1
|
Eskandari A, Safavi SN, Sahrayi H, Alizadegan D, Eskandarisani M, Javanmard A, Tajik M, Sadeghi Z, Toutounch A, Yeganeh FE, Noorbazargan H. Antimicrobial and antibiofilm activity of prepared thymol@UIO-66 and thymol/ZnONPs@UIO-66 nanoparticles against Methicillin-resistant Staphylococcus aureus: A synergistic approach. Colloids Surf B Biointerfaces 2025; 249:114529. [PMID: 39879671 DOI: 10.1016/j.colsurfb.2025.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively. Successful encapsulation of the antibacterial drug with a high entrapment efficiency of 64 % for Thymol was approved, and 49 % in-vitro release of Thymol was achieved for 72 hours. In-vitro antibacterial assays revealed promising results, with the drug-loaded nanoparticles exhibiting significantly lower MIC values and enhanced bactericidal activity against S. Aureus bacterial strains compared to the free drug, as demonstrated by agar disk diffusion and time-kill assays. MIC values reduced from a range of 31.25-250 µg/ml for free Thymol and 12.5-100 µg/ml for free ZnONPs to 3.9-62.5 µg/ml for Thymol@UIO-66 and 1.95-15.63 µg/ml for Thymol/ZnONPs@UIO-66. According to the results, the mixture of both Thymol and ZnONPs had 41 % and 16 % more antibiofilm activities in comparison with free Thymol and free ZnONPs, respectively. Furthermore, Thymol@UIO-66 had 25 % higher antibiofilm activities relative to not-encapsulated Thymol and ZnONPs, and this improvement was even 46 % more in Thymol/ZnONPs@UIO-66 in comparison with Thymol@UIO-66. Overall, this study demonstrates the potential of Thymol/ZnONPs@UIO-66 frameworks as a promising drug delivery platform for effective antibacterial therapy. This approach to overcome antibiotic resistance and improve treatment efficacy potentially.
Collapse
Affiliation(s)
- Alireza Eskandari
- CTERC, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nooshin Safavi
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Dorsa Alizadegan
- Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | | | - Alireza Javanmard
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-1503, United States
| | - Mohammadreza Tajik
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15219, United States
| | - Zohre Sadeghi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Disease, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Arvin Toutounch
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Bigham A, Serrano-Ruiz M, Caporali M, Fasolino I, Peruzzini M, Ambrosio L, Raucci MG. Black phosphorus-based nanoplatforms for cancer therapy: chemistry, design, biological and therapeutic behaviors. Chem Soc Rev 2025; 54:827-897. [PMID: 39618201 DOI: 10.1039/d4cs00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Cancer, a significant threat to human lives, has been the target of research for several decades. Although conventional therapies have drawbacks, such as side effects, low efficacy, and weak targeting, they have been applied extensively due to a lack of effective alternatives. The emergence of nanotechnology in medicine has opened up new possibilities and offered promising solutions for cancer therapy. In recent years, 2D nanomaterials have attracted enormous attention in nanomedicine due to their large surface-to-volume ratio, photo-responsivity, excellent electrical conductivity, etc. Among them, black phosphorus (BP) is a 2D nanomaterial consisting of multiple layers weakly bonded together through van der Waals forces. Its distinct structure makes BP suitable for biomedical applications, such as drug/gene carriers, PTT/PDT, and imaging agents. BP has demonstrated remarkable potential since its introduction in cancer therapy in 2015, particularly due to its selective anticancer activity even without the aid of near-infrared (NIR) or anticancer drugs. The present review makes efforts to cover and discuss studies published on the anticancer activity of BP. Based on the type of cancer, the subcategories are organized to shed light on the potential of BP nanosheets and BP quantum dots (BPQDs) against breast, brain, skin, prostate, and bone cancers, and a section is devoted to other cancer types. Since extensive attention has been paid to breast cancer cells and in vivo models, various subsections, including mono-, dual, and triple therapeutic approaches are established for this cancer type. Furthermore, the review outlines various synthesis approaches employed to produce BP nanomaterials, providing insights into key synthesis parameters. This review provides an up-to-date platform for the potential reader to understand what has been done about BP cancer therapy based on each disease, and the conclusions and outlook cover the directions in which this approach is going to proceed in the future.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Manuel Serrano-Ruiz
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Maria Caporali
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maurizio Peruzzini
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| |
Collapse
|
3
|
Wu J, Xia Y, Wang T, Zhang Y, Li G. Efficient voltammetric platform combining a molecularly imprinted polymer and silver-nanoparticle-decorated black phosphorus nanosheets for selective determination of Gatifloxacin. Food Chem X 2025; 25:102094. [PMID: 39758065 PMCID: PMC11699385 DOI: 10.1016/j.fochx.2024.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
An ultrasensitive and selective voltammetric platform combined a molecularly imprinted poly(pyrrole) membrane with Ag-nanoparticle-functionalized black phosphorus nanosheets (MIP/BPNS-AgNPs) was developed for trace GAT detection. The physicochemical properties of the MIP/BPNS-AgNPs were studied by various spectroscopic and electrochemical techniques. BPNS-AgNPs improved the ambient stability and electrochemical activity of the BPNS and possessed a large surface area for accommodating abundant templates to produce specific imprinted sites. The resulting MIP/BPNS-AgNP-modified glassy carbon electrode (GCE) greatly enhanced voltammetric responses for GAT. The MIP/BPNS-AgNP/GCE exhibited admirable GAT determination performance, with two linear responses (0.001-1 and 1-50 μM), high sensitivity (9.965 and 0.5378 μA μM-1), and a low detection limit of 0.2 nM. In addition, the MIP electrode could selectively detect GAT in complex matrices and retain roust responses for a month. The applicability of MIP/BPNS-AgNP/GCE toward the detection of GAT in pharmaceutical formulations, milk, and human serum was verified with satisfactory results.
Collapse
Affiliation(s)
- Jingtao Wu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yonghui Xia
- Zhuzhou Institute for Food and Drug Control, Zhuzhou 412000, China
| | - Tianyu Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yafeng Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
4
|
Hu R, Chen W, Lai J, Li F, Qiao H, Liu Y, Huang Z, Qi X. Heterogeneous Interface Engineering of 2D Black Phosphorus-Based Materials for Enhanced Photocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409735. [PMID: 39723695 DOI: 10.1002/smll.202409735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Photocatalysis has garnered significant attention as a sustainable approach for energy conversion and environmental management. 2D black phosphorus (BP) has emerged as a highly promising semiconductor photocatalyst owing to its distinctive properties. However, inherent issues such as rapid recombination of photogenerated electrons and holes severely impede the photocatalytic efficacy of single BP. The construction/stacking mode of BP with other nanomaterials decreases the recombination rate of carriers and extend its functionalities. Herein, from the perspective of atomic interface and electronic interface, the enhancement mechanism of photocatalytic performance by heterogeneous interface engineering is discussed. Based on the intrinsic properties of BP and corresponding photocatalytic principles, the effects of diverse interface characteristics (point, linear, and planar interface) and charge transfer mechanisms (type I, type II, Z-scheme, and S-scheme heterojunctions) on photocatalysis are summarized systematically. The modulation of heterogeneous interfaces and rational regulation of charge transfer mechanisms can enhance charge migration between interfaces and even maximize redox capability. Furthermore, research progress of heterogeneous interface engineering based on BP is summarized and their prospects are looked ahead. It is anticipated that a novel concept would be presented for constructing superior BP-based photocatalysts and designing other 2D photocatalytic materials.
