1
|
Liu T, Liu Z, Jiang S, Peng P, Liu Z, Chowdhury AD, Liu G. Selectivity control by zeolites during methanol-mediated CO 2 hydrogenation processes. Chem Soc Rev 2025. [PMID: 39820326 DOI: 10.1039/d4cs01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The thermocatalytic conversion of CO2 with green or blue hydrogen into valuable energy and commodity chemicals such as alcohols, olefins, and aromatics emerges as one of the most promising strategies for mitigating global warming concerns in the future. This process can follow either a CO2-modified Fischer-Tropsch synthesis route or a methanol-mediated route, with the latter being favored for its high product selectivity beyond the Anderson-Schulz-Flory distribution. Despite the progress of the CO2-led methanol-mediated route over bifunctional metal/zeolite catalysts, challenges persist in developing catalysts with both high activity and selectivity due to the complexity of CO2 hydrogenation reaction networks and the difficulty in controlling C-O bond activation and C-C bond coupling on multiple active sites within zeolites. Moreover, the different construction and proximity modes of bifunctionality involving redox-based metallic sites and acidic zeolite sites have been explored, which have not been systematically reviewed to derive reliable structure-reactivity relationships. To bridge this "knowledge gap", in this review, we will provide a comprehensive and critical overview of contemporary research on zeolite-confined metal catalysts for alcohol synthesis and zeolite-based bifunctional tandem/cascade catalytic systems for C2+ hydrocarbons synthesis in CO2 hydrogenation via the methanol-mediated route. Accordingly, special emphasis will be placed on evaluating how confinement and proximity effects within the "redox-acid" bifunctional systems influence the reaction outcomes, particularly regarding product selectivity, which has also been analyzed from the mechanistic standpoint. This review will also examine the synergistic interactions among various catalyst components that govern catalysis, offering valuable insights for the rational design of new or improved catalyst systems. By discussing current challenges and recognizing future opportunities in CO2 hydrogenation using zeolite-based bifunctional catalysis, this review aims to contribute to the advancement of sustainable and efficient processes for CO2 valorization.
Collapse
Affiliation(s)
- Tangkang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Zhiyao Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Shican Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.
| | - Peng Peng
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Zhiqiang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.
| | - Guoliang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.
| |
Collapse
|
2
|
Peng M, Li C, Wang Z, Wang M, Zhang Q, Xu B, Li M, Ma D. Interfacial Catalysis at Atomic Level. Chem Rev 2025. [PMID: 39818776 DOI: 10.1021/acs.chemrev.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Heterogeneous catalysts are pivotal to the chemical and energy industries, which are central to a multitude of industrial processes. Large-scale industrial catalytic processes rely on special structures at the nano- or atomic level, where reactions proceed on the so-called active sites of heterogeneous catalysts. The complexity of these catalysts and active sites often lies in the interfacial regions where different components in the catalysts come into contact. Recent advances in synthetic methods, characterization technologies, and reaction kinetics studies have provided atomic-scale insights into these critical interfaces. Achieving atomic precision in interfacial engineering allows for the manipulation of electronic profiles, adsorption patterns, and surface motifs, deepening our understanding of reaction mechanisms at the atomic or molecular level. This mechanistic understanding is indispensable not only for fundamental scientific inquiry but also for the design of the next generation of highly efficient industrial catalysts. This review examines the latest developments in atomic-scale interfacial engineering, covering fundamental concepts, catalyst design, mechanistic insights, and characterization techniques, and shares our perspective on the future trajectory of this dynamic research field.
Collapse
Affiliation(s)
- Mi Peng
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Chengyu Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhaohua Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Qingxin Zhang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Bingjun Xu
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Mufan Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Qi Y, Zhang B, Xue D, Zhang H, Liu X, Liu Z, Zhao S, Li Z, Meng F, Qin Y. Overturning CO 2 Hydrogenation Selectivity from CH 4 to CO by Strong Ru-FeO x Interaction Arising from a Multilayer Epitaxial Structure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67876-67888. [PMID: 39584446 DOI: 10.1021/acsami.4c19597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The catalytic conversion of CO2 to CO through hydrogenation has emerged as a promising strategy for CO2 utilization, given that CO serves as a valuable C1 platform compound for synthesizing liquid fuels and chemicals. However, the predominant formation of CH4 via deep hydrogenation over Ru-based catalysts poses challenges in achieving selective CO production. High reaction temperatures often lead to catalyst deactivation and changes in selectivity due to dynamic metal evolution or agglomeration, even with a classic strong metal-support interaction. Herein, we have developed a FeOx/Ru/Rutile multilayer epitaxial structure by depositing a FeOx layer onto the epitaxially grown RuO2 nanolayers on the surface of rutile nanoparticles. This multilayer epitaxial structure transformed into a structure in which Ru nanoparticles were decorated with FeOx layers with ultrastable strong metal-support interaction (SMSI). Subsequently, the FeOx decoration on Ru nanoparticles effectively shifted the dominant product from CH4 to 95% CO during CO2 hydrogenation. Remarkably, this catalyst exhibits exceptional stability and can be operated stably at 550 °C for a long time without apparent deactivation. Compared with the dynamic changes observed in supported Ru nanoparticles, the interaction between Ru and FeOx maintains their electronic states at different reaction temperatures. Furthermore, this Ru-FeOx interaction inhibits H2 activation capability, CO adsorption, and subsequent hydrogenation of CO. The transformation strategy employed here, which utilizes initial multilayer epitaxial structures, can be applied to construct SMSI to enhance metal catalysts' catalytic performance.
Collapse
Affiliation(s)
- Yuntao Qi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dengrong Xue
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Xiaoning Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhuo Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanchun Meng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Qin B, Sun X, Lu J, Zhao Z, Li B. Metal substrate engineering to modulate CO 2 hydrogenation to methanol on inverse Zr 3O 6/CuPd catalysts. Phys Chem Chem Phys 2024; 26:25329-25340. [PMID: 39310937 DOI: 10.1039/d4cp00927d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
It is well known that the performance of some key catalytic reactions has a strong dependence on metal catalyst surfaces. In the current work, this concept is further extended to the CuPd alloy-supported zirconium oxide inverse catalyst for CO2 hydrogenation to methanol. A combined DFT and microkinetic simulation study reveal that both the metal substrate surface and the precise exposed Cu or Pd metal atoms on the substrate have a pivotal influence on the catalytic mechanism and performance of the inverse catalyst for CO2 hydrogenation to methanol. Herein, CuPd(100), (111), and (110) surfaces with either Cu and Pd terminations have been examined, which provided five metal substrates as support for the inverse catalyst. Three different mechanisms, including the formate pathway, RWGS + CO-hydro pathway, and CO2 direct activation pathway, are explored under the same conditions; they take place at the interfacial sites between the metal alloy and oxide. The calculations indicated that the inverse catalyst with the CuPd(100) substrate demonstrates better performance than those with CuPd(110) and (111) for both formate and RWGS + CO-hydro mechanisms. Conversely, the reaction pathway is more sensitive to exposed atoms on the metal substrate. The best inverse catalyst, Zr3O6/CuPd(100) with either Cu or Pd terminations, demonstrated a methanol formation TOF above 0.30 site-1 s-1 and the selectivity was above 90% at 573 K, as evaluated from microkinetic simulation. The coverage analysis indicates the most populated species is HCOO*, which is consistent with experimental reports. Both kinetic and thermodynamics control steps are identified from DRC analysis for the best performing catalysts. Overall, the current study confirms the catalytic performance of the inverse Zr3O6/CuPd catalyst and demonstrates the tunable effects of the metal alloy substrate, which can facilitate effective optimization.
Collapse
Affiliation(s)
- Bin Qin
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| | - XiaoYing Sun
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| | - Jianzhuo Lu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China.
| | - Bo Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| |
Collapse
|
5
|
Su J, Yu L, Han B, Li F, Chen Z, Zeng XC. Enhanced CO 2 Reduction on a Cu-Decorated Single-Atom Catalyst via an Inverse Sandwich M-Graphene-Cu Structure. J Phys Chem Lett 2024; 15:8600-8607. [PMID: 39145599 DOI: 10.1021/acs.jpclett.4c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The highly active and selective electrochemical CO2 reduction reaction (CO2RR) can be exploited to produce valuable chemicals and fuels and is also crucial for achieving clean energy goals and environmental remediation. Decorated single-atom catalysts (D-SACs), which feature synergistic interactions between the active metal site (M) and an axially decorated ligand, have been extensively explored for the CO2RR. Very recently, novel double-atom catalysts (DACs) featuring inverse sandwich structures were theoretically proposed and identified as promising CO2RR electrocatalysts. However, the experimental synthesis of DACs remains a challenge. To facilitate the fabrication and to realize the potential of these novel DACs, we designed a D-SAC system, denoted as M1@gra+Cuslab. This system features a graphene layer with a vacancy-anchored SAC, all stacked on a Cu(111) surface, thereby embodying a Cu slab-supported inverse sandwich M-graphene-Cu structure. Using density functional theory calculations, we evaluated the stability, selectivity, and activity of 27 M1@gra+Cuslab systems (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, or Au) and showed five M1@gra+Cuslab (M = Co, Ni, Cu, Rh, or Pd) systems exhibit optimal characteristics for the CO2RR and can potentially outperform their SAC and DAC counterparts. This study offers a new strategy for developing highly efficient CO2RR D-SACs with an inverse sandwich structural moiety.
