1
|
Bagger A, Tort R, Titirici MM, Walsh A, Stephens IEL. Electrochemical Nitrogen Reduction: The Energetic Distance to Lithium. ACS ENERGY LETTERS 2024; 9:4947-4952. [PMID: 39416676 PMCID: PMC11474955 DOI: 10.1021/acsenergylett.4c01638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
Energy-efficient electrochemical reduction of nitrogen to ammonia could help in mitigating climate change. Today, only Li- and recently Ca-mediated systems can perform the reaction. These materials have a large intrinsic energy loss due to the need to electroplate the metal. In this work, we present a series of calculated energetics, formation energies, and binding energies as fundamental features to calculate the energetic distance between Li and Ca and potential new electrochemical nitrogen reduction systems. The featured energetic distance increases with the standard potential. However, dimensionality reduction using principal component analysis provides an encouraging picture; Li and Ca are not exceptional in this feature space, and other materials should be able to carry out the reaction. However, it becomes more challenging the more positive the plating potential is.
Collapse
Affiliation(s)
- Alexander Bagger
- Department
of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Romain Tort
- Department
of Chemical Engineering, Imperial College
London, SW7 2AZ London, United Kingdom
| | | | - Aron Walsh
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ifan E. L. Stephens
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Jin D, Chen A, Lin BL. What Metals Should Be Used to Mediate Electrosynthesis of Ammonia from Nitrogen and Hydrogen from a Thermodynamic Standpoint? J Am Chem Soc 2024; 146:12320-12323. [PMID: 38597430 DOI: 10.1021/jacs.4c02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Recently, metal-mediated electrochemical conversion of nitrogen and hydrogen to ammonia (M-eNRRs) has been attracting intense research attention as a potential route for ammonia synthesis under ambient conditions. However, which metals should be used to mediate M-eNRRs remains unanswered. This work provides an extensive comparison of the energy consumption in the classical Haber Bosch (H-B) process and the M-eNRRs. The results indicate that when employing lithium and calcium, metals popularly used to mediate the M-eNRRs, the energy consumption is more than 10 times greater than that of the H-B process even assuming a 100% Faradaic efficiency and zero overpotentials. Only electrosynthesis with a cell voltage not exceeding 0.38 V might have the potential to rival the H-B process from an energetic perspective. A further analysis of other metals in the periodic table reveals that only some heavy metals, including In, Tl, Co, Ni, Ga, Mo, Sn, Pb, Fe, W, Ge, Re, Bi, Cu, Po, Tc, Ru, Rh, Ag, Hg, Pd, Ir, Pt, and Au, can potentially consume less energy than that of the H-B process purely from a thermodynamic standpoint, but whether they can activate N2 under ambient conditions is yet to be explored. This work shows the importance of performing thermodynamic analysis for the development of an innovative strategy to synthesize ammonia with the ultimate goal of replacing the H-B process on a large scale.
Collapse
Affiliation(s)
- Dongling Jin
- School of Physical Science and Technology (SPST), ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology (SIST), ShanghaiTech University, Shanghai, 201210, China
| | - Anqi Chen
- CarbonXtech Co., Ltd., Shanghai, 200041, China
| | - Bo-Lin Lin
- School of Physical Science and Technology (SPST), ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
3
|
Roy P, Ghoshal S, Pramanik A, Sarkar P. Single B-vacancy enriched α 1-borophene sheet: an efficient metal-free electrocatalyst for CO 2 reduction. Phys Chem Chem Phys 2023; 25:25018-25028. [PMID: 37698058 DOI: 10.1039/d3cp01866k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
By employing first principles calculations, we have studied the electronic structures of pristine (α1) and different defective (α1-t1, α1-t2) borophene sheets to understand the efficacy of such systems as metal-free electrocatalysts for the CO2 reduction reaction. Among the three studied systems, only α1-t1, the defective borophene sheet created by removal of a 5-coordinated boron atom, can chemisorb and activate a CO2 molecule for its subsequent reduction processes, leading to different C1 chemicals, followed by selective conversion into C2 products by multiple proton coupled electron transfer steps. The computed onset potentials for the C1 chemicals such as CH3OH and CH4 are low enough. On the other hand, in the case of the C2 reduction process, the C-C coupling barrier is only 0.80 eV in the solvent phase which produces CH3CHO and CH3CH2OH with very low onset potential values of -0.21 and -0.24 V, respectively, suppressing the competing hydrogen evolution reaction.