Collapse
Affiliation(s)
- Rong Hu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Wei Chen
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Jingxia Lai
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Fan Li
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Hui Qiao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Yundan Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Zongyu Huang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China
| |
Collapse
|
5
|
Yu W, Wang K, Li H, Ma T, Wu Y, Shang Y, Zhang C, Fan F, Lv S. An updated review of few-layer black phosphorus serving as a promising photocatalyst: synthesis, modification and applications. NANOSCALE 2024; 16:19131-19173. [PMID: 39320464 DOI: 10.1039/d4nr02567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Semiconductor photocatalysts represent a potential strategy to simultaneously solve the global energy shortage and environmental pollution, and black phosphorus (BP) has gained widespread applications in photocatalysis due to its high hole mobility, strong light trapping capabilities, and adjustable band gap. Nevertheless, the original material exhibits unsatisfactory photocatalytic activity in terms of low carrier separation efficiency, weak environmental stability, and difficult to control layer thickness. The following review briefly presents the fundamental characteristics and extensively discusses the synthesis methods and modification strategies for few-layer black phosphorus (FL-BP). Furthermore, various applications of composite photocatalysts derived from FL-BP such as water splitting, pollutant degradation, the carbon dioxide reduction reaction (CO2RR), phototherapy, bacterial disinfection, N2 fixation, and hydrogenation reactions are reviewed. Finally, the opportunities and challenges for the development and further investigation of advanced FL-BP-based photocatalysts are also presented.
Collapse
Affiliation(s)
- Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yingying Wu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yongchang Shang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Fuhao Fan
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Shifei Lv
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
6
|
Qu W, Xu Z, Gruber CG, Li H, Hu X, Zhou L, Duan H, Zhang J, Liu M, Cortés E, Zhang D. Accelerating Toluene Oxidation over Boron-Titanium-Oxygen Interface: Steric Hindrance of the Methyl Group Induced by the Plane-Adsorption Configuration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16215-16224. [PMID: 39190430 DOI: 10.1021/acs.est.4c06079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Elimination of dilute gaseous toluene is one of the critical concerns within the field of indoor air remediation. The typical degradation route on titanium-based catalysts, "toluene-benzaldehyde-carbon dioxide", necessitates the oxidation of the methyl group as a prerequisite for photocatalytic toluene oxidation. However, the inherent planar adsorption configuration of toluene molecules, dominated by the benzene rings, leads to significant steric hindrance for the methyl group. This steric hindrance prevents the methyl group from contacting the active species on the catalyst surface, thereby limiting the removal of toluene under indoor conditions. To date, no effective strategy to control the steric hindrance of the methyl group has been identified. Herein, we showed a B-Ti-O interface that exhibits significantly enhanced toluene removal efficiency under indoor conditions. In-depth investigations revealed that, compared to typical Ti-based photocatalysts, the steric hindrance between the methyl group and the catalyst surface decreased from 3.42 to 3.03 Å on the designed interface. This reduction originates from the matching of orbital energy levels between Ti 3dz2 and C 2pz of the benzene ring. The decreased steric hindrance improved the efficiency of toluene being attacked by surface active species, allowing for rapid conversion into benzaldehyde and benzoic acid species for subsequent reactions. Our work provides novel insights into the steric hindrance effect in the elimination of aromatic volatile organic compounds.
Collapse
Affiliation(s)
- Wenqiang Qu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zixiang Xu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Christoph G Gruber
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Xiaonan Hu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Haiyan Duan
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Dengsong Zhang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Bi F, Wei J, Ma S, Zhao Q, Zhang J, Qiao R, Xu J, Liu B, Huang Y, Zhang X. Fluorination modification enhanced the water resistance of Universitetet i Oslo-67 for multiple volatile organic compounds adsorption under high humidity conditions: Mechanism study. J Colloid Interface Sci 2024; 665:898-910. [PMID: 38564954 DOI: 10.1016/j.jcis.2024.03.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
The construction of metal-organic frameworks (MOFs) with highly efficient capture for volatile organic compounds (VOCs) adsorption under humid conditions is a significant yet formidable task. Herein, series of fluorinated UiO-67 modified with trifluoroacetic acid (TFA) and 4-fluorobenzoic acid were successfully synthesized for VOCs adsorption under high humidity conditions. Experiments results showed that UiO-67 modified with 4-fluorobenzoic acid (67-F) presented excellent adsorption capacity of 345 mg/g for toluene adsorption and exhibited great water resistance (10.0 vol% H2O, 374 mg/g toluene adsorption capacity). Characterization results indicated that the introduction of 4-fluorobenzoic acid induced the competitive coordination between 4-fluorobenzoic acid and 4,4-biphenyl dicarboxylic acid (BPDC) with Zr4+, causing the formation of abundant defects to provide extra adsorption sites. Meanwhile, the benzene ring in 4-fluorobenzoic acid enhanced the π-π conjugation, causing the further promotion of VOCs adsorption capacity. More importantly, the water resistance mechanism was investigated and elucidated that the introduction of F decreased the surface energy of 67-F and its affinity with water. Meanwhile, the metal complex induced by the fluorinated modification produced an electron-dense pore environment, which greatly improved its chemical and water stability. This work provided a strategy for preparing an adsorbent with high water resistance for real-world VOCs adsorption at high humidity conditions.
Collapse
Affiliation(s)
- Fukun Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiafeng Wei
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuting Ma
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiangyu Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingrui Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rong Qiao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuandong Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China.
| |
Collapse
|
8
|
Wang X, Wang Y, Ma M, Zhao X, Zhang J, Zhang F. P-N Bonds-Mediated Atomic-Level Charge-Transfer Channel Fabricated between Violet Phosphorus and Carbon Nitride Favors Charge Separation and Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311841. [PMID: 38368255 DOI: 10.1002/smll.202311841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Heterostructures are widely employed in photocatalysis to promote charge separation and photocatalytic activity. However, their benefits are limited by the linkages and contact environment at the interface. Herein, violet phosphorus quantum dots (VPQDs) and graphitic carbon nitride (g-C3N4) are employed as model materials to form VPQDs/g-C3N4 heterostructures by a simple ultrasonic pulse excitation method. The heterostructure contains strong interfacial P-N bonds that mitigate interfacial charge-separation issues. P-P bond breakage occurs in the distinctive cage-like [P9] VPQD units during longitudinal disruption, thereby exposing numerous active P sites that bond with N atoms in g-C3N4 under ultrasonic pulse excitation. The atomic-level interfacial P-N bonds of the Z-scheme VPQDs/g-C3N4 heterostructure serve as photogenerated charge-transfer channels for improved electron-hole separation efficiency. This results in excellent photocatalytic performance with a hydrogen evolution rate of 7.70 mmol g-1 h-1 (over 9.2 and 8.5 times greater than those of pure g-C3N4 and VPQDs, respectively) and apparent quantum yield of 11.68% at 400 nm. Using atomic-level chemical bonds to promote interfacial charge separation in phosphorene heterostructures is a feasible and effective design strategy for photocatalytic water-splitting materials.