Collapse
Affiliation(s)
- Jingnan Su
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Linke Yu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518000, China
| | - Bing Han
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
- Ordos Institute of Applied Technology, Ordos 017000, China
| | - Fengyu Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Zhongfang Chen
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, United States
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Rahimi FA, Singh A, Jena R, Dey A, Maji TK. GFP Chromophore Integrated Conjugated Microporous Polymers toward Bioinspired Photocatalytic CO 2 Reduction to CO. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43171-43179. [PMID: 39135392 DOI: 10.1021/acsami.4c09906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of highly active, durable, and low-cost metal-free catalysts for the photocatalytic CO2 reduction reaction (CO2RR) is an efficient and environmentally friendly solution to address significant problems like global warming and high energy demand. In the present study, we have demonstrated the design and synthesis of a donor-acceptor based conjugated microporous polymer (CMP), TPA-GFP, by integrating an electron donor, tris(4-ethynylphenyl)amine (TPA), with a green fluorescent protein chromophore analogue (Z)-4-(2-hydroxy-3,5-diiodobenzylidene)-1-(4-iodophenyl)-2-methyl-1H-imidazol-5(4H)-one (o-HBDI-I3) (GFP). In comparison to nondonor 1,3,5-triethynylbenzene (TEB) based TEB-GFP CMP, photocatalytic CO2 reduction using donor-acceptor based TPA-GFP CMP displays a 3-fold increment of CO production yield with a maximum CO yield of 1666 μmol g-1 at 12 h. Further, the CO selectivity increases significantly from a mere 54% in TEB-GFP to an impressive 95% in TPA-GFP. The impressive CO2 reduction efficiency and selectivity for TPA-GFP can be attributed to the efficient light-harvesting capability and facile charge separation and migration through donor-acceptor building units of the CMP. The mechanistic aspect of the photocatalytic CO2 reduction process is explored using in situ DRIFTS and DFT calculation, and a plausible photocatalytic mechanism is proposed.
Collapse
Affiliation(s)
| | | | | | | | - Tapas Kumar Maji
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
7
|
Jensen S, Cheula R, Hedevang M, Andersen M, Lauritsen JV. Role of Cu Oxide and Cu Adatoms in the Reactivity of CO 2 on Cu(110). Angew Chem Int Ed Engl 2024; 63:e202405554. [PMID: 38837294 DOI: 10.1002/anie.202405554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
We investigate the interaction of CO2 with metallic and oxidized Cu(110) surfaces using a combination of near-ambient pressure scanning tunneling microscopy (NAP-STM) and theoretical calculations. While the Cu(110) and full CuO films are inert, the interface between bare Cu(110) and the CuO film is observed to react instantly with CO2 at a 10 mbar pressure. The reaction is observed to proceed from the interfacial sites of CuO/Cu(110). During reaction with CO2, the CuO/Cu(110) interface releases Cu adatoms which combine with CO3 to produce a variety of added Cu-CO3 structures, whose stability depends on the gas pressure of CO2. A main implication for the reactivity of Cu(110) is that Cu adatoms and highly undercoordinated CuO segments are created on the Cu(110) surface through the interaction with CO2, which may act as reaction-induced active sites. In the case of CO2 hydrogenation to methanol, our theoretical assessment of such sites indicates that their presence may significantly promote CH3OH formation. Our study thus implies that the CuO/Cu(110) interfacial system is highly dynamic in the presence of CO2, and it suggests a possible strong importance of reaction-induced Cu and CuO sites for the surface chemistry of Cu(110) in CO2-related catalysis.
Collapse
Affiliation(s)
- Sigmund Jensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Raffaele Cheula
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
| | - Martin Hedevang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Mie Andersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, 8000, Aarhus C, Denmark
| | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
8
|
Song Y, Tüysüz H. CO 2 Fixation to Prebiotic Intermediates over Heterogeneous Catalysts. Acc Chem Res 2024; 57:2038-2047. [PMID: 39024180 PMCID: PMC11308370 DOI: 10.1021/acs.accounts.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
ConspectusThe study of the origin of life requires a multifaceted approach to understanding where and how life arose on Earth. One of the most compelling hypotheses is the chemosynthetic origin of life at hydrothermal vents, as this condition has been considered viable for early forms of life. The continuous production of H2 and heat by serpentinization generates reductive conditions at hydrothermal vents, in which CO2 can be used to build large biomolecules. Although this involves surface catalysis and an autocatalytic process, in which solid minerals act as catalysts in the conversion of CO2 to metabolically important organic molecules, the systematic investigation of heterogeneous catalysis to comprehend prebiotic chemistry at hydrothermal vents has not been undertaken.In this Account, we discuss geochemical CO2 fixation to metabolic intermediates by synthetic minerals at hydrothermal vents from the perspective of heterogeneous catalysis. Ni and Fe are the most abundant transition metals at hydrothermal vents and occur in the active site of the enzymes carbon monoxide dehydrogenases/acetyl coenzyme A synthases (CODH/ACS). Synthetic free-standing NiFe alloy nanoparticles can convert CO2 to acetyl coenzyme A pathway intermediates such as formate, acetate, and pyruvate. The same alloy can further convert pyruvate to citramalate, which is essential in the biological citramalate pathway. Thermal treatment of Ni3Fe nanoparticles under NH3, which can occur in hydrothermal vents, results in Ni3FeN/Ni3Fe heterostructures. This catalyst has been demonstrated to produce prebiotic formamide and acetamide from CO2 and H2O using Ni3FeN/Ni3Fe as both substrate and catalyst. In the process of serpentinization, Co can be reduced in the vicinity of olivine, a Mg-Fe silicate mineral. This produces CoFe and CoFe2 with serpentine in nature, representing SiO2-supported CoFe alloys. In mimicking these natural minerals, synthetic SiO2-supported CoFe alloys demonstrate the same liquid products as NiFe alloys, namely, formate, acetate, and pyruvate under mild hydrothermal vent conditions. In contrast to the NiFe system, hydrocarbons up to C6 were detected in the gas phase, which is also present in hydrothermal vents. The addition of alkali and alkaline-earth metals to the catalysts results in enhanced formate concentration, playing a promotional role in CO2 reduction. Finally, Co was loaded onto ordered mesoporous SiO2 after modification with cations to simulate the minerals found in hydrothermal vents. These catalysts were then investigated under diminished H2O concentration, revealing the conversion of CO2 to CO, CH4, methanol, and acetate. Notably, the selectivity to metabolically relevant methanol was enhanced in the presence of cations that could generate and stabilize the methoxy intermediate. Calculation using the machine learning approach revealed the possibility of predicting the selectivity of CO2 fixation when modifying mesoporous SiO2 supports with heterocations. Our research demonstrates that minerals at hydrothermal vents can convert CO2 into metabolites under a variety of prebiotic conditions, potentially paving the way for modern biological CO2 fixation processes.
Collapse
Affiliation(s)
- Youngdong Song
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Harun Tüysüz
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Zhang H, Li X, Han Y, Liu Z. Direct Work Function Measurement Using in-situ Ambient Pressure X-ray Photoemission Spectroscopy and Its Application on Copper Oxidation Process. Chemphyschem 2024; 25:e202300838. [PMID: 38708615 DOI: 10.1002/cphc.202300838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
The work function (WF) measurement plays a critical role in engineering energy materials and energy devices. However, the ultra-high vacuum (UHV) environments of photoemission method limit the practical application for absolute work function measurements of materials, especially under complex working conditions. To understand the energy level of materials under complex chemical environments, the in-situ measurements of work function is necessary in complex metal/semiconductor system for various application. In this paper, we describe the utilization of ambient pressure X-ray photoemission spectroscopy (APXPS) with utilization of low photon energy X-ray for absolute WF measurements at BL02B of the Shanghai Synchrotron Radiation Facility. We herein present the WF measurement during oxygen adsorption on Pt(111) and oxidation of Cu(111) in ambient oxygen environment as demonstration of the APXPS capability for WF measurement. After oxygen chemisorption on Pt and formation of Cu2O, the WF will increase. This is due to charge transfer from metal to chemisorbed oxygen atoms. After the formation of bulk Cu2O and CuO, the WF value almost remain at ~5.5 eV. We believe the direct measurement of absolute work function via APXPS could help bridge the gap between the physical properties and the surface chemical species for metal/semiconductor materials.