Collapse
Affiliation(s)
- Prodyut Roy
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia-723104, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| |
Collapse
|
4
|
Westhead O, Spry M, Bagger A, Shen Z, Yadegari H, Favero S, Tort R, Titirici M, Ryan MP, Jervis R, Katayama Y, Aguadero A, Regoutz A, Grimaud A, Stephens IEL. The role of ion solvation in lithium mediated nitrogen reduction. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:12746-12758. [PMID: 37346742 PMCID: PMC10281334 DOI: 10.1039/d2ta07686a] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/13/2023] [Accepted: 11/15/2022] [Indexed: 06/23/2023]
Abstract
Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia. However, the literature lacks any coherent investigation systematically linking bulk electrolyte properties to electrochemical performance and Solid Electrolyte Interphase (SEI) properties. In this study, we discover that the salt concentration has a remarkable effect on electrolyte stability: at concentrations of 0.6 M LiClO4 and above the electrode potential is stable for at least 12 hours at an applied current density of -2 mA cm-2 at ambient temperature and pressure. Conversely, at the lower concentrations explored in prior studies, the potential required to maintain a given N2 reduction current increased by 8 V within a period of 1 hour under the same conditions. The behaviour is linked more coordination of the salt anion and cation with increasing salt concentration in the electrolyte observed via Raman spectroscopy. Time of flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy reveal a more inorganic, and therefore more stable, SEI layer is formed with increasing salt concentration. A drop in faradaic efficiency for nitrogen reduction is seen at concentrations higher than 0.6 M LiClO4, which is attributed to a combination of a decrease in nitrogen solubility and diffusivity as well as increased SEI conductivity as measured by electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- O Westhead
- Department of Materials, Imperial College London UK
- Solid-State Chemistry and Energy Laboratory, UMR8260, CNRS, Collège de France France
| | - M Spry
- Department of Materials, Imperial College London UK
| | - A Bagger
- Department of Chemistry, University of Copenhagen Denmark
- Department of Chemical Engineering, Imperial College London UK
| | - Z Shen
- Department of Materials, Imperial College London UK
| | - H Yadegari
- Department of Materials, Imperial College London UK
| | - S Favero
- Department of Chemical Engineering, Imperial College London UK
| | - R Tort
- Department of Chemical Engineering, Imperial College London UK
| | - M Titirici
- Department of Chemical Engineering, Imperial College London UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - M P Ryan
- Department of Materials, Imperial College London UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - R Jervis
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
- Eletrochemical Innovation Lab, Department of Chemical Engineering, University College London UK
| | | | - A Aguadero
- Department of Materials, Imperial College London UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
- Instituto de Ciencia de Materiales de Madrid ICMM-CSIC Spain
| | - A Regoutz
- Department of Chemistry, University College London UK
| | - A Grimaud
- Solid-State Chemistry and Energy Laboratory, UMR8260, CNRS, Collège de France France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459 80039 Amiens Cedex 1 France
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA USA
| | - I E L Stephens
- Department of Materials, Imperial College London UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| |
Collapse
|
5
|
Huang X, Wang J, Zhao C, Gan LY, Xu H. NiO Matrix Decorated by Ru Single Atoms: Electron-Rich Ru-Induced High Activity and Selectivity toward Electrochemical N 2 Reduction. J Phys Chem Lett 2023; 14:3785-3793. [PMID: 37052489 DOI: 10.1021/acs.jpclett.3c00372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Developing a single-atom catalyst with electron-rich active sites is a promising strategy for catalyzing the electrochemical N2 reduction reaction (NRR). Herein, we choose NiO(001) as a model template and deposit a series of single transition metal (TM) atoms with higher formal charges to create the electron-rich active centers. Our first-principles calculations show that low-valent Ru (+2) on NiO(001) can significantly activate N2, with its oxidation states varying from +2 to +4 throughout the catalytic cycle. The Ru/NiO(001) catalyst exhibits the best activity with a relatively low limiting potential of -0.49 V. Furthermore, under NRR operating conditions, the Ru site is primarily occupied by *N2 rather than *H, indicating that NRR overwhelms the hydrogen evolution reaction and thus exhibits excellent selectivity. Our work highlights the potential of designing catalysts with electron-rich active sites for NRR.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiong Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Changming Zhao
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Yong Gan
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400030, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
7
|
Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nat Rev Chem 2023; 7:184-201. [PMID: 37117902 DOI: 10.1038/s41570-023-00462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2022] [Indexed: 02/04/2023]
Abstract
The Mo/Fe nitrogenase enzyme is unique in its ability to efficiently reduce dinitrogen to ammonia at atmospheric pressures and room temperature. Should an artificial electrolytic device achieve the same feat, it would revolutionize fertilizer production and even provide an energy-dense, truly carbon-free fuel. This Review provides a coherent comparison of recent progress made in dinitrogen fixation on solid electrodes, homogeneous catalysts and nitrogenases. Specific emphasis is placed on systems for which there is unequivocal evidence that dinitrogen reduction has taken place. By establishing the cross-cutting themes and synergies between these systems, we identify viable avenues for future research.
