• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635029)   Today's Articles (835)   Subscriber (50006)
For: Eschemann TO, de Jong KP. Deactivation Behavior of Co/TiO2 Catalysts during Fischer–Tropsch Synthesis. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00268] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Number Cited by Other Article(s)
1
Moshtari B, Hashemabadi SH, Zamani Y. Kinetic study of Fe & Co perovskite catalyst in Fischer-Tropsch synthesis. Sci Rep 2024;14:9189. [PMID: 38649434 PMCID: PMC11035694 DOI: 10.1038/s41598-024-59561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]  Open
2
Čespiva J, Wnukowski M, Skřínský J, Perestrelo R, Jadlovec M, Výtisk J, Trojek M, Câmara JS. Production efficiency and safety assessment of the solid waste-derived liquid hydrocarbons. ENVIRONMENTAL RESEARCH 2024;244:117915. [PMID: 38101725 DOI: 10.1016/j.envres.2023.117915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
3
Zhang S, Wang K, He F, Gao X, Fan S, Ma Q, Zhao T, Zhang J. H2O Derivatives Mediate CO Activation in Fischer-Tropsch Synthesis: A Review. Molecules 2023;28:5521. [PMID: 37513393 PMCID: PMC10384174 DOI: 10.3390/molecules28145521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]  Open
4
van Koppen LM, Iulian Dugulan A, Leendert Bezemer G, Hensen EJ. Elucidating deactivation of titania-supported cobalt Fischer-Tropsch catalysts under simulated high conversion conditions. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
5
Yao R, Pinals J, Dorakhan R, Herrera JE, Zhang M, Deshlahra P, Chin YHC. Cobalt-Molybdenum Oxides for Effective Coupling of Ethane Activation and Carbon Dioxide Reduction Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
6
Sintering and carbidization under simulated high conversion on a cobalt-based Fischer-Tropsch catalyst; manganese oxide as a structural promotor. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
7
Recent Advances in the Mitigation of the Catalyst Deactivation of CO2 Hydrogenation to Light Olefins. Catalysts 2021. [DOI: 10.3390/catal11121447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]  Open
8
Solsona V, Morales-de la Rosa S, De Luca O, Jansma H, van der Linden B, Rudolf P, Campos-Martín JM, Borges ME, Melián-Cabrera I. Solvent Additive-Induced Deactivation of the Cu-ZnO(Al2O3)-Catalyzed γ-Butyrolactone Hydrogenolysis: A Rare Deactivation Process. Ind Eng Chem Res 2021;60:15999-16010. [PMID: 34949902 PMCID: PMC8689444 DOI: 10.1021/acs.iecr.1c04080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022]
9
Ma C, Yun Y, Zhang T, Suo H, Yan L, Shen X, Li Y, Yang Y. Insight into the Structural Evolution of the Cobalt Oxides Nanoparticles upon Reduction Process: An In Situ Transmission Electron Microscopy Study. ChemCatChem 2021. [DOI: 10.1002/cctc.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
10
Role of surface carboxylate deposition on the deactivation of cobalt on titania Fischer-Tropsch catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
11
Riani P, Garbarino G, Cavattoni T, Busca G. CO2 hydrogenation and ethanol steam reforming over Co/SiO2 catalysts: Deactivation and selectivity switches. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
12
Impact of Coordination Features of Co(II)-Glycine Complex on the Surface Sites of Co/SiO2 for Fischer–Tropsch Synthesis. Catalysts 2020. [DOI: 10.3390/catal10111295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
13
Xiao G, Han Y, Jing F, Chen M, Chen S, Zhao F, Xiao S, Zhang Y, Li J, Hong J. Preparation of Highly Dispersed Nb2O5 Supported Cobalt-Based Catalysts for the Fischer–Tropsch Synthesis. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
14
Gholami Z, Tišler Z, Rubáš V. Recent advances in Fischer-Tropsch synthesis using cobalt-based catalysts: a review on supports, promoters, and reactors. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1762367] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
15
Rahmati M, Safdari MS, Fletcher TH, Argyle MD, Bartholomew CH. Chemical and Thermal Sintering of Supported Metals with Emphasis on Cobalt Catalysts During Fischer–Tropsch Synthesis. Chem Rev 2020;120:4455-4533. [DOI: 10.1021/acs.chemrev.9b00417] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
16
Hong J, Wang B, Xiao G, Wang N, Zhang Y, Khodakov AY, Li J. Tuning the Metal–Support Interaction and Enhancing the Stability of Titania-Supported Cobalt Fischer–Tropsch Catalysts via Carbon Nitride Coating. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Hazemann P, Decottignies D, Maury S, Humbert S, Berliet A, Daniel C, Schuurman Y. Kinetic data acquisition in high-throughput Fischer–Tropsch experimentation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00918k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
18
Eshraghi A, Mirzaei AA, Rahimi R, Atashi H. Effect of Ni–Co morphology on kinetics for Fischer–Tropsch reaction in a fixed-bed reactor. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