Collapse
Affiliation(s)
- Hui Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaobao Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yong Han
- Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
10
|
Lindley M, Stishenko P, Crawley JWM, Tinkamanyire F, Smith M, Paterson J, Peacock M, Xu Z, Hardacre C, Walton AS, Logsdail AJ, Haigh SJ. Tuning the Size of TiO 2-Supported Co Nanoparticle Fischer-Tropsch Catalysts Using Mn Additions. ACS Catal 2024; 14:10648-10657. [PMID: 39050900 PMCID: PMC11264206 DOI: 10.1021/acscatal.4c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Modifying traditional Co/TiO2-based Fischer-Tropsch (FT) catalysts with Mn promoters induces a selectivity shift from long-chain paraffins toward commercially desirable alcohols and olefins. In this work, we use in situ gas cell scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) elemental mapping, and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) to demonstrate how the elemental dispersion and chemical structure of the as-calcined materials evolve during the H2 activation heat treatment required for industrial CoMn/TiO2 FT catalysts. We find that Mn additions reduce both the mean Co particle diameter and the size distribution but that the Mn remains dispersed on the support after the activation step. Density functional theory calculations show that the slower surface diffusion of Mn is likely due to the lower number of energetically accessible sites for the Mn on the titania support and that favorable Co-Mn interactions likely cause greater dispersion and slower sintering of Co in the Mn-promoted catalyst. These mechanistic insights into how the introduction of Mn tunes the Co nanoparticle size can be applied to inform the design of future-supported nanoparticle catalysts for FT and other heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Matthew Lindley
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Pavel Stishenko
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10
3AT, U.K.
| | - James W. M. Crawley
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10
3AT, U.K.
| | - Fred Tinkamanyire
- Department
of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Matthew Smith
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - James Paterson
- bp,
Applied Sciences, Innovation & Engineering, Saltend, Hull HU12 8DS, U.K.
| | - Mark Peacock
- bp,
Applied Sciences, Innovation & Engineering, Saltend, Hull HU12 8DS, U.K.
| | - Zhuoran Xu
- bp,
Applied Sciences, Innovation & Engineering, Chicago, Illinois 60606, United States
| | - Christopher Hardacre
- Department
of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Alex S. Walton
- Department
of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Andrew J. Logsdail
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10
3AT, U.K.
| | - Sarah J. Haigh
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
11
|
Yang L, Zhang C, Xiao J, Tu P, Wang Y, Wang Y, Tang S, Tang W. In Situ Reconstruction of Active Heterointerface for Hydrocarbon Combustion through Thermal Aging over Strontium-Modified Co 3O 4 Nanocatalyst with Good Sintering Resistance. Inorg Chem 2024; 63:6854-6870. [PMID: 38564370 DOI: 10.1021/acs.inorgchem.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The issue of catalyst deactivation due to sintering has gained significant attention alongside the rapid advancement of thermal catalysts. In this work, a simple Sr modification strategy was applied to achieve highly active Co3O4-based nanocatalyst for catalytic combustion of hydrocarbons with excellent antisintering feature. With the Co1Sr0.3 catalyst achieving a 90% propane conversion temperature (T90) of only 289 °C at a w8 hly space velocity of 60,000 mL·g-1·h-1, 24 °C lower than that of pure Co3O4. Moreover, the sintering resistance of Co3O4 catalysts was greatly improved by SrCO3 modification, and the T90 over Co1Sr0.3 just increased from 289 to 337 °C after thermal aging at 750 °C for 100 h, while that over pure Co3O4 catalysts increased from 313 to 412 °C. Through strontium modification, a certain amount of SrCO3 was introduced on the Co3O4 catalyst, which can serve as a physical barrier during the thermal aging process and further formation of Sr-Co perovskite nanocrystals, thus preventing the aggregation growth of Co3O4 nanocrystals and generating new active SrCoO2.52-Co3O4 heterointerface. In addition, propane durability tests of the Co1Sr0.3 catalysts showed strong water vapor resistance and stability, as well as excellent low-temperature activity and resistance to sintering in the oxidation reactions of other typical hydrocarbons such as toluene and propylene. This study provides a general strategy for achieving thermal catalysts by perfectly combining both highly low-temperature activity and sintering resistance, which will have great significance in practical applications for replacing precious materials with comparative features.
Collapse
Affiliation(s)
- Lei Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyan Xiao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Pengfei Tu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yulong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ye Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengwei Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxiang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
He Y, Li Y, Lei M, Polo-Garzon F, Perez-Aguilar J, Bare SR, Formo E, Kim H, Daemen L, Cheng Y, Hong K, Chi M, Jiang DE, Wu Z. Significant Roles of Surface Hydrides in Enhancing the Performance of Cu/BaTiO 2.8 H 0.2 Catalyst for CO 2 Hydrogenation to Methanol. Angew Chem Int Ed Engl 2024; 63:e202313389. [PMID: 37906130 DOI: 10.1002/anie.202313389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Tuning the anionic site of catalyst supports can impact reaction pathways by creating active sites on the support or influencing metal-support interactions when using supported metal nanoparticles. This study focuses on CO2 hydrogenation over supported Cu nanoparticles, revealing a 3-fold increase in methanol yield when replacing oxygen anions with hydrides in the perovskite support (Cu/BaTiO2.8 H0.2 yields ~146 mg/h/gCu vs. Cu/BaTiO3 yields ~50 mg/h/gCu). The contrast suggests that significant roles are played by the support hydrides in the reaction. Temperature programmed reaction and isotopic labelling studies indicate that BaTiO2.8 H0.2 surface hydride species follow a Mars van Krevelen mechanism in CO2 hydrogenation, promoting methanol production. High-pressure steady-state isotopic transient kinetic analysis (SSITKA) studies suggest that Cu/BaTiO2.8 H0.2 possesses both a higher density and more active and selective sites for methanol production compared to Cu/BaTiO3 . An operando high-pressure diffuse reflectance infrared spectroscopy (DRIFTS)-SSITKA study shows that formate species are the major surface intermediates over both catalysts, and the subsequent hydrogenation steps of formate are likely rate-limiting. However, the catalytic reactivity of Cu/BaTiO2.8 H0.2 towards the formate species is much higher than Cu/BaTiO3 , likely due to the altered electronic structure of interface Cu sites by the hydrides in the support as validated by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yang He
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Yuanyuan Li
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Ming Lei
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN-37235, USA
| | - Felipe Polo-Garzon
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Jorge Perez-Aguilar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA-94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA-94025, USA
| | - Eric Formo
- Georgia Electron Microscopy, University of Georgia, Athens, GA-30602, USA
| | - Hwangsun Kim
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Luke Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN-37235, USA
| | - Zili Wu
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| |
Collapse
|
13
|
Neog S, Dowerah D, Biswakarma N, Dutta P, Churi PP, Sarma PJ, Gour NK, Deka RC. Reaction Mechanism and Kinetics for the Selective Hydrogenation of Carbon Dioxide to Formic Acid and Methanol over the [Cu 2] 0,±1 Dimer. J Phys Chem A 2023; 127:8508-8529. [PMID: 37811794 DOI: 10.1021/acs.jpca.3c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
With the rapid growth of industrialization, deforestation, and burning of fossil fuels, undeniably there has been an incredible escalation of the CO2 concentration in the atmosphere. In order to mitigate the problem, the capture and utilization of CO2 in different value-added chemicals have thus remained topics of concerned research for more than a decade. Accordingly, we have performed molecular -level catalytic hydrogenation of CO2 to formic acid using bare [Cu2]0,±1 dimers as catalysts. The entire investigation has been performed using a density functional theory (DFT) method employing the Perdew-Burke-Ernzerhof (PBE) functional with the def2TZVPP basis set to explore the different possible routes and efficiency of the catalysts. Results reveal the feasibility of H2 dissociation on all three Cu2, Cu2+, and Cu2- dimers. The negatively charged hydride formed during H2 dissociation on Cu2 and Cu2+ dimers facilitates the formation of the HCOO* intermediate over COOH*, thereby providing product selectivity for HCOOH above CO. However, the reaction on the Cu2- dimer forms both HCOO* and COOH* intermediates, but HCOO*, being kinetically more favorable, results in HCOOH production. The free-energy change suggests that the complete reaction on Cu2 and Cu2+ dimers forms a stable product compared to the Cu2- dimer. Furthermore, H3COH production is studied using the title catalysts via the obtained HCOOH* intermediate from the reaction channel. Transition state theory (TST) has been considered to evaluate the rate constants for each step of the reaction. Overall results suggest Cu2 to be better compared to Cu2+ and Cu2- dimers for HCOOH formation and Cu2+ over Cu2 and Cu2- dimers to be more efficient for H3COH formation. This work opens the way for further investigation of the reaction mechanism and development of an efficient catalyst for CO2 hydrogenation.