Collapse
|
8
|
Zhang Y, Wang Y, Mou X, Song C, Wang D. Engineering oxygen vacancies and low-valent bismuth at the surface of Bi2MoO6 nanosheets for boosting electrocatalytic N2 reduction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Wan H, Bagger A, Rossmeisl J. Limitations of Electrochemical Nitrogen Oxidation toward Nitrate. J Phys Chem Lett 2022; 13:8928-8934. [PMID: 36130288 PMCID: PMC9531249 DOI: 10.1021/acs.jpclett.2c02459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
The electrocatalytic N2 oxidation reaction (NOR) using renewable electricity is a promising alternative to the industrial synthesis of nitrate from NH3 oxidation. However, breaking the triple bond in the nitrogen molecule is one of the most essential challenges in chemistry. In this work, we use density functional theory simulations to investigate the plausible reaction mechanisms of electrocatalytic NOR and its competition with oxygen evolution reaction (OER) at the atomic scale. We focus on the electrochemical conversion of inert N2 to active *NO during NOR. We propose formation of *N2O from *N2 and *O as the rate-determining step (RDS). Following the RDS, a microkinetic model is utilized to study the rate of NOR on metal oxides. Our results demonstrate that a lower activation energy is obtained when a catalyst binds *O weakly. We show that the reaction is extremely challenging but also that design strategies have been suggested to promote electrochemical NOR.
Collapse
Affiliation(s)
- Hao Wan
- Fritz
Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Alexander Bagger
- Center
for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Jan Rossmeisl
- Center
for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Wu Y, He C, Zhang W. "Capture-Backdonation-Recapture" Mechanism for Promoting N 2 Reduction by Heteronuclear Metal-Free Double-Atom Catalysts. J Am Chem Soc 2022; 144:9344-9353. [PMID: 35594427 DOI: 10.1021/jacs.2c01245] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Facing the increasingly serious energy and environmental crisis, the development of heteronuclear metal-free double-atom catalysts is a potential strategy to realize efficient catalytic nitrogen reduction with low energy consumption and no pollution because it could combine the advantages of flexible active sites in double-atom catalysts while also being pollution-free and have high Faraday efficiency in metal-free catalysts simultaneously. However, according to the existing mechanism, the finite orbits of other nonmetallic atoms, except the boron atom, reduce the possibility of metal-free catalysis and hinder the development of heteronuclear metal-free double-atom catalysts. Herein, we propose a new "capture-backdonation-recapture" mechanism, which skillfully uses the electron capture-backdonation-recapture between boron, the substrate, and other nonmetallic elements to solve the above problems. Based on this mechanism, by means of the first-principle calculations, the material structure, adsorption energy, catalytic activity, and selectivity of 36 catalysts are systematically investigated to evaluate their catalytic performance. B-Si@BP1 and B-Si@BP3 are selected for their good catalytic performance and low limiting potentials of -0.14 and -0.10 V, respectively. Meanwhile, the "capture-backdonation-recapture" mechanism is also verified by analyzing the results of adsorption energy and electron transfer. Our work broadens the ideas and lays the theoretical foundation for the development of heteronuclear metal-free double-atom catalysts in the future.
