1
|
Pecoraro CM, Sopha H, Wu S, Kim H, Wang Y, Macak J, Santamaria M, Schmuki P. Platinum single atoms on titania aid dye photodegradation whereas platinum nanoparticles do not. NANOSCALE 2025; 17:3949-3957. [PMID: 39749751 DOI: 10.1039/d4nr02450h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The photocatalytic degradation of unwanted organic species has been investigated for decades using modified and non-modified titania nanostructures. In the present study, we investigate the co-catalytic effect of single atoms (SAs) of Pt and Pt nanoparticles on titania substrates on the degradation of the two typical photodegradation model pollutants: Acid Orange 7 (AO7) and Rhodamine B (RhB). For this, we use highly defined sputter deposited anatase layers and load them with Pt SAs at different loading densities or alternatively with Pt nanoparticles. We find that the Pt SAs have strong accelerating effects (already for a low loading density of ∼105 SAs μm-2) on the photodegradation of AO7, whereas Pt nanoparticles do hardly have an effect on the decay kinetics. The main beneficial effect of SA Pt is facilitated superoxide formation, which for SAs is significantly enhanced. Overall, the work demonstrates that Pt SA co-catalysts can have a beneficial effect not only for the well-studied use of H2 generation, but also in the photocatalytic degradation of pollutants-this is particularly the case if the degradation is dominated by a conduction band electron transfer to dissolved O2 in the solution.
Collapse
Affiliation(s)
- Claudio Maria Pecoraro
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany.
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze Edificio 6, 90128 Palermo, Italy
| | - Hanna Sopha
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Siming Wu
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany.
| | - Hyesung Kim
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany.
| | - Yue Wang
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany.
| | - Jan Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Monica Santamaria
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze Edificio 6, 90128 Palermo, Italy
| | - Patrik Schmuki
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany.
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| |
Collapse
|
2
|
Huang J, Climent V, Groß A, Feliu JM. Understanding surface charge effects in electrocatalysis. Part 2: Hydrogen peroxide reactions at platinum. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Luo M, Koper MTM. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat Catal 2022. [DOI: 10.1038/s41929-022-00810-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractProton-exchange membrane fuel cells demand efficient electrode–electrolyte interfaces to catalyse the oxygen reduction reaction (ORR), the kinetics of which depends on the energetics of surface adsorption and on electrolyte environment. Here we show an unanticipated effect of non-specifically adsorbed anions on the ORR kinetics on a Pt(111) electrode; these trends do not follow the usual ORR descriptor, that is *OH binding energy. We propose a voltammetry-accessible descriptor, namely reversibility of the *O ↔ *OH transition. This descriptor tracks the dependence of ORR rates on electrolyte, including the concentration/identity of anions in acidic media, cations in alkaline media and the effect of ionomers. We propose a model that relates the ORR rate on Pt(111) to the rate of the *O to *OH transition, in addition to the thermodynamic *OH binding energy descriptor. Our model also rationalizes different trends for the ORR rate on stepped Pt surfaces in acidic versus alkaline media.
Collapse
|
4
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
5
|
Abstract
Structures and processes at water/metal interfaces play an important technological role in electrochemical energy conversion and storage, photoconversion, sensors, and corrosion, just to name a few. However, they are also of fundamental significance as a model system for the study of solid-liquid interfaces, which requires combining concepts from the chemistry and physics of crystalline materials and liquids. Particularly interesting is the fact that the water-water and water-metal interactions are of similar strength so that the structures at water/metal interfaces result from a competition between these comparable interactions. Because water is a polar molecule and water and metal surfaces are both polarizable, explicit consideration of the electronic degrees of freedom at water/metal interfaces is mandatory. In principle, ab initio molecular dynamics simulations are thus the method of choice to model water/metal interfaces, but they are computationally still rather demanding. Here, ab initio simulations of water/metal interfaces will be reviewed, starting from static systems such as the adsorption of single water molecules, water clusters, and icelike layers, followed by the properties of liquid water layers at metal surfaces. Technical issues such as the appropriate first-principles description of the water-water and water-metal interactions will be discussed, and electrochemical aspects will be addressed. Finally, more approximate but numerically less demanding approaches to treat water at metal surfaces from first-principles will be briefly discussed.
Collapse
Affiliation(s)
- Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany.,Electrochemical Energy Storage, Helmholtz Institute Ulm (HIU), 89069 Ulm, Germany
| | - Sung Sakong
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| |
Collapse
|
6
|
Tesch R, Kowalski PM, Eikerling MH. Properties of the Pt(111)/electrolyte electrochemical interface studied with a hybrid DFT-solvation approach. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:444004. [PMID: 34348250 DOI: 10.1088/1361-648x/ac1aa2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Self-consistent modeling of the interface between solid metal electrode and liquid electrolyte is a crucial challenge in computational electrochemistry. In this contribution, we adopt the effective screening medium reference interaction site method (ESM-RISM) to study the charged interface between a Pt(111) surface that is partially covered with chemisorbed oxygen and an aqueous acidic electrolyte. This method proves to be well suited to describe the chemisorption and charging state of the interface at controlled electrode potential. We present an in-depth assessment of the ESM-RISM parameterization and of the importance of computing near-surface water molecules explicitly at the quantum mechanical level. We found that ESM-RISM is able to reproduce some key interface properties, including the peculiar, non-monotonic charging relation of the Pt(111)/electrolyte interface. The comparison with independent theoretical models and explicit simulations of the interface reveals strengths and limitations of ESM-RISM for modeling electrochemical interfaces.
