alkenes with aryl/alkenylboronic esters and electrophilic aminating reagents is reported. This transformation is enabled by specifically tailored O-(2,6-dimethoxybenzoyl)hydroxylamine electrophiles that suppress competitive processes, including undesired β-hydride elimination and transesterification between the alcohol substrate and electrophile. The reaction delivers the desired 1,2-carboaminated products with generally high regio- and syn-diastereoselectivity and exhibits a broad scope of coupling partners and alkenes, including complex natural products. Various mechanistic experiments and analysis of the stereochemical outcome with a cyclic alkene substrate, as confirmed by X-ray crystallographic analysis, support alcohol-directed syn-insertion of an organonickel(I) species.
Collapse
Affiliation(s)
- Taeho Kang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nana Kim
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter T Cheng
- Discovery Chemistry, Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Hao Zhang
- Discovery Chemistry, Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Klement Foo
- Discovery Chemistry, Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Keary M Engle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Ding Y, Long J, Sun F, Fang X. Nickel-Catalyzed Isomerization/Allylic Cyanation of Alkenyl Alcohols. Org Lett 2021; 23:6073-6078. [PMID: 34296889 DOI: 10.1021/acs.orglett.1c02143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein reported is a nickel-catalyzed isomerization/allylic cyanation of alkenyl alcohols, which complements current methods for the allylic substitution reactions. The specific diphosphite ligand and methanol as the solvent are crucial for the success for this transformation. A gram-scale regioconvergent experiment and formal synthesis of quebrachamine demonstrate the high potential of this methodology.
Collapse
Affiliation(s)
- Ying Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinguo Long
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Feilong Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|