Collapse
Affiliation(s)
- Shilpa Neog
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Dikshita Dowerah
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Nishant Biswakarma
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Priyanka Dutta
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Partha Pratim Churi
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
- Department of Chemistry, Dergaon Kamal Dowerah College, Dergaon-785614, Assam, India
| | - Plaban Jyoti Sarma
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
- Department of Chemistry, Gargaon College, Simaluguri-785686, Sivsagar, Assam, India
| | - Nand Kishor Gour
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Ramesh Chandra Deka
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| |
Collapse
|
14
|
Liu Z, Yan Y, Yang Y, Zhang F, Jia J, Li Y. Coordination-induced bond weakening in NiC3: An experimental and theoretical investigation. J Chem Phys 2023; 159:114304. [PMID: 37721325 DOI: 10.1063/5.0168717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
Mass-selected photoelectron velocity-map imaging spectroscopy in conjunction with the density functional theory calculations was employed to investigate the geometrical and chemical bonding properties of NiC3-/0. Both the photoelectron spectrum and photoelectron angular distribution were measured from the spectra, yielding useful geometrical and electronic information about NiC3-/0. The complementary theoretical calculations suggest that the linear and fan-like structures were both populated experimentally in the cluster beam. Further comparative study on the synergistic donor-acceptor interactions in both isomers revealed the side-on coordination-induced bond weakening in the fan-like isomer as compared to the linear isomer. These findings will shed light on the structure-dependent reactivity of transition metal carbides.
Collapse
Affiliation(s)
- Zhiling Liu
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Yonghong Yan
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Yufeng Yang
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Fuqiang Zhang
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Jianfeng Jia
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Ya Li
- School of Geographical Sciences, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| |
Collapse
|
15
|
Sun X, Jin Y, Cheng Z, Lan G, Wang X, Qiu Y, Wang Y, Liu H, Li Y. Dual active sites over Cu-ZnO-ZrO 2 catalysts for carbon dioxide hydrogenation to methanol. J Environ Sci (China) 2023; 131:162-172. [PMID: 37225377 DOI: 10.1016/j.jes.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 05/26/2023]
Abstract
CO2 hydrogenation to methanol is a significant approach to tackle the problem of global warming and simultaneously meet the demand for the portable fuel. Cu-ZnO catalysts with various kinds of promoters have received wide attention. However, the role of promoter and the form of active sites in CO2 hydrogenation are still in debate. Here, various molar ratios of ZrO2 were added into the Cu-ZnO catalysts to tune the distributions of Cu0 and Cu+ species. A volcano-like trend between the ratio of Cu+/ (Cu+ + Cu0) and the amount of ZrO2 is presented, among which the CuZn10Zr (the molar ratio of ZrO2 is 10%) catalyst reaches the highest value. Correspondingly, the maximum value of space-time yield to methanol with 0.65 gMeOH/(gcat·hr) is obtained on CuZn10Zr at reaction conditions of 220°C and 3 MPa. Detailed characterizations demonstrate that dual active sites are proposed during CO2 hydrogenation over CuZn10Zr catalyst. The exposed Cu0 takes participate in the activation of H2, while on the Cu+ species, the intermediate of formate from the co-adsorption of CO2 and H2 prefers to be further hydrogenated to CH3OH than decomposing into the by-product of CO, yielding a high selectivity of methanol.
Collapse
Affiliation(s)
- Xiucheng Sun
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifei Jin
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zaizhe Cheng
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guojun Lan
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaolong Wang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiyang Qiu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanjiang Wang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huazhang Liu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
16
|
Wang QS, Yuan YC, Li CF, Zhang ZR, Xia C, Pan WG, Guo RT. Research Progress on Photocatalytic CO 2 Reduction Based on Perovskite Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301892. [PMID: 37194985 DOI: 10.1002/smll.202301892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Photocatalytic CO2 reduction to valuable fuels is a promising way to alleviate anthropogenic CO2 emissions and energy crises. Perovskite oxides have attracted widespread attention as photocatalysts for CO2 reduction by virtue of their high catalytic activity, compositional flexibility, bandgap adjustability, and good stability. In this review, the basic theory of photocatalysis and the mechanism of CO2 reduction over perovskite oxide are first introduced. Then, perovskite oxides' structures, properties, and preparations are presented. In detail, the research progress on perovskite oxides for photocatalytic CO2 reduction is discussed from five aspects: as a photocatalyst in its own right, metal cation doping at A and B sites of perovskite oxides, anion doping at O sites of perovskite oxides and oxygen vacancies, loading cocatalyst on perovskite oxides, and constructing heterojunction with other semiconductors. Finally, the development prospects of perovskite oxides for photocatalytic CO2 reduction are put forward. This article should serve as a useful guide for creating perovskite oxide-based photocatalysts that are more effective and reasonable.
Collapse
Affiliation(s)
- Qing-Shan Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200090, China
| | - Yi-Chao Yuan
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200090, China
| | - Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Cheng Xia
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
17
|
Yang X, Duan H, Wang R, Zhao F, Jin F, Jiang W, Han G, Guan Q, Ben H. Tailoring Zeolite L-Supported-Cu Catalysts for CO 2 Hydrogenation: Insights into the Mechanism of CH 3OH and CO Formation. Inorg Chem 2023; 62:13419-13427. [PMID: 37552876 DOI: 10.1021/acs.inorgchem.3c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The utilization of Cu-based catalysts in CO2 conversion into valuable chemicals is of significant interest due to their potential in mitigating greenhouse gas emissions. However, the controllable design of Cu-based catalysts and the regulation of their mechanism remain challenging. In this study, a series of efficient Cu/L catalysts were prepared for this process, and the intrinsic influencing factors on the reaction routes were systematically revealed. Various techniques revealed that Cu particles in L-supported catalysts exhibited higher dispersion and formed Cu-O(OH)-K interfacial sites. However, with increasing Cu loading, the dispersion of Cu particles and the percentage of Cu-O(OH)-K interfaces decreased. Kinetic investigations revealed that the adsorption configuration and electronic structure of Cu species codetermined the reaction pathways and resulting selectivity. Cu/L catalysts possessing Cu-O(OH)-K interfaces and small particles demonstrated the preferential formation of formate species, promoting methanol formation. However, larger Cu particles generated carboxylate intermediates, resulting in higher CO selectivity..
Collapse
Affiliation(s)
- Xiaoli Yang
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Hongmin Duan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruifeng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fengwang Zhao
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Fayi Jin
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Wei Jiang
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Guangting Han
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Qingxin Guan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Haoxi Ben
- College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
18
|
Gao Y, Xiong K, Zhu B. Design of Cu/MoOx for CO2 Reduction via Reverse Water Gas Shift Reaction. Catalysts 2023. [DOI: 10.3390/catal13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
CO2 reduction to CO as raw material for conversion to chemicals and gasoline fuels via the reverse water–gas shift (RWGS) reaction is generally acknowledged to be a promising strategy that makes the CO2 utilization process more economical and efficient. Cu-based catalysts are low-cost and have high catalytic performance but have insufficient stability due to hardening at high temperatures. In this work, a series of Cu-based catalysts supported by MoOx were synthesized for noble metal-free RWGS reactions, and the effects of MoOx support on catalyst performance were investigated. The results show that the introduction of MoOx can effectively improve the catalytic performance of RWGS reactions. The obtained Cu/MoOx (1:1) catalyst displays excellent activity with 35.85% CO2 conversion and 99% selectivity for CO at 400 °C. A combination of XRD, XPS, and HRTEM characterization results demonstrate that MoOx support enhances the metal-oxide interactions with Cu through electronic modification and geometric coverage, thus obtaining highly dispersed copper and more Cu-MoOx interfaces as well as more corresponding oxygen vacancies.
Collapse
|
19
|
Velty A, Corma A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO 2 to chemicals and fuels. Chem Soc Rev 2023; 52:1773-1946. [PMID: 36786224 DOI: 10.1039/d2cs00456a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
For many years, capturing, storing or sequestering CO2 from concentrated emission sources or from air has been a powerful technique for reducing atmospheric CO2. Moreover, the use of CO2 as a C1 building block to mitigate CO2 emissions and, at the same time, produce sustainable chemicals or fuels is a challenging and promising alternative to meet global demand for chemicals and energy. Hence, the chemical incorporation and conversion of CO2 into valuable chemicals has received much attention in the last decade, since CO2 is an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon building block. Nevertheless, CO2 is the most oxidized form of carbon, thermodynamically the most stable form and kinetically inert. Consequently, the chemical conversion of CO2 requires highly reactive, rich-energy substrates, highly stable products to be formed or harder reaction conditions. The use of catalysts constitutes an important tool in the development of sustainable chemistry, since catalysts increase the rate of the reaction without modifying the overall standard Gibbs energy in the reaction. Therefore, special attention has been paid to catalysis, and in particular to heterogeneous catalysis because of its environmentally friendly and recyclable nature attributed to simple separation and recovery, as well as its applicability to continuous reactor operations. Focusing on heterogeneous catalysts, we decided to center on zeolite and ordered mesoporous materials due to their high thermal and chemical stability and versatility, which make them good candidates for the design and development of catalysts for CO2 conversion. In the present review, we analyze the state of the art in the last 25 years and the potential opportunities for using zeolite and OMS (ordered mesoporous silica) based materials to convert CO2 into valuable chemicals essential for our daily lives and fuels, and to pave the way towards reducing carbon footprint. In this review, we have compiled, to the best of our knowledge, the different reactions involving catalysts based on zeolites and OMS to convert CO2 into cyclic and dialkyl carbonates, acyclic carbamates, 2-oxazolidones, carboxylic acids, methanol, dimethylether, methane, higher alcohols (C2+OH), C2+ (gasoline, olefins and aromatics), syngas (RWGS, dry reforming of methane and alcohols), olefins (oxidative dehydrogenation of alkanes) and simple fuels by photoreduction. The use of advanced zeolite and OMS-based materials, and the development of new processes and technologies should provide a new impulse to boost the conversion of CO2 into chemicals and fuels.