Collapse
Affiliation(s)
- Xin Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuewen Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
9
|
Guo GC, Zhao JP, Guo S, Shi WX, Liu FC, Lu TB, Zhang ZM. Building Co 16-N 3-Based UiO-MOF to Expand Design Parameters for MOF Photosensitization. Angew Chem Int Ed Engl 2024; 63:e202402374. [PMID: 38655601 DOI: 10.1002/anie.202402374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
The construction of secondary building units (SBUs) in versatile metal-organic frameworks (MOFs) represents a promising method for developing multi-functional materials, especially for improving their sensitizing ability. Herein, we developed a dual small molecules auxiliary strategy to construct a high-nuclear transition-metal-based UiO-architecture Co16-MOF-BDC with visible-light-absorbing capacity. Remarkably, the N3 - molecule in hexadecameric cobalt azide SBU offers novel modification sites to precise bonding of strong visible-light-absorbing chromophores via click reaction. The resulting Bodipy@Co16-MOF-BDC exhibits extremely high performance for oxidative coupling benzylamine (~100 % yield) via both energy and electron transfer processes, which is much superior to that of Co16-MOF-BDC (31.5 %) and Carboxyl @Co16-MOF-BDC (37.5 %). Systematic investigations reveal that the advantages of Bodipy@Co16-MOF-BDC in dual light-absorbing channels, robust bonding between Bodipy/Co16 clusters and efficient electron-hole separation can greatly boost photosynthesis. This work provides an ideal molecular platform for synergy between photosensitizing MOFs and chromophores by constructing high-nuclear transition-metal-based SBUs with surface-modifiable small molecules.
Collapse
Affiliation(s)
- Guang-Chen Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiong-Peng Zhao
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Wen-Xiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Fu-Chen Liu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
10
|
Zhang X, Gao B, Rao R, Bi F, Li C, Yue K, Wang Y, Xu J, Feng X, Yang Y. Defects materials of Institut Lavoisier-125(Ti) materials enhanced photocatalytic activity for toluene and chlorobenzene mixtures degradation: Mechanism study. J Colloid Interface Sci 2024; 660:423-439. [PMID: 38244508 DOI: 10.1016/j.jcis.2024.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
In this paper, the effect of three monocarboxylic acids on MIL-125 synthesis was systematically investigated and the results were discussed in detail. X-ray diffractometry (XRD) and nitrogen adsorption-desorption curves indicated that small molecule acids (acetic acid, propionic acid and butyric acid) affected the morphology of MIL-125 and induced lamellar pores and structural defects in the crystals. Thermogravimetric measurements confirmed the presence of acid-regulated defective metal-organic frameworks (MOFs). Electrochemical tests and density function theory calculations indicated that acid modulation could change the forbidden bandwidth of the material. The acid modification strategy effectively promoted the transfer of photogenerated electrons and enhanced the adsorption and activation of O2 and H2O molecules, generating reactive radicals. The modified MOFs also showed excellent performance in the removal of mixed toluene and chlorobenzene. The degradation pathways of the mixture were analyzed by in situ infrared (IR) and gas chromatography-mass spectrometry (GC-MS). The mixture was converted to chlorophenolic intermediates in the presence of reactive oxygen species, further decomposed to form ethers and ethanol, and finally formed small molecules such as carbon dioxide and water. A feasible method was provided for the preparation of photocatalysts for the treatment of mixed VOCs.
Collapse
Affiliation(s)
- Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China.
| | - Bin Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Renzhi Rao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fukun Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chenyu Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Yue
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuxin Wang
- Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou, Zhejiang 318000, China
| | - Jingcheng Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiangbo Feng
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, Shaanxi, China.
| | - Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
11
|
Gunathilaka TM, Shimomura M. Nanoscale Evaluation of the Degradation Stability of Black Phosphorus Nanosheets Functionalized with PEG and Glutathione-Stabilized Doxorubicin Drug-Loaded Gold Nanoparticles in Real Functionalized System. Molecules 2024; 29:1746. [PMID: 38675567 PMCID: PMC11051985 DOI: 10.3390/molecules29081746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Two-dimensional black phosphorus (2D BP) has attracted significant research interest in the field of biomedical applications due to its unique characteristics, including high biocompatibility, impressive drug-loading efficiency, phototherapeutic ability, and minimal side effects. However, its puckered honeycomb lattice structure with lone-pair electrons of BP leads to higher sensitivity and chemical reactivity towards H2O and O2 molecules, resulting in the degradation of the structure with physical and chemical changes. In our study, we synthesize polyethylene glycol (PEG) and glutathione-stabilized doxorubicin drug-assembled Au nanoparticle (Au-GSH-DOX)-functionalized BP nanosheets (BP-PEG@Au-GSH-DOX) with improved degradation stability, biocompatibility, and tumor-targeting ability. Transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy indicate the nanoscale degradation behavior of synthesized nanoconjugates in three different environmental exposure conditions, and the results demonstrate the remarkable nanoscale stability of BP-PEG@Au-GSH-DOX against the degradation of BP, which provides significant interest in employing 2D BP-based nanotherapeutic agents for tumor-targeted cancer phototherapy.
Collapse
Affiliation(s)
| | - Masaru Shimomura
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Chuo-ku, Hamamatsu 432-8011, Shizuoka, Japan;
| |
Collapse
|
12
|
Yang J, Huang Q, Sun Y, An G, Li X, Mao J, Wei C, Yang B, Li D, Tao T, Yang H. Photocatalytic oxidation of formaldehyde under visible light using BiVO 4-TiO 2 synthesized via ultrasonic blending. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30085-30098. [PMID: 38598155 DOI: 10.1007/s11356-024-33192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Formaldehyde (HCHO) is one of the primary indoor air pollutants, and efficiently eliminating it, especially at low concentrations, remains challenging. In this study, BiVO4-TiO2 catalyst was developed using ultrasonic blending technology for the photocatalytic oxidation of low-level indoor HCHO. The crystal structure, surface morphology, element distribution, and active oxidation species of the catalyst were examined using XRD, SEM, TEM, UV-Vis, EDS, and ESR techniques. Our results demonstrated that the BiVO4-TiO2 catalyst, prepared by ultrasonic blending, exhibited good oxidation performance and stability. The HCHO concentration reduced from 1.050 to 0.030 mg/m3 within 48 h, achieving a removal rate of 97.1%. The synergy between BiVO4 and TiO2 enhanced the efficiency of separating photogenerated carriers and minimized the likelihood of recombination between photogenerated electrons and holes. Additionally, this synergy significantly enhanced the presence of hydroxyl radicals (·OH) on the catalyst, resulting in an oxidation performance superior to that of either BiVO4 or TiO2. Our research offers valuable insights for the development of new photocatalysts to address HCHO pollution.