Collapse
Affiliation(s)
- Yibo Wu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng He
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenxue Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|
11
|
Li Q, Fang C, Yang Z, Yu B, Takabatake M, Motokura K, Sun X, Yang Y. Modulating the Oxidation State of Titanium via Dual Anions Substitution for Efficient N 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201343. [PMID: 35608317 DOI: 10.1002/smll.202201343] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) is a promising approach for renewable ammonia synthesis but remains significantly challenging due to the low yield and poor selectivity. Herein, a facile N and S dual anions substitution strategy is developed to tune the Ti oxidation states of TiO2 nanohybrid catalyst (NS-TiO2 /C), in which anatase TiO2 nanoplates with dense Ti3+ active sites are uniformly dispersed on porous carbon derived from 2D Ti3 C2 Tx nanosheets. The catalyst NS-TiO2 /C exhibits a superior ambient NRR efficiency with an NH3 yield rate of 19.97 µg h-1 mg-1cat and Faradaic efficiency of 25.49% and is coupled with a remarkable 50 h long-term stability at -0.25 V versus RHE. Both experimental and theoretical results reveal that the N and S dual-substitution effectively regulate the Ti oxidation state and electronical properties of the NS-TiO2 /C via simultaneously forming interstitial and substitutional TiS and TiN bonds in the anatase TiO2 lattice, inducing oxygen vacancies and dense Ti3+ active species as well as better electronic conductivity, which substantially facilitates N2 chemisorption and activation, and reduces the energy barrier of the rate-determining step, thereby essentially boosting NRR efficiency. This work provides a valuable approach to the rational design of advanced materials by modulating oxidation states for efficient electrocatalysis.
Collapse
Affiliation(s)
- Qinglin Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cong Fang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Zihao Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Yu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Moe Takabatake
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8502, Japan
| | - Ken Motokura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8502, Japan
- Department of Chemistry and Life Science, Yokohama National University, Yokohama, 240-8501, Japan
| | - Xiaoyan Sun
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Yong Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| |
Collapse
|
12
|
Yang P, Guo H, Zhang F, Zhou Y, Niu X. 电催化合成氨反应原位表征技术研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Wu T, Melander MM, Honkala K. Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05820] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tongwei Wu
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Marko M. Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
14
|
González-Cabaleiro R, Thompson JA, Vilà-Nadal L. Looking for Options to Sustainably Fixate Nitrogen. Are Molecular Metal Oxides Catalysts a Viable Avenue? Front Chem 2021; 9:742565. [PMID: 34595154 PMCID: PMC8476845 DOI: 10.3389/fchem.2021.742565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Fast and reliable industrial production of ammonia (NH3) is fundamentally sustaining modern society. Since the early 20th Century, NH3 has been synthesized via the Haber-Bosch process, running at conditions of around 350-500°C and 100-200 times atmospheric pressure (15-20 MPa). Industrial ammonia production is currently the most energy-demanding chemical process worldwide and contributes up to 3% to the global carbon dioxide emissions. Therefore, the development of more energy-efficient pathways for ammonia production is an attractive proposition. Over the past 20 years, scientists have imagined the possibility of developing a milder synthesis of ammonia by mimicking the nitrogenase enzyme, which fixes nitrogen from the air at ambient temperatures and pressures to feed leguminous plants. To do this, we propose the use of highly reconfigurable molecular metal oxides or polyoxometalates (POMs). Our proposal is an informed design of the polyoxometalate after exploring the catabolic pathways that cyanobacteria use to fix N2 in nature, which are a different route than the one followed by the Haber-Bosch process. Meanwhile, the industrial process is a "brute force" system towards breaking the triple bond N-N, needing high pressure and high temperature to increase the rate of reaction, nature first links the protons to the N2 to later easier breaking of the triple bond at environmental temperature and pressure. Computational chemistry data on the stability of different polyoxometalates will guide us to decide the best design for a catalyst. Testing different functionalized molecular metal oxides as ammonia catalysts laboratory conditions will allow for a sustainable reactor design of small-scale production.
Collapse
Affiliation(s)
| | - Jake A Thompson
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Laia Vilà-Nadal
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
Westhead O, Jervis R, Stephens IEL. Is lithium the key for nitrogen electroreduction? Science 2021; 372:1149-1150. [PMID: 34112680 DOI: 10.1126/science.abi8329] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Olivia Westhead
- Department of Materials, Imperial College London, London, UK
| | - Rhodri Jervis
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, London, UK
| | | |
Collapse
|