Collapse
Affiliation(s)
- Alexandra Velty
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
20
|
Adegoke KA, Maxakato NW. Electrocatalytic CO2 conversion on metal-organic frameworks derivative electrocatalysts. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
21
|
Density functional study on electrochemical reduction of carbon dioxide to C1 products using zinc oxide catalyst. Theor Chem Acc 2023. [DOI: 10.1007/s00214-023-02971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
22
|
Lee K, Mendes PCD, Jeon H, Song Y, Dickieson MP, Anjum U, Chen L, Yang TC, Yang CM, Choi M, Kozlov SM, Yan N. Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrO x. Nat Commun 2023; 14:819. [PMID: 36781851 PMCID: PMC9925737 DOI: 10.1038/s41467-023-36407-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Metal promotion is the most widely adopted strategy for enhancing the hydrogenation functionality of an oxide catalyst. Typically, metal nanoparticles or dopants are located directly on the catalyst surface to create interfacial synergy with active sites on the oxide, but the enhancement effect may be compromised by insufficient hydrogen delivery to these sites. Here, we introduce a strategy to promote a ZnZrOx methanol synthesis catalyst by incorporating hydrogen activation and delivery functions through optimized integration of ZnZrOx and Pd supported on carbon nanotube (Pd/CNT). The CNT in the Pd/CNT + ZnZrOx system delivers hydrogen activated on Pd to a broad area on the ZnZrOx surface, with an enhancement factor of 10 compared to the conventional Pd-promoted ZnZrOx catalyst, which only transfers hydrogen to Pd-adjacent sites. In CO2 hydrogenation to methanol, Pd/CNT + ZnZrOx exhibits drastically boosted activity-the highest among reported ZnZrOx-based catalysts-and excellent stability over 600 h on stream test, showing potential for practical implementation.
Collapse
Affiliation(s)
- Kyungho Lee
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Paulo C. D. Mendes
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Hyungmin Jeon
- grid.37172.300000 0001 2292 0500Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Yizhen Song
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Maxim Park Dickieson
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Uzma Anjum
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Luwei Chen
- grid.185448.40000 0004 0637 0221Institute of Sustainability for Chemical, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833 Singapore
| | - Tsung-Cheng Yang
- grid.38348.340000 0004 0532 0580Department of Chemistry, National Tsing Hua University, Hsinchu, 300044 Taiwan
| | - Chia-Min Yang
- grid.38348.340000 0004 0532 0580Department of Chemistry, National Tsing Hua University, Hsinchu, 300044 Taiwan ,grid.38348.340000 0004 0532 0580Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044 Taiwan
| | - Minkee Choi
- grid.37172.300000 0001 2292 0500Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Sergey M. Kozlov
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
23
|
Hong S, Abbas HG, Jang K, Patra KK, Kim B, Choi BU, Song H, Lee KS, Choi PP, Ringe S, Oh J. Tuning the C 1 /C 2 Selectivity of Electrochemical CO 2 Reduction on Cu-CeO 2 Nanorods by Oxidation State Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208996. [PMID: 36470580 DOI: 10.1002/adma.202208996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Ceria (CeO2 ) is one of the most extensively used rare earth oxides. Recently, it has been used as a support material for metal catalysts for electrochemical energy conversion. However, to date, the nature of metal/CeO2 interfaces and their impact on electrochemical processes remains unclear. Here, a Cu-CeO2 nanorod electrochemical CO2 reduction catalyst is presented. Using operando analysis and computational techniques, it is found that, on the application of a reductive electrochemical potential, Cu undergoes an abrupt change in solubility in the ceria matrix converting from less stable randomly dissolved single atomic Cu2+ ions to (Cu0 ,Cu1+ ) nanoclusters. Unlike single atomic Cu, which produces C1 products as the main product during electrochemical CO2 reduction, the coexistence of (Cu0 ,Cu1+ ) clusters lowers the energy barrier for C-C coupling and enables the selective production of C2+ hydrocarbons. As a result, the coexistence of (Cu0 ,Cu1+ ) in the clusters at the Cu-ceria interface results in a C2+ partial current density/unit Cu weight 27 times that of a corresponding Cu-carbon catalyst under the same conditions.
Collapse
Affiliation(s)
- Seungwon Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hafiz Ghulam Abbas
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Kyuseon Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kshirodra Kumar Patra
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Beomil Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byeong-Uk Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hakhyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Pyuck-Pa Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Stefan Ringe
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
24
|
Ticali P, Salusso D, Airi A, Morandi S, Borfecchia E, Ramirez A, Cordero-Lanzac T, Gascon J, Olsbye U, Joensen F, Bordiga S. From Lab to Technical CO 2 Hydrogenation Catalysts: Understanding PdZn Decomposition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5218-5228. [PMID: 36688511 PMCID: PMC9906622 DOI: 10.1021/acsami.2c19357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The valorization of CO2 to produce high-value chemicals, such as methanol and hydrocarbons, represents key technology in the future net-zero society. Herein, we report further investigation of a PdZn/ZrO2 + SAPO-34 catalyst for conversion of CO2 and H2 into propane, already presented in a previous work. The focus of this contribution is on the scale up of this catalyst. In particular, we explored the effect of mixing (1:1 mass ratio) and shaping the two catalyst functions into tablets and extrudates using an alumina binder. Their catalytic performance was correlated with structural and spectroscopic characteristics using methods such as FT-IR and X-ray absorption spectroscopy. The two scaled-up bifunctional catalysts demonstrated worse performance than a 1:1 mass physical mixture of the two individual components. Indeed, we demonstrated that the preparation negatively affects the element distribution. The physical mixture is featured by the presence of a PdZn alloy, as demonstrated by our previous work on this sample and high hydrocarbon selectivity among products. For both tablets and extrudates, the characterization showed Zn migration to produce Zn aluminates from the alumina binder phase upon reduction. Moreover, the extrudates showed a remarkable higher amount of Zn aluminates before the activation rather than the tablets. Comparing tablets and extrudates with the physical mixture, no PdZn alloy was observed after activation and only the extrudates showed the presence of metallic Pd. Due to the Zn migration, SAPO-34 poisoning and subsequent deactivation of the catalyst could not be excluded. These findings corroborated the catalytic results: Zn aluminate formation and Pd0 separation could be responsible for the decrease of the catalytic activity of the extrudates, featured by high methane selectivity and unconverted methanol, while tablets displayed reduced methanol conversion to hydrocarbons mainly attributed to the partial deactivation of the SAPO-34.
Collapse
Affiliation(s)
- Pierfrancesco Ticali
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| | - Davide Salusso
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| | - Alessia Airi
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| | - Sara Morandi
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| | - Elisa Borfecchia
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| | - Adrian Ramirez
- King
Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Tomás Cordero-Lanzac
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University. of Oslo, Sem Sælands vei 26, 0371Oslo, Norway
| | - Jorge Gascon
- King
Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Unni Olsbye
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University. of Oslo, Sem Sælands vei 26, 0371Oslo, Norway
| | | | - Silvia Bordiga
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin10125, Italy
| |
Collapse
|
25
|
Lushchikova OV, Szalay M, Höltzl T, Bakker JM. Tuning the degree of CO 2 activation by carbon doping Cu n- ( n = 3-10) clusters: an IR spectroscopic study. Faraday Discuss 2023; 242:252-268. [PMID: 36325973 PMCID: PMC9890493 DOI: 10.1039/d2fd00128d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Copper clusters on carbide surfaces have shown a high catalytic activity towards methanol formation. To understand the interaction between CO2 and the catalytically active sites during this process and the role that carbon atoms could play in this, they are modeled by copper clusters, with carbon atoms incorporated. The formed clusters CunCm- (n = 3-10, m = 1-2) are reacted with CO2 and investigated by IR multiple-photon dissociation (IR-MPD) spectroscopy to probe the degree of CO2 activation. IR spectra for the reaction products [CunC·CO2]-, (n = 6-10), and [CunC2·CO2]-, (n = 3-8) are compared to reference spectra recorded for products formed when reacting the same cluster sizes with CO, and with density functional theory (DFT) calculated spectra. The results reveal a size- and carbon load-dependent activation and dissociation of CO2. The complexes [CunC·CO2]- with n = 6 and 10 show predominantly molecular activation of CO2, while those with n = 7-9 show only dissociative adsorption. The addition of the second carbon to the cluster leads to the exclusive molecular activation of the CO2 on all measured cluster sizes, except for Cu5C2- where CO2 dissociates. Combining these findings with DFT calculations leads us to speculate that at lower carbon-to-metal ratios (CMRs), the C can act as an oxygen anchor facilitating the OCO bond rupture, whereas at higher CMRs the carbon atoms increasingly attract negative charge, reducing the Cu cluster's ability to donate electron density to CO2, and consequently its ability to activate CO2.