Collapse
Affiliation(s)
- Jingyi Yang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Qiong Huang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yueyin Sun
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Guofang An
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Junjie Mao
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chen Wei
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Bo Yang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Dawei Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AB, UK
| |
Collapse
|
13
|
Xu H, Wu L, Zhao X, Yang S, Yao Y, Liu C, Chang G, Yang X. Hierarchically porous amino-functionalized nanoMOF network anchored phosphomolybdic acid for oxidative desulfurization and shaping application. J Colloid Interface Sci 2024; 658:313-323. [PMID: 38113540 DOI: 10.1016/j.jcis.2023.12.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The applications of hierarchically porous metal-organic frameworks (HP-MOFs) against traditional microporous counterparts for oxidative desulfurization (ODS) have triggered wide research interests due to their highly exposed accessible active sites and fast mass transfer of substrate molecules, particularly for the large-sized refractory sulfur compounds. Herein, a series of hierarchically porous amino-functionalized Zr-MOFs (HP-UiO-66-NH2-X) network with controllable mesopore sizes (3.5-9.2 nm) were firstly prepared through a template-free method, which were further utilized as anchoring support to bind the active phosphomolybdic acid (PMA) via the strong host-guest interaction to catalyze the ODS reaction. Benefitting from the hierarchically porous structure, accessible active sites and the strong host-guest interaction, the resultant PMA/HP-UiO-66-NH2-X exhibited excellent ODS performance, of which, the PMA/HP-UiO-66-NH2-9 with an appropriate mesopore size (4.0 nm) showed the highest catalytic activity, achieving a 99.9% removal of dibenzothiophene (DBT) within 60 min at 50 °C, far exceeding the microporous sample and PMA/HP-UiO-66. Furthermore, the scavenger experiments confirmed that •OH radical was the main reactive species and the density functional theory (DFT) calculations revealed that electron transfer (from amino group to PMA) made PMA react more easily with oxidant, thereby generating more •OH radical to promote the ODS reaction. Finally, from the industrial point of view, the powdered MOF nanoparticles (NPs) were in situ grown on the carboxymethyl cellulose (CMC) substrates and shaped into monolithic MOF-based catalysts, which still exhibited satisfying ODS performance in the case of model real fuel with good reusability, indicating its potential industrial application prospect.
Collapse
Affiliation(s)
- Hongjian Xu
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Lu Wu
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xinyu Zhao
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Shujie Yang
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yao Yao
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Chao Liu
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| | - Xiaoyu Yang
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
14
|
Yang T, Qu J, Yang X, Cai Y, Hu J. Recent advances in ambient-stable black phosphorus materials for artificial catalytic nitrogen cycle in environment and energy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123522. [PMID: 38331240 DOI: 10.1016/j.envpol.2024.123522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nitrogen cycle is crucial for the Earth's ecosystem and human-nature coexistence. However, excessive fertilizer use and industrial contamination disrupt this balance. Semiconductor-based artificial nitrogen cycle strategies are being actively researched to address this issue. Black phosphorus (BP) exhibits remarkable performance and significant potential in this area due to its unique physical and chemical properties. Nevertheless, its practical application is hindered by ambient instability. This review covers the synthesis methods of BP materials, analyzes their instability factors under environmental conditions, discusses stability improvement strategies, and provides an overview of the applications of ambient-stable BP materials in nitrogen cycle, including N2 fixation, NO3- reduction, NOx removal and nitrides sensing. The review concludes by summarizing the challenges and prospects of BP materials in the nitrogen cycle, offering valuable guidance to researchers.
Collapse
Affiliation(s)
- Tingyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaogang Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yahui Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Li Y, Chen B, Liu L, Zhu B, Zhang D. Water-Resistance-Based S-Scheme Heterojunction for Deep Mineralization of Toluene. Angew Chem Int Ed Engl 2024; 63:e202319432. [PMID: 38233346 DOI: 10.1002/anie.202319432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
Deep mineralization of low concentration toluene (C7 H8 ) is one of the most significant but challenging reactions in photocatalysis. It is generally assumed that hydroxyl radicals (⋅OH) as the main reactive species contribute to the enhanced photoactivity, however, it remains ambiguous at this stage. Herein, a S-scheme ZnSn(OH)6 -based heterojunction with AlOOH as water resistant surface layer is in situ designed for tuning the free radical species and achieving deep mineralization of C7 H8 . By employing a combination of in situ DRIFTS and materials characterization techniques, we discover that the dominant intermediates such as benzaldehyde and benzoic acid instead of toxic phenols are formed under the action of holes (h+ ) and superoxide radicals (⋅O2 - ). These dominant intermediates turn out to greatly decrease the ring-opening reaction barrier. This study offers new possibilities for rationally tailoring the active species and thus directionally producing dominant intermediates via designing water resistant surface layer.
Collapse
Affiliation(s)
- Yuhan Li
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Bangfu Chen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Li Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, P. R. China
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, P. R. China
| |
Collapse
|
16
|
Li XG, Chen J, Wang X, Rao L, Zhou R, Yu F, Ma J. Perspective into ion storage of pristine metal-organic frameworks in capacitive deionization. Adv Colloid Interface Sci 2024; 324:103092. [PMID: 38325008 DOI: 10.1016/j.cis.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Metal-organic frameworks (MOFs), featuring tunable conductivity, tailored pore/structure and high surface area, have emerged as promising electrode nanomaterials for ion storage in capacitive deionization (CDI) and garnered tremendous attention in recent years. Despite the many advantages, the perspective from which MOFs should be designed and prepared for use as CDI electrode materials still faces various challenges that hinder their practical application. This summary proposes design principles for the pore size, pore environment, structure and dimensions of MOFs to precisely tailor the surface area, selectivity, conductivity, and Faradaic activity of electrode materials based on the ion storage mechanism in the CDI process. The account provides a new perspective to deepen the understanding of the fundamental issues of MOFs electrode materials to further meet the practical applications of CDI.