Collapse
Affiliation(s)
- Rebekka Tesch
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
- Jülich Aachen Research Alliance, JARA-CSD and JARA-ENERGY, 52425 Jülich, Germany
| | - Piotr M Kowalski
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Jülich Aachen Research Alliance, JARA-CSD and JARA-ENERGY, 52425 Jülich, Germany
| | - Michael H Eikerling
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
- Jülich Aachen Research Alliance, JARA-CSD and JARA-ENERGY, 52425 Jülich, Germany
| |
Collapse
|
7
|
Li Y, Liu ZF. Solvated proton and the origin of the high onset overpotential in the oxygen reduction reaction on Pt(111). Phys Chem Chem Phys 2020; 22:22226-22235. [DOI: 10.1039/d0cp04211k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For the hydrogenation of O atoms on Pt(111), protonation can be bypassed by hydrolysis as the electrode potential rises.
Collapse
Affiliation(s)
- Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation
- Chinese University of Hong Kong
- Shatin
- China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation
- Chinese University of Hong Kong
- Shatin
- China
- CUHK Shenzhen Research Institute
| |
Collapse
|
8
|
Fernandez-Alvarez VM, Eikerling MH. Interface Properties of the Partially Oxidized Pt(111) Surface Using Hybrid DFT-Solvation Models. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43774-43780. [PMID: 31650835 DOI: 10.1021/acsami.9b16326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article reports a theoretical-computational effort to model the interface between an oxidized platinum surface and aqueous electrolyte. It strives to account for the impact of the electrode potential, formation of surface-bound oxygen species, orientational ordering of near-surface solvent molecules, and metal surface charging on the potential profile along the normal direction. The computational scheme is based on the DFT/ESM-RISM method to simulate the charged Pt(111) surface with varying number of oxygen adatoms in acidic solution. This hybrid solvation method is known to qualitatively reproduce bulk metal properties like the work function. However, the presented calculations reveal that vital interface properties such as the electrostatic potential at the outer Helmholtz plane are highly sensitive to the position of the metal surface slab relative to the DFT-RISM boundary region. Shifting the relative position of the slab also affects the free energy of the system. It follows that there is an optimal distance for the first solvent layer within the ESM-RISM framework, which could be found by optimizing the position of the frozen Pt(111) slab. As it stands, manual sampling of the position of the slab is impractical and betrays the self-consistency of the method. Based on this understanding, we propose the implementation of a free energy optimization scheme of the relative position of the slab in the DFT-RISM boundary region. This optimization scheme could considerably increase the applicability of the hybrid method.
Collapse
Affiliation(s)
- Victor M Fernandez-Alvarez
- Department of Chemistry , Simon Fraser University , 8888 University Drive , Burnaby , British Columbia V5A 1S6 , Canada
| | - Michael H Eikerling
- Department of Chemistry , Simon Fraser University , 8888 University Drive , Burnaby , British Columbia V5A 1S6 , Canada
- Forschungszentrum Jülich, Institute of Energy and Climate Research-Modeling and Simulation of Materials in Energy Technology (IEK-13) , 52425 Jülich , Germany
| |
Collapse
|
9
|
Ustarroz J, Ornelas IM, Zhang G, Perry D, Kang M, Bentley CL, Walker M, Unwin PR. Mobility and Poisoning of Mass-Selected Platinum Nanoclusters during the Oxygen Reduction Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00553] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jon Ustarroz
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Isabel M. Ornelas
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Nanoscale Physics, Chemistry and Engineering Research Laboratory, University of Birmingham, Birmingham B15 2TT, U.K
| | - Guohui Zhang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
10
|
Ruge M, Drnec J, Rahn B, Reikowski F, Harrington DA, Carlà F, Felici R, Stettner J, Magnussen OM. Structural Reorganization of Pt(111) Electrodes by Electrochemical Oxidation and Reduction. J Am Chem Soc 2017; 139:4532-4539. [DOI: 10.1021/jacs.7b01039] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Ruge
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Jakub Drnec
- Experimental
Division, European Synchrotron Radiation Facility, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Björn Rahn
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Finn Reikowski
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - David A. Harrington
- Department
of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Francesco Carlà
- Experimental
Division, European Synchrotron Radiation Facility, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Roberto Felici
- Experimental
Division, European Synchrotron Radiation Facility, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Jochim Stettner
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Olaf M. Magnussen
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| |
Collapse
|
11
|
Local Impact of Pt Nanodeposits on Ionomer Decomposition in Polymer Electrolyte Membranes. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0353-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Eslamibidgoli MJ, Groß A, Eikerling M. Surface configuration and wettability of nickel(oxy)hydroxides: a first-principles investigation. Phys Chem Chem Phys 2017; 19:22659-22669. [DOI: 10.1039/c7cp03396f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article explores the wetting behavior of β-type nickel hydroxide, β-Ni(OH)2, and nickel oxyhydroxide, β-NiOOH, by means of first-principles calculations.
Collapse
Affiliation(s)
| | - Axel Groß
- Institute of Theoretical Chemistry
- Ulm University
- Albert-Einstein-Allee 11
- D-89069 Ulm
- Germany
| | - Michael Eikerling
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| |
Collapse
|
13
|
|
14
|
The Effect of Platinum Loading and Surface Morphology on Oxygen Reduction Activity. Electrocatalysis (N Y) 2016. [DOI: 10.1007/s12678-016-0304-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|