Collapse
Affiliation(s)
- Olga V. Lushchikova
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryToernooiveld 76525 ED NijmegenThe Netherlands,Institut für Ionenphysik und Angewandte Physik, Universität InnsbruckTechnikerstraße 256020 InnsbruckAustria
| | - Máté Szalay
- Furukawa Electric Institute of TechnologyKésmárk Utca 28/A1158 BudapestHungary
| | - Tibor Höltzl
- MTA-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University ofTechnology and EconomicsMuegyetem rkp. 3Budapest 1111Hungary,Furukawa Electric Institute of TechnologyKésmárk Utca 28/A1158 BudapestHungary
| | - Joost M. Bakker
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryToernooiveld 76525 ED NijmegenThe Netherlands
| |
Collapse
|
26
|
Kordus D, Jelic J, Lopez Luna M, Divins NJ, Timoshenko J, Chee SW, Rettenmaier C, Kröhnert J, Kühl S, Trunschke A, Schlögl R, Studt F, Roldan Cuenya B. Shape-Dependent CO 2 Hydrogenation to Methanol over Cu 2O Nanocubes Supported on ZnO. J Am Chem Soc 2023; 145:3016-3030. [PMID: 36716273 PMCID: PMC9912329 DOI: 10.1021/jacs.2c11540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hydrogenation of CO2 to methanol over Cu/ZnO-based catalysts is highly sensitive to the surface composition and catalyst structure. Thus, its optimization requires a deep understanding of the influence of the pre-catalyst structure on its evolution under realistic reaction conditions, including the formation and stabilization of the most active sites. Here, the role of the pre-catalyst shape (cubic vs spherical) in the activity and selectivity of ZnO-supported Cu nanoparticles was investigated during methanol synthesis. A combination of ex situ, in situ, and operando microscopy, spectroscopy, and diffraction methods revealed drastic changes in the morphology and composition of the shaped pre-catalysts under reaction conditions. In particular, the rounding of the cubes and partial loss of the (100) facets were observed, although such motifs remained in smaller domains. Nonetheless, the initial pre-catalyst structure was found to strongly affect its subsequent transformation in the course of the CO2 hydrogenation reaction and activity/selectivity trends. In particular, the cubic Cu particles displayed an increased activity for methanol production, although at the cost of a slightly reduced selectivity when compared to similarly sized spherical particles. These findings were rationalized with the help of density functional theory calculations.
Collapse
Affiliation(s)
- David Kordus
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany,Department
of Physics, Ruhr University Bochum, 44780Bochum, Germany
| | - Jelena Jelic
- Institute
of Catalysis Research and Technology, Karlsruher
Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - Mauricio Lopez Luna
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Núria J. Divins
- Department
of Physics, Ruhr University Bochum, 44780Bochum, Germany
| | - Janis Timoshenko
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - See Wee Chee
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Clara Rettenmaier
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Jutta Kröhnert
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Stefanie Kühl
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Annette Trunschke
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Robert Schlögl
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Felix Studt
- Institute
of Catalysis Research and Technology, Karlsruher
Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany,Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany,
| | - Beatriz Roldan Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany,
| |
Collapse
|
27
|
Synthesis and Application of Liquid Metal Based-2D Nanomaterials: A Perspective View for Sustainable Energy. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020524. [PMID: 36677585 PMCID: PMC9864318 DOI: 10.3390/molecules28020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
With the continuous exploration of low-dimensional nanomaterials, two dimensional metal oxides (2DMOs) has been received great interest. However, their further development is limited by the high cost in the preparation process and the unstable states caused by the polarization of surface chemical bonds. Recently, obtaining mental oxides via liquid metals have been considered a surprising method for obtaining 2DMOs. Therefore, how to scientifically choose different preparation methods to obtain 2DMOs applying in different application scenarios is an ongoing process worth discussing. This review will provide some new opportunities for the rational design of 2DMOs based on liquid metals. Firstly, the surface oxidation process and in situ electrical replacement reaction process of liquid metals are introduced in detail, which provides theoretical basis for realizing functional 2DMOs. Secondly, by simple sticking method, gas injection method and ultrasonic method, 2DMOs can be obtained from liquid metal, the characteristics of each method are introduced in detail. Then, this review provides some prospective new ideas for 2DMOs in other energy-related applications such as photodegradation, CO2 reduction and battery applications. Finally, the present challenges and future development prospects of 2DMOs applied in liquid metals are presented.
Collapse
|
28
|
Zhang W, Vidal-López A, Comas-Vives A. Theoretical study of the catalytic performance of Fe and Cu single-atom catalysts supported on Mo 2C toward the reverse water-gas shift reaction. Front Chem 2023; 11:1144189. [PMID: 37021146 PMCID: PMC10067905 DOI: 10.3389/fchem.2023.1144189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
The reverse water-gas shift (RWGS) is an attractive process using CO2 as a chemical feedstock. Single-atom catalysts (SACs) exhibit high catalytic activity in several reactions, maximizing the metal use and enabling easier tuning by rational design than heterogeneous catalysts based on metal nanoparticles. In this study, we evaluate, using DFT calculations, the RWGS mechanism catalyzed by SACs based on Cu and Fe supported on Mo2C, which is also an active RWGS catalyst on its own. While Cu/Mo2C showed more feasible energy barriers toward CO formation, Fe/Mo2C presented lower energy barriers for H2O formation. Overall, the study showcases the difference in reactivity between both metals, evaluating the impact of oxygen coverage and suggesting Fe/Mo2C as a potentially active RWGS catalyst based on theoretical calculations.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Chemistry, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Anna Vidal-López
- Department of Chemistry, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Aleix Comas-Vives
- Department of Chemistry, Universitat Autònoma de Barcelona, Catalonia, Spain
- Institute of Materials Chemistry, Technische Universität Wien, Vienna, Austria
- *Correspondence: Aleix Comas-Vives, ,
| |
Collapse
|
29
|
Piliai L, Matvija P, Dinhová TN, Khalakhan I, Skála T, Doležal Z, Bezkrovnyi O, Kepinski L, Vorokhta M, Matolínová I. In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO 2(111). ACS APPLIED MATERIALS & INTERFACES 2022; 14:56280-56289. [PMID: 36484234 DOI: 10.1021/acsami.2c15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal-substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.
Collapse
Affiliation(s)
- Lesia Piliai
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Peter Matvija
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Thu Ngan Dinhová
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Ivan Khalakhan
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Tomas Skála
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Zdeněk Doležal
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Oleksii Bezkrovnyi
- W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Leszek Kepinski
- W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Mykhailo Vorokhta
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Iva Matolínová
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| |
Collapse
|
30
|
To AT, Arellano-Treviño MA, Nash CP, Ruddy DA. Direct synthesis of branched hydrocarbons from CO2 over composite catalysts in a single reactor. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Graciani J, Grinter DC, Ramírez PJ, Palomino RM, Xu F, Waluyo I, Stacchiola D, Fdez Sanz J, Senanayake SD, Rodriguez JA. Conversion of CO 2 to Methanol and Ethanol on Pt/CeO x/TiO 2(110): Enabling Role of Water in C–C Bond Formation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jesús Graciani
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Departamento de Química Física, Universidad de Sevilla, Sevilla 41012, Spain
| | - David C. Grinter
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Diamond Light Source, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Pedro J. Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, 1020-A Caracas, Venezuela
- Zoneca-CENEX, R&D Laboratories, Alta Vista, 64770 Monterrey, México
| | - Robert M. Palomino
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Fang Xu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dario Stacchiola
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Javier Fdez Sanz
- Departamento de Química Física, Universidad de Sevilla, Sevilla 41012, Spain
| | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
32
|
Cao Y, Meng Y, Wu Y, Shen Z, Xia Q, Huang H, Lang JP, Gu H, Wang Y, Li X. Regulation of the Coordination Structures of Transition Metals on Nitrogen-Doped Carbon Nanotubes for Electrochemical CO 2 Reduction. Inorg Chem 2022; 61:18957-18969. [DOI: 10.1021/acs.inorgchem.2c03221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yongyong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Yuxiao Meng
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Yuting Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| |
Collapse
|
33
|
Ranjan P, Saptal VB, Bera JK. Recent Advances in Carbon Dioxide Adsorption, Activation and Hydrogenation to Methanol using Transition Metal Carbides. CHEMSUSCHEM 2022; 15:e202201183. [PMID: 36036640 DOI: 10.1002/cssc.202201183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The inevitable emission of carbon dioxide (CO2 ) due to the burning of a substantial amount of fossil fuels has led to serious energy and environmental challenges. Metal-based catalytic CO2 transformations into commodity chemicals are a favorable approach in the CO2 mitigation strategy. Among these transformations, selective hydrogenation of CO2 to methanol is the most promising process that not only fulfils the energy demands but also re-balances the carbon cycle. The investigation of CO2 adsorption on the surface of heterogeneous catalyst is highly important because the formation of various intermediates which determines the selectivity of product. Transition metal carbides (TMCs) have received considerable attention in recent years because of their noble metal-like reactivity, ceramic-like properties, high chemical and thermal stability. These features make them excellent catalytic materials for a variety of transformations such as CO2 adsorption and its conversion into value-added chemicals. Herein, the catalytic properties of TMCs are summarize along with synthetic methods, CO2 binding modes, mechanistic studies, effects of dopant on CO2 adsorption, and carbon/metal ratio in the CO2 hydrogenation reaction to methanol using computational as well as experimental studies. Additionally, this Review provides an outline of the challenges and opportunities for the development of potential TMCs in CO2 hydrogenation reactions.
Collapse
Affiliation(s)
- Prabodh Ranjan
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vitthal B Saptal
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jitendra K Bera
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
34
|
Investigation of In Promotion on Cu/ZrO2 Catalysts and Application in CO2 Hydrogenation to Methanol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
35
|
Gao X, Cai P, Wang Z, Lv X, Kawi S. Surface Acidity/Basicity and Oxygen Defects of Metal Oxide: Impacts on Catalytic Performances of CO2 Reforming and Hydrogenation Reactions. Top Catal 2022. [DOI: 10.1007/s11244-022-01708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Mitra A, Ghosh S, Paliwal KS, Ghosh S, Tudu G, Chandrasekar A, Mahalingam V. Alumina-Based Bifunctional Catalyst for Efficient CO 2 Fixation into Epoxides at Atmospheric Pressure. Inorg Chem 2022; 61:16356-16369. [PMID: 36194766 DOI: 10.1021/acs.inorgchem.2c02363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quest toward sustainability and decarbonization demands the development of methods for efficient carbon dioxide capture and utilization. The nonreductive CO2 fixation into epoxides to prepare cyclic carbonates has gained attention in recent years. In this work, we report the development of guanidine hydrochloride-functionalized γ alumina (γ-Al2O3), prepared using green solvents, as an efficient bifunctional catalyst for CO2 fixation. The resulting guanidine-grafted γ-Al2O3 (Al-Gh) proved to be an excellent catalyst to prepare cyclic carbonates from epoxides and CO2 with high selectivity. The nitrogen-rich Al-Gh shows increased CO2 adsorption capacity compared to that of γ-Al2O3. The as-prepared catalyst was able to carry out CO2 fixation at 85 °C under atmospheric pressure in the absence of solvents and external additives (e.g., TBAI or KI). The material showed negligible loss of catalytic activity even after five cycles of catalysis. The catalyst successfully converted many epoxides into their respective cyclic carbonates under the optimized conditions. The gram-scale synthesis of commercially important styrene carbonates from styrene oxide and CO2 using Al-Gh was also achieved. Density functional theory (DFT) calculations revealed the role of alumina in activating the epoxide. This activation facilitated the chloride ion to open the ring to react with CO2. The DFT studies also validated the role of alumina in stabilizing the electron-rich intermediates during the course of the reaction.
Collapse
Affiliation(s)
- Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Khushboo S Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suptish Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Aditi Chandrasekar
- School of Arts and Sciences, Azim Premji University, Bangalore 562125, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
37
|
Wang H, Nie X, Liu Y, Janik MJ, Han X, Deng Y, Hu W, Song C, Guo X. Mechanistic Insight into Hydrocarbon Synthesis via CO 2 Hydrogenation on χ-Fe 5C 2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37637-37651. [PMID: 35969512 DOI: 10.1021/acsami.2c07029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting CO2 into value-added chemicals and fuels is one of the promising approaches to alleviate CO2 emissions, reduce the dependence on nonrenewable energy resources, and minimize the negative environmental effect of fossil fuels. This work used density functional theory (DFT) calculations combined with microkinetic modeling to provide fundamental insight into the mechanisms of CO2 hydrogenation to hydrocarbons over the iron carbide catalyst, with a focus on understanding the energetically favorable pathways and kinetic controlling factors for selective hydrocarbon production. The crystal orbital Hamiltonian population analysis demonstrated that the transition states associated with O-H bond formation steps within the path are less stable than those of C-H bond formation, accounting for the observed higher barriers in O-H bond formation from DFT. Energetically favorable pathways for CO2 hydrogenation to CH4 and C2H4 products were identified which go through an HCOO intermediate, while the CH* species was found to be the key C1 intermediate over χ-Fe5C2(510). The microkinetic modeling results showed that the relative selectivity to CH4 is higher than C2H4 in CO2 hydrogenation, but the trend is opposite under CO hydrogenation conditions. The major impact on C2 hydrocarbon production is attributed to the high surface coverage of O* from CO2 conversion, which occupies crucial active sites and impedes C-C couplings to C2 species over χ-Fe5C2(510). The coexistence of iron oxide and carbide phases was proposed and the interfacial sites created between the two phases impact CO2 surface chemistry. Adding potassium into the Fe5C2 catalyst accelerates O* removal from the carbide surface, enhances the stability of the iron carbide catalyst, thus, promotes C-C couplings to hydrocarbons.
Collapse
Affiliation(s)
- Haozhi Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Michael J Janik
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research, and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yida Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Wenbin Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
38
|
Poon KC, Wan WY, Su H, Sato H. A review on recent advances in the electrochemical reduction of CO 2 to CO with nano-electrocatalysts. RSC Adv 2022; 12:22703-22721. [PMID: 36105973 PMCID: PMC9376860 DOI: 10.1039/d2ra03341k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
The electrochemical reduction (ECR) of CO2 is a powerful strategy to reduce the world's carbon footprint by converting CO2 to useful products such as CH3OH and CO. Recent techno-economic analysis has found that for the electro-conversion of CO2 to be adapted for practical use, the main products formed from this reaction need to be low-order, such as CO. This review summarizes recent progress in the ECR of CO2 to CO on nano-electrocatalysts (noble, non-noble metals and carbon nanomaterials) and provides the limitations and challenges that each electrocatalyst faces. It discusses the mechanism behind the performance of the electrocatalysts and offers the potential future prospects of the ECR process.
Collapse
Affiliation(s)
- Kee Chun Poon
- School of Mechanical & Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue Singapore 639798
| | - Wei Yang Wan
- School of Mechanical & Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue Singapore 639798
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Hirotaka Sato
- School of Mechanical & Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue Singapore 639798
| |
Collapse
|
39
|
He XY, Liu YZ, Wang SD, Lan X, Li XN, He SG. Multiple CO 2 reduction mediated by heteronuclear metal carbide cluster anions RhTaC 2. Dalton Trans 2022; 51:11491-11498. [PMID: 35833563 DOI: 10.1039/d2dt01612e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Noble metals dispersed on transition-metal carbides exhibit extraordinary activity in CO2 catalytic conversion and bimetallic carbides generated at the interface were proposed to contribute to the observed activity. Heteronuclear metal carbide clusters (HMCCs) that compositionally resemble the bimetallic carbides are suitable models to get a fundamental understanding of the reactivity of the related condensed-phase catalysts, while the reaction of HMCCs with CO2 has not been touched in the gas phase. Herein, benefiting from the newly designed double ion trap reactors, the reaction of laser-ablation generated and mass-selected RhTaC2- clusters with CO2 was studied. The experimental results identified that RhTaC2- can reduce four CO2 molecules consecutively and generate the product RhTaC2O4-. The pivotal roles of Rh-Ta synergy and the C2 ligand in driving CO2 reduction were rationalized by theoretical calculations. The presence of an attached CO unit on the product RhTaC2O4- was evidenced by the collision-induced dissociation experiment, providing a fundamental strategy to alleviate carbon deposition under a CO2 atmosphere at elevated temperatures.
Collapse
Affiliation(s)
- Xing-Yue He
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China.
| | - Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Si-Dun Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China.
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
40
|
Jo S, Cruz L, Shah S, Wasantwisut S, Phan A, Gilliard-AbdulAziz KL. Perspective on Sorption Enhanced Bifunctional Catalysts to Produce Hydrocarbons. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seongbin Jo
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Luz Cruz
- Department of Material Science and Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Soham Shah
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Somchate Wasantwisut
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Annette Phan
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Kandis Leslie Gilliard-AbdulAziz
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
- Department of Material Science and Engineering, University of California−Riverside, Riverside, California92521, United States
| |
Collapse
|
41
|
Rao RG, Blume R, Greiner MT, Liu P, Hansen TW, Dreyer KS, Hibbitts DD, Tessonnier JP. Oxygen-Doped Carbon Supports Modulate the Hydrogenation Activity of Palladium Nanoparticles through Electronic Metal–Support Interactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Radhika G. Rao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | - Raoul Blume
- Max Planck Institute for Chemical Energy Conversion, Heterogeneous Reactions Group, 45470 Mülheim an der Ruhr, Germany
| | - Mark T. Greiner
- Max Planck Institute for Chemical Energy Conversion, Heterogeneous Reactions Group, 45470 Mülheim an der Ruhr, Germany
| | - Pei Liu
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Lyngby 2800, Denmark
| | - Thomas W. Hansen
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Lyngby 2800, Denmark
| | - Kathleen S. Dreyer
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - David D. Hibbitts
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Jean-Philippe Tessonnier
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| |
Collapse
|
42
|
Electrochemical reduction of CO2 at the earth-abundant transition metal-oxides/copper interfaces. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Using XRD extrapolation method to design Ce-Cu-O solid solution catalysts for methanol steam reforming to produce H2: The effect of CuO lattice capacity on the reaction performance. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Ling FWM, Abdulbari HA, Chin SY. Heterogeneous Microfluidic Reactors: A Review and an Insight of Enzymatic Reactions. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fiona W. M. Ling
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Hayder A. Abdulbari
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Sim Yee Chin
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| |
Collapse
|
45
|
Li L, Yang B, Gao B, Wang Y, Zhang L, Ishihara T, Qi W, Guo L. CO2 hydrogenation selectivity shift over In-Co binary oxides catalysts: Catalytic mechanism and structure-property relationship. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63870-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Barrios AJ, Peron DV, Chakkingal A, Dugulan AI, Moldovan S, Nakouri K, Thuriot-Roukos J, Wojcieszak R, Thybaut JW, Virginie M, Khodakov AY. Efficient Promoters and Reaction Paths in the CO 2 Hydrogenation to Light Olefins over Zirconia-Supported Iron Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Alan J. Barrios
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Ghent B-9052, Belgium
| | - Deizi V. Peron
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Anoop Chakkingal
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Ghent B-9052, Belgium
| | - Achim Iulian Dugulan
- Fundamental Aspects of Materials and Energy Group, Delft University of Technology, Mekelweg 15, Delft 2629 JB, Netherlands
| | - Simona Moldovan
- Groupe de Physique des Matériaux, CNRS, Université Normandie & INSA Rouen Avenue de l’Université - BP12, St Etienne du Rouvray 76801, France
| | - Kalthoum Nakouri
- Groupe de Physique des Matériaux, CNRS, Université Normandie & INSA Rouen Avenue de l’Université - BP12, St Etienne du Rouvray 76801, France
| | - Joëlle Thuriot-Roukos
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Robert Wojcieszak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Joris W. Thybaut
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Ghent B-9052, Belgium
| | - Mirella Virginie
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Andrei Y. Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| |
Collapse
|
47
|
Sarabadani Tafreshi S, Ranjbar M, Taghizade N, Panahi SFKS, Jamaati M, de Leeuw NH. A first-principles study of CO2 hydrogenation on Niobium-terminated NbC (111) surface. Chemphyschem 2022; 23:e202100781. [PMID: 35040247 DOI: 10.1002/cphc.202100781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/15/2022] [Indexed: 11/06/2022]
Abstract
As a promising material for the reduction of Greenhouse gas, Transition metal carbides which are highly active in the hydrogenation of CO2 are mainly considered. In this regard, the reaction mechanism of CO2 hydrogenation to useful products on the Nb-terminated NbC (111) surface is investigated by applying density functional theory calculations. The computational results display that formation of CH4 , CH3OH and CO are more favored than other compounds, where CH4 is the dominant product. In addition, the findings from reaction energies reveal that the preferred mechanism for CO2 hydrogenation is thorough HCOOH * where the largest exothermic reaction energy releases during HCOOH * dissociation reaction (2.004eV). The preferred mechanism of CO2 hydrogenation towards CH 4 production is CO2 *→ t,c-COOH *→ HCOOH *→ HCO *→ CH2O *→ CH2OH *→ CH2 *→ CH3 *→ CH4 * where CO2 * → t,c-COOH * → HCOOH * → HCO * → CH2O * → CH2OH * → CH3OH * and CO2 * → t,c-COOH * → CO * are also found as the favored mechanisms for CH3 OH and CO productions thermodynamically, respectively. During the mentioned mechanisms the hydrogenation of CH2O * to CH2OH * has the largest endothermic reaction energy of 1.344 eV. It is also found from the electronic properties calculations that Nb-terminated NbC (111) is a suitable catalyst for CO2 hydrogenation where adsorption and activation of CO2 and also desorption of final products can be easily done on the surface.
Collapse
Affiliation(s)
| | - Mahkameh Ranjbar
- Amirkabir University of Technology, chemistry, IRAN (ISLAMIC REPUBLIC OF)
| | - Narges Taghizade
- Iran University of Science and Technology School of Physics, physics, IRAN (ISLAMIC REPUBLIC OF)
| | - S F K S Panahi
- Iran University of Science and Technology School of Physics, physics, IRAN (ISLAMIC REPUBLIC OF)
| | - Maryam Jamaati
- Iran University of Science and Technology School of Physics, physics, IRAN (ISLAMIC REPUBLIC OF)
| | | |
Collapse
|
48
|
Piñero JJ, Kerkeni B, Viñes F, Bromley ST. Can calculated harmonic vibrational spectra rationalize the structure of TiC-based nanoparticles? Phys Chem Chem Phys 2022; 24:778-785. [PMID: 34908053 DOI: 10.1039/d1cp03406e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoscale titanium carbide (TiC) is widely used in composites and energy applications. In order to design and optimize these systems and to gain a fundamental understanding of these nanomaterials, it is important to understand the atomistic structure of nano-TiC. Cluster beam experiments have provided detailed infrared vibrational spectra of numerous TixCy nanoparticles with well defined masses. However, these spectra have yet to be convincingly assigned to TixCy nanoparticle structures. Herein, using accurate density functional theory based calculations, we perform a systematic survey of likely candidate nanoparticle structures with masses corresponding to those in experiment. We calculate harmonic infrared vibrational spectra for a range of nanoparticles up to 100 atoms in size, with a focus on systems based on removing either four carbon atoms or a single titanium atom from rocksalt-structured stoichiometric TiC nanoparticles. Our calculations clearly show that Ti-deficient nanoparticles are unlikely candidates to explain the experimental spectra as such structures are highly susceptible to C-C bonding, whose characteristic frequencies are not observed in experiment. However, our calculated infrared spectra for C-deficient nanoparticles have some matching features with the experimental spectra but tend to have more complex infrared spectra with more peaks than those obtained from experiment. We suggest that the discrepancy between experiment and theory may be largely due to thermally induced anharmonicities and broadening in the latter nanoparticles, which are not be accounted for in harmonic vibrational calculations.
Collapse
Affiliation(s)
- Juan José Piñero
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Boutheïna Kerkeni
- Département de Physique, Laboratoire de Physique de la Matière Condensée (LPMC), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092, Tunisia.,ISAMM, Université de la Manouba, La Manouba 2010, Tunisia
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Stefan T Bromley
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
49
|
Rossi MA, Vieira LH, Rasteiro LF, Fraga MA, Assaf JM, Assaf EM. Promoting effects of indium doped Cu/CeO 2 catalysts on CO 2 hydrogenation to methanol. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00033d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Combining catalyst modification by indium doping and chemometric optimization, the Cu/CeO2 system showed high selectivity to methanol (99.3%) with no CO formation during CO2 hydrogenation.
Collapse
Affiliation(s)
- Marco A. Rossi
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-Carlense 400, CEP: 13566-590, São Carlos, SP, Brazil
| | - Luiz H. Vieira
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-Carlense 400, CEP: 13566-590, São Carlos, SP, Brazil
- Chemical Engineering Department, São Carlos Federal University, Rod. Washington Luiz, km 235 – SP 310, CEP: 13565-905, São Carlos, SP, Brazil
| | - Letícia F. Rasteiro
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-Carlense 400, CEP: 13566-590, São Carlos, SP, Brazil
| | - Marco A. Fraga
- Instituto Nacional de Tecnologia (INT/MCTIC), Av. Venezuela, 82/518, Saúde, CEP: 20081-312, Rio de Janeiro, RJ, Brazil
| | - José M. Assaf
- Chemical Engineering Department, São Carlos Federal University, Rod. Washington Luiz, km 235 – SP 310, CEP: 13565-905, São Carlos, SP, Brazil
| | - Elisabete M. Assaf
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-Carlense 400, CEP: 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
50
|
Yang B, Wang Y, Li L, Gao B, Zhang L, Guo L. Probing the morphological effects of ReOx/CeO2 catalysts on the CO2 hydrogenation reaction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02096j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The proposed reaction mechanism of different morphological CeO2 supported Re catalysts for CO2 hydrogenation.
Collapse
Affiliation(s)
- Bin Yang
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yifu Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Longtai Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Biao Gao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Lingxia Zhang
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Limin Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|