Collapse
Affiliation(s)
- Xin-Gui Li
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jinfeng Chen
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xinyu Wang
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liangmei Rao
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Runhong Zhou
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; School of Civil Engineering, Kashi University, Kashi 844008, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
17
|
Zheng Z, Wang B, Li Z, Hao H, Wei C, Luo W, Jiao L, Zhang S, Zhou B, Ma X. Enhanced Charge Transfer via S-Scheme Heterojunction Interface Engineering of Supramolecular SubPc-Br/UiO-66 Arrays for Efficient Photocatalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306820. [PMID: 37802970 DOI: 10.1002/smll.202306820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Constructing heterojunction of supramolecular arrays self-assembled on metal-organic frameworks (MOFs) with elaborate charge transfer mechanisms is a promising strategy for the photocatalytic oxidation of organic pollutants. Herein, H12 SubPcB-Br (SubPc-Br) and UiO-66 are used to obtain the step-scheme (S-scheme) heterojunction SubPc-Br/UiO-66 for the first time, which is then applied in the photocatalytic oxidation of minocycline. Atomic-level B-O-Zr charge-transfer channels and van der Waals force connections synergistically accelerated the charge transfer at the interface of the SubPc-Br/UiO-66 heterojunction, while the establishment of the B-O-Zr bonds also led to the directional transfer of charge from SubPc-Br to UiO-66. The synergy is the key to improving the photocatalytic activity and stability of SubPc-Br/UiO-66, which is also verified by various characterization methods and theoretical calculations. The minocycline degradation efficiency of supramolecular SubPc-Br/UiO-66 arrays reach 90.9% within 30 min under visible light irradiation. The molecular dynamics simulations indicate that B-O-Zr bonds and van der Waals force contribute significantly to the stability of the SubPc-Br/UiO-66 heterojunction. This work reveals an approach for the rational design of semiconducting MOF-based heterojunctions with improved properties.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Bing Wang
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zhuo Li
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - ChaoYang Wei
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - WenYu Luo
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - LinYu Jiao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Sheng Zhang
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bo Zhou
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, 710069, China
| | - XiaoXun Ma
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| |
Collapse
|
18
|
Yu J, Wang X, Wang Y, Xie X, Xie H, Vorayos N, Sun J. Heating-induced adsorption promoting the efficient removal of toluene by the metal-organic framework UiO-66 (Zr) under visible light. J Colloid Interface Sci 2024; 653:1478-1487. [PMID: 37804616 DOI: 10.1016/j.jcis.2023.09.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
The removal of indoor/outdoor toluene by photocatalysis has drawn much attention due to its low energy consumption and easy availability. However, light inevitably generates heat, and pollutants desorb from catalysts as the temperature rises, which is not beneficial to degradation. Contrast to the frequently occurred phenomena, we firstly found that the adsorption capacity of UiO-66 (Zr) on toluene increased with increasing temperature as adsorption isotherms and in-situ Fourier transform infrared spectra (in-situ FTIR) showed. The optimum temperature was 30 °C. This stage in which adsorption capacity was positively correlated with temperature was called heating-induced adsorption, which achieved a toluene removal efficiency of 69.6 %. By density functional theory (DFT) calculations and changing the metal centers and organic ligands of UiO-66 (Zr) respectively, we disclosed that the heating-induced adsorption was mainly related to the π-π stacking interaction of MOF ligands and toluene. The analysis of samples before and after adsorption showed that the interaction between UiO-66 (Zr) and adsorbed toluene facilitated the charge transfer and prolonged the carrier lifetime, leading to the increase of hydroxyl radicals (•OH) in photocatalysis. Therefore, a synergistic effect between heating-induced adsorption and photocatalysis was proposed by analyzing the adsorption of toluene on UiO-66 (Zr) in detail. This work provided new viewpoint to understand the role of concomitant heat contributed to the adsorption and degradation of toluene during photocatalysis.
Collapse
Affiliation(s)
- Jiajun Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China; University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing 100049, China
| | - Xiao Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
| | - Yan Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
| | - Xiaofeng Xie
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., No. 712 Wen'er West Road, Hangzhou, Zhejiang 310003, China
| | - Nat Vorayos
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Thailand
| | - Jing Sun
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China.
| |
Collapse
|
19
|
Prakash Biswal D, Singha D, Panda J, Kumar Rana M. Post-Synthetic Modification of Zr-based Metal-Organic Frameworks with Imidazole: Variable Optical Behavior and Sensing. Chemphyschem 2023; 24:e202300311. [PMID: 37578308 DOI: 10.1002/cphc.202300311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
UiO-66-NH2 -IM, a fluorescent metal-organic framework (MOF), was synthesized by post-synthetic modification of UiO-66-NH2 with 2-imidazole carboxaldehyde via a Schiff base reaction. It was examined using various characterization techniques (PXRD, FTIR, NMR, SEM, TGA, UV-Vis DRS, and photoluminescence spectroscopy). The emissive feature of UiO-66-NH2 -IM was utilized to detect volatile organic compounds (VOCs), metal ions, and anions, such as acetone, Fe3+ , and carbonate (CO3 2- ). Acetone turns off the high luminescence of UiO-66-NH2 -IM in DMSO, with the limit of detection (LOD) being 3.6 ppm. Similarly, Fe3+ in an aqueous medium is detected at LOD=0.67 μM (0.04 ppm) via quenching. On the contrary, CO3 2- in an aqueous medium significantly enhances the luminescence of UiO-66-NH2 -IM, which is detected with extremely high sensitivity (LOD=1.16 μM, i. e., 0.07 ppm). Large Stern-Volmer constant, Ksv , and low LOD values indicate excellent sensitivity of the post-synthetic MOF. Experimental data supported by density functional theory (DFT) calculations discern photo-induced electron transfer (PET), resonance energy transfer (RET), inner filter effect (IFE), or proton abstraction as putative sensing mechanisms. NMR and computational studies propose a proton abstraction mechanism for luminescence enhancement with CO3 2- . Moreover, the optical behavior of the post-synthetic material toward analytes is recyclable.
Collapse
Affiliation(s)
- Dibya Prakash Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Berhampur, 760010, Odisha, India
| | - Dipankar Singha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Berhampur, 760010, Odisha, India
| | - Jagannath Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Berhampur, 760010, Odisha, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Berhampur, 760010, Odisha, India
| |
Collapse
|
20
|
ÖZCAN E, MERMER Z, ZORLU Y. Metal-organic frameworks as photocatalysts in energetic and environmental applications. Turk J Chem 2023; 47:1018-1052. [PMID: 38173745 PMCID: PMC10760874 DOI: 10.55730/1300-0527.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/31/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal-organic frameworks (MOFs) are an exciting new class of porous materials with great potential for photocatalytic applications in the environmental and energy sectors. MOFs provide significant advantages over more traditional materials when used as photocatalysts due to their high surface area, adaptable topologies, and functional ability. In this article, we summarize current developments in the use of MOFs as photocatalysts for a variety of applications, such as CO2 reduction, water splitting, pollutant degradation, and hydrogen production. We discuss the fundamental properties of MOFs that make them ideal for photocatalytic applications, as well as strategies for improving their performance. The opportunities and challenges presented by this rapidly expanding field are also highlighted.
Collapse
Affiliation(s)
- Elif ÖZCAN
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| | - Zeliha MERMER
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| | - Yunus ZORLU
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| |
Collapse
|
21
|
Obeso JL, Flores JG, Flores CV, Huxley MT, de Los Reyes JA, Peralta RA, Ibarra IA, Leyva C. MOF-based catalysts: insights into the chemical transformation of greenhouse and toxic gases. Chem Commun (Camb) 2023; 59:10226-10242. [PMID: 37554029 DOI: 10.1039/d3cc03148a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Metal-organic framework (MOF)-based catalysts are outstanding alternative materials for the chemical transformation of greenhouse and toxic gases into high-add-value products. MOF catalysts exhibit remarkable properties to host different active sites. The combination of catalytic properties of MOFs is mentioned in order to understand their application. Furthermore, the main catalytic reactions, which involve the chemical transformation of CH4, CO2, NOx, fluorinated gases, O3, CO, VOCs, and H2S, are highlighted. The main active centers and reaction conditions for these reactions are presented and discussed to understand the reaction mechanisms. Interestingly, implementing MOF materials as catalysts for toxic gas-phase reactions is a great opportunity to provide new alternatives to enhance the air quality of our planet.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - J Gabriel Flores
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Michael T Huxley
- School of Physics, Chemistry and Earth Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - José Antonio de Los Reyes
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
| |
Collapse
|
22
|
Yang C, Pan Y, Yu H, Hu X, Li X, Deng C. Hollow Crystallization COF Capsuled MOF Hybrids Depict Serum Metabolic Profiling for Precise Early Diagnosis and Risk Stratification of Acute Coronary Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302109. [PMID: 37340584 PMCID: PMC10460873 DOI: 10.1002/advs.202302109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 06/22/2023]
Abstract
Acute coronary syndrome (ACS), comprising unstable angina (UA) and acute myocardial infarction (AMI), is the leading cause of death worldwide. Currently, lacking effective strategies for classifying ACS hinders the prognosis improvement of ACS patients. Disclosing the nature of metabolic disorders holds the potential to reflect disease progress and high-throughput mass spectrometry-based metabolic analysis is a promising tool for large-scale screening. Herein, a hollow crystallization COF capsuled MOF hybrids (UiO-66@HCOF) assisted serum metabolic analysis is developed for the early diagnosis and risk stratification of ACS. UiO-66@HCOF exhibits unrivaled chemical and structural stability as well as endowing satisfying desorption/ionization efficiency in the detection of metabolites. Paired with machine learning algorithms, early diagnosis of ACS is achieved with the area under the curve (AUC) value of 0.945 for validation sets. Besides, a comprehensive ACS risk stratification method is established, and the AUC value for the discrimination of ACS from healthy controls, and AMI from UA are 0.890, and 0.928. Moreover, the AUC value of the subtyping of AMI is 0.964. Finally, the potential biomarkers exhibit high sensitivity and specificity. This study makes metabolic molecular diagnosis a reality and provided new insight into the progress of ACS.
Collapse
Affiliation(s)
- Chenjie Yang
- Department of ChemistryFudan UniversityShanghai200433China
| | - Yilong Pan
- Department of CardiologyShengjing Hospital of China Medical UniversityNO.36 Sanhao Street, Heping DistrictShenyang110004China
| | - Hailong Yu
- Department of ChemistryFudan UniversityShanghai200433China
| | - Xufang Hu
- School of Chemical Science and TechnologyYunnan UniversityNo. 2 North Cuihu RoadKunming650091P. R. China
| | - Xiaodong Li
- Department of CardiologyShengjing Hospital of China Medical UniversityNO.36 Sanhao Street, Heping DistrictShenyang110004China
| | - Chunhui Deng
- Department of ChemistryFudan UniversityShanghai200433China
| |
Collapse
|
23
|
Liu L, Shao G, Ma C, Nikiforov A, De Geyter N, Morent R. Plasma-catalysis for VOCs decomposition: A review on micro- and macroscopic modeling. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131100. [PMID: 36893595 DOI: 10.1016/j.jhazmat.2023.131100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Plasma-catalysis has been recognized as a promising method to decompose hazardous volatile organic compounds (VOCs) since many years ago. To understand the fundamental mechanisms of VOCs decomposition by plasma-catalysis systems, both experimental and modeling studies have been extensively carried out. However, literature on summarized modeling methodologies is still scarce. In this short review, we therefore present a comprehensive overview of modeling methodologies ranging from microscopic to macroscopic modeling in plasma-catalysis for VOCs decomposition. The modeling methods of VOCs decomposition by plasma and plasma-catalysis are classified and summarized. The roles of plasma and plasma-catalyst interactions in VOCs decomposition are also critically examined. Taking the current advances in understanding the decomposition mechanisms of VOCs into account, we finally provide our perspectives for future research directions. This short review aims to stimulate the further development of plasma-catalysis for VOCs decomposition in both fundamental studies and practical applications with advanced modeling methods.
Collapse
Affiliation(s)
- Lu Liu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Guangcai Shao
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuanlong Ma
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
24
|
Wang Y, Jin Y, Jia M, Ruan H, Tao X, Liu X, Lu G, Zhang X. Enhanced Visible-Light Photocatalytic Activities of CeVO4-V2O3 Composite: Effect of Ethylene Glycol. Catalysts 2023. [DOI: 10.3390/catal13040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
CeVO4-V2O3 composites were prepared by simple hydrothermal method, and the effects of ethylene glycol(EG) on the products were studied by XRD, N2 adsorption–desorption, SEM, EDS, XPS, PL and UV-vis spectra. The characterization reveals a slight decrease in surface area and a slight enhancement of visible light absorption in the final sample, while the crystalline phase, morphology and separation efficiency of the collective carriers are severely affected by the EG. At the same time, the photocatalytic effect of CeVO4-V2O3 composites was evaluated by the degradation rate of methylene blue (MB) under simulated visible light. The sample for 10 mL EG obtained the highest efficiency of 96.9%, while the one for 15 mL EG showed the lowest efficiency of 67.5% within 300 min. The trapping experiments and ESR experiment showed that the contribution of active species to the photocatalytic degradation of MB was ∙OH > h+ > ∙O2− in descending order, and a possible degradation mechanism was proposed.
Collapse
|
25
|
Zhao Z, Ma S, Gao B, Bi F, Qiao R, Yang Y, Wu M, Zhang X. A systematic review of intermediates and their characterization methods in VOCs degradation by different catalytic technologies. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
26
|
Ye Y, Gao L, Xu J, Wang L, Mo L, Zhang X. Effect of CuO species and oxygen vacancies over CuO/CeO2 catalysts on low-temperature oxidation of ethyl acetate. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
27
|
Zhang X, Donskyi IS, Tang W, Deng S, Liu D, Zhang S, Zhao Q, Xing B. Biological Effects of Black Phosphorus Nanomaterials on Mammalian Cells and Animals. Angew Chem Int Ed Engl 2023; 62:e202213336. [PMID: 36218046 PMCID: PMC10107789 DOI: 10.1002/anie.202213336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
The remarkable progress of applied black phosphorus nanomaterials (BPNMs) is attributed to BP's outstanding properties. Due to its potential for applications, environmental release and subsequent human exposure are virtually inevitable. Therefore, how BPNMs impact biological systems and human health needs to be considered. In this comprehensive Minireview, the most recent advancements in understanding the mechanisms and regulation factors of BPNMs' endogenous toxicity to mammalian systems are presented. These achievements lay the groundwork for an understanding of its biological effects, aimed towards establishing regulatory principles to minimize the adverse health impacts.
Collapse
Affiliation(s)
- Xuejiao Zhang
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Ievgen S. Donskyi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Weihao Tang
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
- University of Chinese Academy of SciencesBeijing100049China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
- University of Chinese Academy of SciencesBeijing100049China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Qing Zhao
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Baoshan Xing
- Stockbridge School of AgricultureUniversity of MassachusettsAmherstMA 01003USA
| |
Collapse
|
28
|
Shang H, Ding M, Zhang X, Zhang W. Dual-mode biosensing platform for sensitive and portable detection of hydrogen sulfide based on cuprous oxide/gold/copper metal organic framework heterojunction. J Colloid Interface Sci 2023; 629:796-804. [PMID: 36195019 DOI: 10.1016/j.jcis.2022.09.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/01/2023]
Abstract
Hydrogen sulfide (H2S) can not only be regarded as a critical gas signal transduction substance, but also its excess levels can lead to a range of diseases. Currently, the accurate analysis combined with electrochemical (EC) or photothermal (PT) technology for H2S in a complex biological system remains a significant challenge. Herein, an endogenous H2S-triggered heterojunction cuprous oxide/gold/copper metal organic framework (Cu2O/Au/HKUST-1) nanoprobe is designed for dual-mode EC- second near-infrared (NIR-II)/PT analysis in tumor cells with high sensitivity and simplicity. Dual-mode EC quantification - PT is achieved through "off-on" mode of EC and PT signals based on electronic transfer and biosynthesis via an in situ sulfuration reaction. Under the optimum conditions, the EC quantification mode for trace H2S exhibits a wide linear range and an excellent limit of detection of 0.1 μM. More importantly, the dual-mode can display the selective detection of trace H2S in living tumor cells because of the specific interaction between copper ion and H2S. These results provide a new EC-PT promising biosensing platform for noninvasive intelligent detection of H2S in living tumor cells.
Collapse
Affiliation(s)
- Hongyuan Shang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Meili Ding
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xiaofei Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Wen Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| |
Collapse
|
29
|
Catalytic reduction of NO and oxidation of dichloroethane over α-MnO2 catalysts: properties-reactivity relationship. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
30
|
Tang X, Xia W, Qu X, Wang C, Wang W, Liang Y, Zeng Y, Xiong W, Cheng M, Song B, Zhou C, Zhao X. Structure-performance correlation guided cerium-based metal-organic frameworks: Superior adsorbents for fluoride removal in water. CHEMOSPHERE 2023; 312:137335. [PMID: 36410524 DOI: 10.1016/j.chemosphere.2022.137335] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Fluoride in the hydrosphere exceeds the standard, which could be critically hazardous to human health and the natural environment. The adsorption method is a mature and effective way to remove pollutants in water, including fluoride. In this study, we synthesized three kinds of cerium-based metal-organic frameworks (Ce-MOFs) with different structures and properties by modulating the organic ligands (i.e., trimesic acid (BTC), 1,2,4,5-benzenetetracarboxylic acid (PMA), and terephthalic acid (BDC)) via the solvothermal method. The adsorption kinetics of Ce-MOFs on fluoride well fit the pseudo second order model, and their adsorption isotherms also conform to Langmuir isothermal model. The thermodynamic study reveals that the adsorption process is a spontaneous endothermic reaction. The maximum saturated adsorption capacities of Ce-BTC, Ce-PMA, and Ce-BDC are 70.7, 159.6, and 139.5 mg g-1, respectively. Ce-MOFs have stable and excellent adsorption capacity at pH = 3-9. Coexisting anions (Cl-, SO42-, and NO3-) do not affect the performance of Ce-MOFs for fluoride removal. Moreover, Ce-MOFs also show their broad prospect as superior fluoride adsorbents because of their excellent performance and reusability in real water samples. Organic ligands have a remarkable influence on the defluoridation performance of Ce-MOFs. This work will provide a feasible idea for designing MOFs as superiors adsorbents for defluoridation.
Collapse
Affiliation(s)
- Xiaofeng Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; College of Biology, Hunan University, Changsha, 410082, PR China
| | - Wu Xia
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaolin Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Wenjun Wang
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Yuntao Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuxi Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xiaoying Zhao
- College of Biology, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
31
|
Synthesis of NiFe2O4 Nanoparticles over the MIL-53 (Fe)/NaY Zeolite for the Sonodegradation of Toxic Organic Dyes from Water Solutions. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Enhanced Charge Separation and Transfer Capacity of Heterojunctions by Constructing Homojunctions for Visible Light Photocatalytic Degradation of Toluene. Catal Letters 2022. [DOI: 10.1007/s10562-022-04122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Kang X, Li X, Li Y, Duan Y. Strengthening and toughening
3D
printing of photocured resins by thermal expansion microspheres. J Appl Polym Sci 2022. [DOI: 10.1002/app.53516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaoqing Kang
- State Key Laboratory for Manufacturing Systems Engineering Xian Jiaotong University Xi'an China
| | - Xiaogang Li
- State Key Laboratory for Manufacturing Systems Engineering Xian Jiaotong University Xi'an China
| | - Yuexuan Li
- State Key Laboratory for Manufacturing Systems Engineering Xian Jiaotong University Xi'an China
| | - Yugang Duan
- State Key Laboratory for Manufacturing Systems Engineering Xian Jiaotong University Xi'an China
| |
Collapse
|
34
|
Zhang H, Wang S, Wang M, Li G, Yu L, Liu X, Wang Z, Zhang C. Catalytic oxidation of vinyl chloride over Co–Ce composite oxides derived from ZIF-67 template: Effect of cerium incorporation. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Priyanka, Yadav S, Dutta S, Rana P, Arora B, Sharma RK, Srivastava A, Sharma RK. Unleashing the catalytic potency of nanoporous Copper oxide particles derived from Copper 5-nitroisophthalate MOF towards the multicomponent synthesis of 2,3-dihydroquinazolinones. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Bai ZJ, Tian S, Zeng TQ, Chen L, Wang BH, Hu B, Wang X, Zhou W, Pan JB, Shen S, Guo JK, Xie TL, Li YJ, Au CT, Yin SF. Cs 3Bi 2Br 9 Nanodots Stabilized on Defective BiOBr Nanosheets by Interfacial Chemical Bonding: Modulated Charge Transfer for Photocatalytic C( sp3)–H Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhang-Jun Bai
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Sheng Tian
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Tian-Qin Zeng
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Lang Chen
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Bing-Hao Wang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Biao Hu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Xiong Wang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Wei Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Jin-Bo Pan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Sheng Shen
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Jun-Kang Guo
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Ting-Liang Xie
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - You-Ji Li
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan416000, China
| | - Chak-Tong Au
- College of Chemical Engineering, Fuzhou University, Fuzhou350002, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
37
|
Bimetallic Co-Fe-BTC/CN nanocomposite synthesised via a microwave-assisted hydrothermal method for highly efficient Reactive Yellow 145 dye photodegradation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Bembli M, Agougui H, Jabli M, Boughzala K. Mechanochemical synthesis of strontium oxybritholites (Sr10-xLax(PO4)6−x(SiO4)xO): Characterization, structural refinement, and adsorption characteristics toward Basic Blue 41. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Zhang X, Zhao Z, Zhao S, Xiang S, Gao W, Wang L, Xu J, Wang Y. The promoting effect of alkali metal and H2O on Mn-MOF derivatives for toluene oxidation: A combined experimental and theoretical investigation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Wu M, Wu Q, Yang Y, He Z, Yang H. Regulating Lewis acidity and local electron density of iron-based metal organic frameworks via cerium doping for efficient photo-Fenton process. J Colloid Interface Sci 2022; 630:866-877. [DOI: 10.1016/j.jcis.2022.10.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
41
|
Feng Z, Yang J, Zhu L, Sun T. Bromine functionalized Fe/Cu bimetallic MOFs for accelerating Fe(III)/Fe(II) cycle and efficient degradation of phenol in Fenton-like system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Bi-etched MIL-125 promotes visible-light-driven photocatalytic performance based on the surface plasmon resonance and spatial confinement effects. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Li H, Yu J, Gong Y, Lin N, Yang Q, Zhang X, Wang Y. Perovskite catalysts with different dimensionalities for environmental and energy applications: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Dolete G, Purcăreanu B, Mihaiescu DE, Ficai D, Oprea OC, Bîrcă AC, Chircov C, Vasile BȘ, Vasilievici G, Ficai A, Andronescu E. A Comparative Loading and Release Study of Vancomycin from a Green Mesoporous Silica. Molecules 2022; 27:5589. [PMID: 36080354 PMCID: PMC9458150 DOI: 10.3390/molecules27175589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 02/03/2023] Open
Abstract
Since its first use as a drug delivery system, mesoporous silica has proven to be a surprisingly efficient vehicle due to its porous structure. Unfortunately, most synthesis methods are based on using large amounts of surfactants, which are then removed by solvent extraction or heat treatment, leading to an undesired environmental impact because of the generated by-products. Hence, in the present study, we followed the synthesis of a silica material with a wormhole-like pore arrangement, using two FDA-approved substances as templates, namely Tween-20 and starch. As far as we know, it is the first study using the Tween-20/starch combo as a template for mesoporous silica synthesis. Furthermore, we investigated whether the obtained material using this novel synthesis had any potential in using it as a DDS. The material was further analyzed by XRD, TEM, FT-IR, N2 adsorption/desorption, and DLS to investigate its physicochemical features. Vancomycin was selected as the active molecule based on the extensive research engaged towards improving its bioavailability for oral delivery. The drug was loaded onto the material by using three different approaches, assuming its full retention in the final system. Thermal analysis confirmed the successful loading of vancomycin by all means, and pore volume significantly decreased upon loading, especially in the case of the vacuum-assisted method. All methods showed a slower release rate compared to the same amount of the pure drug. Loadings by physical mixing and solvent evaporation released the whole amount of the drug in 140 min, and the material loaded by the vacuum-assisted method released only 68.2% over the same period of time, leading us to conclude that vancomycin was adsorbed deeper inside the pores. The kinetic release of the three systems followed the Higuchi model for the samples loaded by physical mixing and vacuum-assisted procedures, while the solvent evaporation loading method was in compliance with the first-order model.
Collapse
Affiliation(s)
- Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | | | - Dan Eduard Mihaiescu
- Department of Organic Chemistry “Costin Nenițescu”, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Denisa Ficai
- National Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry, and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry, and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Gabriel Vasilievici
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
45
|
Chen D, He X, Chen X, Wang Z, Wang X. Bimetallic Au-Ag catalysts in HCHO catalytic oxidation: No synergetic effect? Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Yin Y, Liu Y, Xin Z, Xu G, Feng Y, Jiang B, He X, Zhang H, Ma J. A new type of composite catalyst AmCoPc/UiO-66-NH2 synergistic photocatalytic degradation of dyes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Zhao Q, Zhao Z, Rao R, Yang Y, Ling S, Bi F, Shi X, Xu J, Lu G, Zhang X. Universitetet i Oslo-67 (UiO-67)/graphite oxide composites with high capacities of toluene: Synthesis strategy and adsorption mechanism insight. J Colloid Interface Sci 2022; 627:385-397. [PMID: 35863197 DOI: 10.1016/j.jcis.2022.07.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Abstract
In this paper, a simple solvothermal synthesis method was proposed for the preparation of metal organic framework/graphene oxide hybrid nanocomposite (UiO-67/GO). A series of UiO-67/GO composites were prepared by varying the addition forms and amounts of GO, and the optimal synthesis conditions were screened. The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission Electron Microscope (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS), water contact angles (CA) and thermogravimetric analysis (TGA). The adsorption capacity and the adsorption process of toluene were investigated by dynamic adsorption and adsorption kinetics, respectively. The results indicated that 67/GO-0.5% reached the maximum adsorption capacity (876 mg g-1), which far exceeded the other adsorbents. Kinetic model and the Weber-Morris model correlated satisfactorily to the experimental data. The improved adsorption performance was attributed to GO, which enhanced π-π interaction, promoted defect generation and provided more adsorption sites. Finally, the excellent regeneration performance of the adsorbent was verified by temperature programmed desorption (TPD) and cyclic adsorption-desorption experiments. Moreover, the adsorption mechanism was further revealed. Combined with the related adsorption experiments and the density functional theory (DFT) analysis, the efficient removal of toluene by UiO-67/GO was attributed to the cooperation of defects, π-π interaction and hydrogen bonding.
Collapse
Affiliation(s)
- Qiangyu Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenyuan Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Renzhi Rao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yang Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songyuan Ling
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fukun Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaoyu Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai 200093, China
| | - Guang Lu
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
48
|
Kondo Y, Hino K, Kuwahara Y, Mori K, Kobayashi H, Yamashita H. Lewis acid-triggered photocatalytic hydrogen peroxide production in an aluminum-based metal–organic framework. Chem Commun (Camb) 2022; 58:12345-12348. [DOI: 10.1039/d2cc04454d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Al-based MIL-101-NH2, which was previously regarded as having silent photo-features, exhibits photocatalytic H2O2 production via O2 reduction accompanied by efficient suppression of undesired H2O2 decomposition.
Collapse
Affiliation(s)
- Yoshifumi Kondo
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenta Hino
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasutaka Kuwahara
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kohsuke Mori
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hisayoshi Kobayashi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromi Yamashita
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Zhang Y, Shi L, Sun X, Duan L, Li Q, Huang Z, Ding R, Ban X, Zhang D. Promoting practical photodegradation application potential of a Bi 2WO 6-based step-scheme heterojunction under outdoor natural sunlight irradiation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01567f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The majority of current photodegradation experiments utilize high-energy xenon lamps as simulated sunlight, which ignores the changeable weather in nature.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Science, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Linxing Shi
- School of Science, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Xianggang Sun
- School of Science, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Liangsheng Duan
- School of Science, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Qile Li
- School of Science, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Zengguang Huang
- School of Science, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Ruiqiang Ding
- School of Science, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Xinxin Ban
- Department of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - DongEn Zhang
- Department of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| |
Collapse
|