19
Abrokwah RY, Rahman MM, Deshmane VG, Kuila D. Effect of titania support on Fischer-Tropsch synthesis using cobalt, iron, and ruthenium catalysts in silicon-microchannel microreactor. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
20
Ellis PR, Enache DI, James DW, Jones DS, Kelly GJ. A robust and precious metal-free high performance cobalt Fischer–Tropsch catalyst. Nat Catal 2019. [DOI: 10.1038/s41929-019-0288-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
21
Evolution of cobalt species in glow discharge plasma prepared CoRu/SiO2 catalysts with enhanced Fischer-Tropsch synthesis performance. J Catal 2019. [DOI: 10.1016/j.jcat.2019.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
22
Wang H, Wu B, Cai Y, Zhou C, Feng N, Liu G, Chen C, Wan H, Wang L, Guan G. Core–Shell-Structured Co–Z@TiO2 Catalysts Derived from ZIF-67 for Efficient Production of C5+ Hydrocarbons in Fischer–Tropsch Synthesis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
23
Kliewer C, Soled S, Kiss G. Morphological transformations during Fischer-Tropsch synthesis on a titania-supported cobalt catalyst. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
24
Li Z, Si M, Li X, Lv J. Effects of titanium silicalite and TiO2 nanocomposites on supported Co-based catalysts for Fischer-Tropsch synthesis. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
25
Liu C, He Y, Wei L, Zhao Y, Zhang Y, Zhao F, Lyu S, Chen S, Hong J, Li J. Effect of TiO2 Surface Engineering on the Performance of Cobalt-Based Catalysts for Fischer–Tropsch Synthesis. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b05069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
26
van Deelen TW, Nijhuis JJ, Krans NA, Zečević J, de Jong KP. Preparation of Cobalt Nanocrystals Supported on Metal Oxides To Study Particle Growth in Fischer-Tropsch Catalysts. ACS Catal 2018;8:10581-10589. [PMID: 30416841 PMCID: PMC6219851 DOI: 10.1021/acscatal.8b03094] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2018] [Indexed: 11/29/2022]
27
Qin C, Hou B, Wang J, Wang Q, Wang G, Yu M, Chen C, Jia L, Li D. Crystal-Plane-Dependent Fischer–Tropsch Performance of Cobalt Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01333] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
28
Hong J, Du J, Wang B, Zhang Y, Liu C, Xiong H, Sun F, Chen S, Li J. Plasma-Assisted Preparation of Highly Dispersed Cobalt Catalysts for Enhanced Fischer–Tropsch Synthesis Performance. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00960] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
29
Dowlati M, Siyavashi N, Azizi HR. Sintering and Coking: Effect of Preparation Methods on the Deactivation of $$\hbox {Co}$$ Co – $$\hbox {Ni/TiO}_{2}$$ Ni/TiO 2 in Fischer–Tropsch Synthesis. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-017-2845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
30
Yang S, Lee H. Determining the Catalytic Activity of Transition Metal-Doped TiO2 Nanoparticles Using Surface Spectroscopic Analysis. NANOSCALE RESEARCH LETTERS 2017;12:582. [PMID: 29101686 PMCID: PMC5670037 DOI: 10.1186/s11671-017-2355-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
31
The impact of support surface area on the SMSI decoration effect and catalytic performance for Fischer-Tropsch synthesis of Co-Ru/TiO 2 -anatase catalysts. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
32
TiO 2 polymorph dependent SMSI effect in Co-Ru/TiO 2 catalysts and its relevance to Fischer-Tropsch synthesis. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
33
Fischer-Trospch Synthesis on Ordered Mesoporous Cobalt-Based Catalysts with Compact Multichannel Fixed-Bed Reactor Application: A Review. CATALYSIS SURVEYS FROM ASIA 2016. [DOI: 10.1007/s10563-016-9219-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
34
Xaba BM, de Villiers JPR. Sintering Behavior of TiO2-Supported Model Cobalt Fischer–Tropsch Catalysts under H2 Reducing Conditions and Elevated Temperature. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
35
den Otter J, Yoshida H, Ledesma C, Chen D, de Jong K. On the superior activity and selectivity of PtCo/Nb2O5 Fischer Tropsch catalysts. J Catal 2016. [DOI: 10.1016/j.jcat.2016.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
36
Yan N, Pandey J, Zeng Y, Amirkhiz BS, Hua B, Geels NJ, Luo JL, Rothenberg G. Developing a Thermal- and Coking-Resistant Cobalt–Tungsten Bimetallic Anode Catalyst for Solid Oxide Fuel Cells. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
37
Cats KH, Andrews JC, Stéphan O, March K, Karunakaran C, Meirer F, de Groot FMF, Weckhuysen BM. Active phase distribution changes within a catalyst particle during Fischer–Tropsch synthesis as revealed by multi-scale microscopy. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01524c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA