1
|
Yukuhiro V, Vicente RA, Fernández PS, Cuesta A. Alkaline-Metal Cations Affect Pt Deactivation for the Electrooxidation of Small Organic Molecules by Affecting the Formation of Inactive Pt Oxide. J Am Chem Soc 2024; 146:27745-27754. [PMID: 39324334 PMCID: PMC11467990 DOI: 10.1021/jacs.4c09590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The activity of Pt for the electro-oxidation of several organic molecules changes with the cation of the electrolyte. It has been proposed that the underlying reason behind that effect is the so-called noncovalent interactions between the hydrated cations and adsorbed OH (OHad). However, there is a lack of spectroscopic evidence for this phenomenon, resulting in an incomplete understanding at the microscopic level of these electrochemical processes. Herein, we explore the electro-oxidation of glycerol (EOG) on platinum (Pt) in LiOH, NaOH and KOH using in situ surface-enhanced infrared absorption spectroscopy in the attenuated total reflectance mode (ATR-SEIRAS) and in situ X-ray absorption spectroscopy (XAS). Our results show that the electrolyte cation influences the rate and potential at which adsorbed CO (COad), a catalytic poison, is formed and oxidized. We attribute this to the cation-dependent stability of oxygenated species on the metallic Pt surface and the different intensities of the electric field at the electrode/electrolyte interface. We also demonstrate that the formation of an inactive Pt oxide layer is indirectly also cation-dependent: the formation of this layer is triggered by the cation-dependent oxidative removal of reaction intermediates (for instance, CO). This phenomenon explains the well-known cation-induced differences in the voltammetric profiles, of not just glycerol, but generally of alcohols and polyols.
Collapse
Affiliation(s)
- Victor
Y. Yukuhiro
- Chemistry
Institute, Universidade Estadual de Campinas
(UNICAMP), 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies (CINE), Universidade
Estadual de Campinas, 13083-841 Campinas, São
Paulo, Brazil
| | - Rafael A. Vicente
- Chemistry
Institute, Universidade Estadual de Campinas
(UNICAMP), 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies (CINE), Universidade
Estadual de Campinas, 13083-841 Campinas, São
Paulo, Brazil
| | - Pablo S. Fernández
- Chemistry
Institute, Universidade Estadual de Campinas
(UNICAMP), 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies (CINE), Universidade
Estadual de Campinas, 13083-841 Campinas, São
Paulo, Brazil
| | - Angel Cuesta
- Advanced
Centre for Energy and Sustainability (ACES), School of Natural and
Computing Sciences, University of Aberdeen, AB24 3UE Aberdeen, Scotland, U.K.
- Centre
for Energy Transition, University of Aberdeen,
King’s College, AB24
3FX Aberdeen, Scotland, U.K.
| |
Collapse
|
2
|
Surya C, Lakshminarayana ABV, Ramesh SH, Kunjiappan S, Theivendren P, Santhana Krishna Kumar A, Ammunje DN, Pavadai P. Advancements in breast cancer therapy: The promise of copper nanoparticles. J Trace Elem Med Biol 2024; 86:127526. [PMID: 39298835 DOI: 10.1016/j.jtemb.2024.127526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent cancer among women worldwide and poses significant treatment challenges. Traditional therapies often lead to adverse side effects and resistance, necessitating innovative approaches for effective management. OBJECTIVE This review aims to explore the potential of copper nanoparticles (CuNPs) in enhancing breast cancer therapy through targeted drug delivery, improved imaging, and their antiangiogenic properties. METHODS The review synthesizes existing literature on the efficacy of CuNPs in breast cancer treatment, addressing common challenges in nanotechnology, such as nanoparticle toxicity, scalability, and regulatory hurdles. It proposes a novel hybrid method that combines CuNPs with existing therapeutic modalities to optimize treatment outcomes. RESULTS CuNPs demonstrate the ability to selectively target cancer cells while sparing healthy tissues, leading to improved therapeutic efficacy. Their unique physicochemical properties facilitate efficient biodistribution and enhanced imaging capabilities. Additionally, CuNPs exhibit antiangiogenic activity, which can inhibit tumor growth by preventing the formation of new blood vessels. CONCLUSION The findings suggest that CuNPs represent a promising avenue for advancing breast cancer treatment. By addressing the limitations of current therapies and proposing innovative solutions, this review contributes valuable insights into the future of nanotechnology in oncology.
Collapse
Affiliation(s)
- Chandana Surya
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India
| | | | - Sameera Hammigi Ramesh
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - A Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung City 80424, Taiwan; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India.
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India.
| |
Collapse
|
3
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Zhao X, Cheng H, Chen X, Zhang Q, Li C, Xie J, Marinkovic N, Ma L, Zheng JC, Sasaki K. Multiple Metal-Nitrogen Bonds Synergistically Boosting the Activity and Durability of High-Entropy Alloy Electrocatalysts. J Am Chem Soc 2024; 146:3010-3022. [PMID: 38278519 PMCID: PMC10859931 DOI: 10.1021/jacs.3c08177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
The development of Pt-based catalysts for use in fuel cells that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, we report a nitrogen (N)-doped high-entropy alloy (HEA) electrocatalyst that consists of a Pt-rich shell and a N-doped PtCoFeNiCu core on a carbon support (denoted as N-Pt/HEA/C). The N-Pt/HEA/C catalyst showed a high mass activity of 1.34 A mgPt-1 at 0.9 V for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C and most of the other binary/ternary Pt-based catalysts. The N-Pt/HEA/C catalyst also demonstrated excellent stability in both RDE and membrane electrode assembly (MEA) testing. Using operando X-ray absorption spectroscopy (XAS) measurements and theoretical calculations, we revealed that the enhanced ORR activity of N-Pt/HEA/C originated from the optimized adsorption energy of intermediates, resulting in the tailored electronic structure formed upon N-doping. Furthermore, we showed that the multiple metal-nitrogen bonds formed synergistically improved the corrosion resistance of the 3d transition metals and enhanced the ORR durability.
Collapse
Affiliation(s)
- Xueru Zhao
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hao Cheng
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaobo Chen
- Department
of Mechanical Engineering & Materials Science and Engineering
Program, State University of New York at
Binghamton, Binghamton, New York 13902, United States
| | - Qi Zhang
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Chenzhao Li
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jian Xie
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Nebojsa Marinkovic
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Lu Ma
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Jin-Cheng Zheng
- Department
of Physics and Fujian Provincial Key Laboratory of Theoretical and
Computational Chemistry, Xiamen University, Xiamen 361005, China
- Department
of Physics and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
| | - Kotaro Sasaki
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
5
|
Gao Y, Thakur N, Uchiyama T, Cao W, Yamamoto K, Watanabe T, Kumar M, Sato R, Teranishi T, Imai H, Sakurai Y, Uchimoto Y. Investigating Degradation Mechanisms in PtCo Alloy Catalysts: The Role of Co Content and a Pt-Rich Shell Using Operando High-Energy Resolution Fluorescence Detection X-ray Absorption Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37908070 DOI: 10.1021/acsami.3c11248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Low Pt-based alloy catalysts are regarded as an efficient strategy in achieving high activity for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). However, the desired durability for the low Pt-based catalysts, such as the Pt1Co3 catalyst, has still been considered a great challenge for PEMFCs. In this study, we investigate sub-2.5 nm PtxCoy alloy catalysts with varying Co content and Pt1Co3@Pt core-shell (CS) nanostructure catalysts obtained through a simple displacement reaction. The Pt1Co3@Pt_H catalysts showed a high mass activity (MA) of 1.46 A/mgPt at 0.9 V and 14% MA loss after 10k accelerated degradation test (ADT) cycles, which suggested the improved stability compared with Pt1Co3 catalysts (52% MA loss). To clarify the degradation mechanism, operando high-energy resolution fluorescence detection X-ray absorption spectroscopy (XAS) was applied in addition to conventional advanced measurement techniques, including operando conventional XAS, to analyze the electronic state and structure changes during operation potentials. We found that introducing Co improves the catalysts' activity mainly from the strain effect, but an excessive amount of Co leads to increased Pt-oxidation, which accelerates the degradation of the catalysts. The Pt1Co3@Pt_H catalyst shows high tolerance to Pt-oxidation, benefiting both the stability and activity. Our findings demonstrate an in-depth understanding of the degradation mechanism and the importance of designing PtCo CS nanostructures with optimal Co content for enhanced performance in PEMFCs.
Collapse
Affiliation(s)
- Yunfei Gao
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Neha Thakur
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoki Uchiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Weijie Cao
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kentaro Yamamoto
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiki Watanabe
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mukesh Kumar
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryota Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hideto Imai
- Fuel Cell Cutting-Edge Research Center Technology Research Association, Aomi, Koto, Tokyo 135-0064, Japan
| | - Yoshiharu Sakurai
- Japan Synchrotron Radiation Research Institute (JASRI), Koto, Sayo, Hyogo 679-5198, Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Wei K, Lin H, Zhao X, Zhao Z, Marinkovic N, Morales M, Huang Z, Perlmutter L, Guan H, Harris C, Chi M, Lu G, Sasaki K, Sun S. Au/Pt Bimetallic Nanowires with Stepped Pt Sites for Enhanced C-C Cleavage in C2+ Alcohol Electro-oxidation Reactions. J Am Chem Soc 2023; 145:19076-19085. [PMID: 37606196 DOI: 10.1021/jacs.3c07027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Efficient C-C bond cleavage and oxidation of alcohols to CO2 is the key to developing highly efficient alcohol fuel cells for renewable energy applications. In this work, we report the synthesis of core/shell Au/Pt nanowires (NWs) with stepped Pt clusters deposited along the ultrathin (2.3 nm) stepped Au NWs as an active catalyst to effectively oxidize alcohols to CO2. The catalytic oxidation reaction is dependent on the Au/Pt ratios, and the Au1.0/Pt0.2 NWs have the largest percentage (∼75%) of stepped Au/Pt sites and show the highest activity for ethanol electro-oxidation, reaching an unprecedented 196.9 A/mgPt (32.5 A/mgPt+Au). This NW catalyst is also active in catalyzing the oxidation of other primary alcohols, such as methanol, n-propanol, and ethylene glycol. In situ X-ray absorption spectroscopy and infrared spectroscopy are used to characterize the catalyst structure and to identify key reaction intermediates, providing concrete evidence that the synergy between the low-coordinated Pt sites and the stepped Au NWs is essential to catalyze the alcohol oxidation reaction, which is further supported by DFT calculations that the C-C bond cleavage is indeed enhanced on the undercoordinated Pt-Au surface. Our study provides important evidence that a core/shell structure with stepped core/shell sites is essential to enhance electrochemical oxidation of alcohols and will also be central to understanding electro-oxidation reactions and to the future development of highly efficient direct alcohol fuel cells for renewable energy applications.
Collapse
Affiliation(s)
- Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Honghong Lin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Xueru Zhao
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Nebojsa Marinkovic
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Michael Morales
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Zhennan Huang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Laura Perlmutter
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Huanqin Guan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Cooro Harris
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, United States
| | - Kotaro Sasaki
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
7
|
Zhao W, Xu G, Dong W, Zhang Y, Zhao Z, Qiu L, Dong J. Progress and Perspective for In Situ Studies of Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300550. [PMID: 37097627 DOI: 10.1002/advs.202300550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Indexed: 06/15/2023]
Abstract
Proton exchange membrane fuel cell (PEMFC) is one of the most promising energy conversion devices with high efficiency and zero emission. However, oxygen reduction reaction (ORR) at the cathode is still the dominant limiting factor for the practical development of PEMFC due to its sluggish kinetics and the vulnerability of ORR catalysts under harsh operating conditions. Thus, the development of high-performance ORR catalysts is essential and requires a better understanding of the underlying ORR mechanism and the failure mechanisms of ORR catalysts with in situ characterization techniques. This review starts with the introduction of in situ techniques that have been used in the research of the ORR processes, including the principle of the techniques, the design of the in situ cells, and the application of the techniques. Then the in situ studies of the ORR mechanism as well as the failure mechanisms of ORR catalysts in terms of Pt nanoparticle degradation, Pt oxidation, and poisoning by air contaminants are elaborated. Furthermore, the development of high-performance ORR catalysts with high activity, anti-oxidation ability, and toxic-resistance guided by the aforementioned mechanisms and other in situ studies are outlined. Finally, the prospects and challenges for in situ studies of ORR in the future are proposed.
Collapse
Affiliation(s)
- Wenhui Zhao
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Guangtong Xu
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Wenyan Dong
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Yiwei Zhang
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Zipeng Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Limei Qiu
- Sinopec Research Institute of Petroleum Processing Co., Ltd. , Beijing, 100083, P. R. China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Huang TH, Jiang Y, Peng YH, Tseng YT, Yan C, Chien PC, Wang KY, Chen TY, Wang JH, Wang KW, Dai S. Unique (100) Surface Configuration Enables Promising Oxygen Reduction Performance for Pt 3Co Nanodendrite Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18217-18228. [PMID: 36976826 DOI: 10.1021/acsami.3c00968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Selective exposure of active surfaces of Pt-based electrocatalysts has been demonstrated as an effective strategy to improve Pt utilization and promote oxygen reduction reaction (ORR) activity in fuel cell application. However, challenges remain in stabilizing those active surface structures, which often suffer undesirable degradation and poor durability along with surface passivation, metal dissolution, and agglomeration of Pt-based electrocatalysts. To overcome the aforementioned obstacles, we here demonstrate the unique (100) surface configuration enabling active and stable ORR performance for bimetallic Pt3Co nanodendrite structures. Using elaborate microscopy and spectroscopy characterization, it is revealed that the Co atoms are preferentially segregated and oxidized at the Pt3Co(100) surface. In situ X-ray absorption spectroscopy (XAS) shows that such (100) surface configuration prevents the oxygen chemisorption and oxide formation on active Pt during the ORR process. Thus, the Pt3Co nanodendrite catalyst shows not only a high ORR mass activity of 730 mA/mg at 0.9 V vs RHE, which is 6.6-fold higher than that of the Pt/C, but also impressively high stability with 98% current retention after the acceleration degradation test in acid media for 5000 cycles, far exceeding the Pt or Pt3Co nanoparticles. Density functional theory (DFT) calculation also confirms the lateral and structural effects from the segregated Co and oxides on the Pt3Co(100) surface in reducing the catalyst oxophilicity and the free energy for the formation of an OH intermediate in the ORR.
Collapse
Affiliation(s)
- Tzu-Hsi Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yu-Hsin Peng
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Yao-Tien Tseng
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Che Yan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Cheng Chien
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Kung-Yu Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
9
|
Li H, Pei W, Yang X, Zhou S, Zhao J. Pt overlayer for direct oxidation of CH4 to CH3OH. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
10
|
Single-atom catalysts for proton exchange membrane fuel cell: anode anti-poisoning & characterization technology. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
11
|
Takagaki A, Tsuji Y, Yamasaki T, Kim S, Shishido T, Ishihara T, Yoshizawa K. Low-temperature selective oxidation of methane to methanol over a platinum oxide. Chem Commun (Camb) 2023; 59:286-289. [PMID: 36484256 DOI: 10.1039/d2cc05351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The low-temperature activation of methane is highly important as a reaction that can dissociate the strongest C-H bond and convert it into useful compounds. This study demonstrated that supported platinum oxide was found to activate methane near room temperature and selectively afford methanol in the presence of oxygen.
Collapse
Affiliation(s)
- Atsushi Takagaki
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan.
| | - Tatsuya Yamasaki
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Sun Kim
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan.,Research Centre for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan.,Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Goryo, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Tatsumi Ishihara
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
12
|
Chu T, Rong C, Zhou L, Mao X, Zhang B, Xuan F. Progress and Perspectives of Single-Atom Catalysts for Gas Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206783. [PMID: 36106690 DOI: 10.1002/adma.202206783] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts (SACs) attract extensive attention in the field of heterogeneous catalysis in recent years due to the maximum atom utilization and unique physical and chemical properties. The gas sensing is actually a heterogeneous catalysis process but the SACs are new to this area. Although SACs show huge potential in gas sensing, the SACs gas sensing area currently is still at the infancy stage. This work critically reviews the recent advances and current status of single-atom gas sensing materials. General synthesis routes, characterization methods, and sensing performance indexes are introduced. At the end, the challenges and future prospects on SACs gas sensing are presented from the authors' perspectives. This work is anticipated to provide insights and guideline for the chemical sensing community.
Collapse
Affiliation(s)
- Tianshu Chu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chao Rong
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lei Zhou
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xinyuan Mao
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fuzhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
13
|
Javed H, Knop-Gericke A, Mom RV. Structural Model for Transient Pt Oxidation during Fuel Cell Start-up Using Electrochemical X-ray Photoelectron Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36238-36245. [PMID: 35904796 PMCID: PMC9376923 DOI: 10.1021/acsami.2c09249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Potential spikes during the start-up and shutdown of fuel cells are a major cause of platinum electrocatalyst degradation, which limits the lifetime of the device. The electrochemical oxidation of platinum (Pt) that occurs on the cathode during the potential spikes plays a key role in this degradation process. However, the composition of the oxide species formed as well as their role in catalyst dissolution remains unclear. In this study, we employ a special arrangement of XPS (X-ray photoelectron spectroscopy), in which the platinum electrocatalyst is covered by a graphene spectroscopy window, making the in situ examination of the oxidation/reduction reaction under wet conditions possible. We use this assembly to investigate the change in the oxidation states of Pt within the potential window relevant to fuel cell operation. We show that above 1.1 VRHE (potential vs reversible hydrogen electrode), a mixed Ptδ+/Pt2+/Pt4+ surface oxide is formed, with an average oxidation state that gradually increases as the potential is increased. By comparing a model based on the XPS data to the oxidation charge measured during potential spikes, we show that our description of Pt oxidation is also valid during the transient conditions of fuel cell start-up and shutdown. This is due to the rapid Pt oxidation kinetics during the pulses. As a result of the irreversibility of Pt oxidation, some remnants of oxidized Pt remain at typical fuel cell operating potentials after a pulse.
Collapse
Affiliation(s)
- Hassan Javed
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300
RA, The Netherlands
| | - Axel Knop-Gericke
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der
Ruhr 45413, Germany
| | - Rik V. Mom
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300
RA, The Netherlands
| |
Collapse
|
14
|
Okumura K, Hoshi H, Iiyoshi H, Takaba H. Formation of a Pt-MgO Solid Solution: Analysis by X-ray Absorption Fine Structure Spectroscopy. ACS OMEGA 2022; 7:27458-27468. [PMID: 35967032 PMCID: PMC9366959 DOI: 10.1021/acsomega.2c02486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/19/2022] [Indexed: 05/04/2023]
Abstract
Thermal treatment of Pt nanoparticles or Pt(acac)2 supported on MgO resulted in the formation of a solid solution of Pt-MgO, as evidenced by Pt L3-edge X-ray absorption fine structure spectroscopy. The valence of Pt in the Pt-MgO solid solution was determined to be 4+. A characteristic shrinkage of the Pt-O bond distance was observed in comparison with that of the nearest-neighboring Mg-O bond in MgO, which agreed with the density functional theory (DFT) calculations. The segregation of Pt and MgO proceeded with a further increase in the thermal treatment temperature up to 1273 K. The dispersion of Pt on MgO measured through CO adsorption was much higher than that on Al2O3 or SiO2 owing to the formation of the Pt-MgO solid solution.
Collapse
Affiliation(s)
- Kazu Okumura
- Department
of Applied Chemistry, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji 192-0015, Tokyo, Japan
- . Fax: +81-42-628-4508
| | - Hitomi Hoshi
- Department
of Applied Chemistry, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji 192-0015, Tokyo, Japan
| | - Hikaru Iiyoshi
- Department
of Applied Chemistry, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji 192-0015, Tokyo, Japan
| | - Hiromitsu Takaba
- Department
of Environmental Chemistry and Chemical Engineering, School of Advanced
Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji 192-0015, Tokyo, Japan
| |
Collapse
|
15
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
Bai J, Ke S, Song J, Wang K, Sun C, Zhang J, Dou M. Surface Engineering of Carbon-Supported Platinum as a Route to Electrocatalysts with Superior Durability and Activity for PEMFC Cathodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5287-5297. [PMID: 35072443 DOI: 10.1021/acsami.1c20823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen fuel cells are regarded as a promising new carbon mitigation strategy to realize carbon neutrality. The exploitation of robust and efficient cathode catalysts is thus vital to the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, we demonstrate a facile and scalable surface engineering route to achieve superior durability and high activity of a Pt-based material as a PEMFC cathode catalyst through a controllable liquid-phase reduction approach. The proposed surface engineering strategy by modifying Pt/C reduces the oxygen content on the carbon support and also decreases the surface defects on Pt nanoparticles (NPs), which effectively alleviate the corrosion of carbon and inhibit the detachment, agglomeration, and growth of Pt NPs. The resulting catalyst exhibits superior durability after a 10,000 potential cycling test in an acid electrolyte─outperforming commercial Pt/C. Moreover, the catalyst also demonstrates an improved oxygen reduction reaction (ORR) activity in comparison to commercial Pt/C by virtue of the high content of metallic Pt and the weakened Pt-OH bonding that releases more Pt active sites for ORR catalysis. Most importantly, the developed catalyst shows outstanding PEMFC performance and excellent long-term durability over 50 h of a constant-current test and 100 h of a load-cycling operation. This effective route provides a new avenue for exploiting robust Pt-based catalysts with superior activity in practical applications of PEMFCs.
Collapse
Affiliation(s)
- Jialin Bai
- Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaojie Ke
- Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Song
- State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Limited Company, Beijing 102209, China
| | - Kun Wang
- Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chaoyong Sun
- Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiakun Zhang
- Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meiling Dou
- Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Liu L, Li W, He X, Yang J, Liu N. In Situ/Operando Insights into the Stability and Degradation Mechanisms of Heterogeneous Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104205. [PMID: 34741400 DOI: 10.1002/smll.202104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The further commercialization of renewable energy conversion and storage technologies requires heterogeneous electrocatalysts that meet the exacting durability target. Studies of the stability and degradation mechanisms of electrocatalysts are expected to provide important breakthroughs in stability issues. Accessible in situ/operando techniques performed under realistic reaction conditions are therefore urgently needed to reveal the nature of active center structures and establish links between the structural motifs in a catalyst and its stability properties. This review highlights recent research advances regarding in situ/operando techniques and improves the understanding of the stabilities of advanced heterogeneous electrocatalysts used in a diverse range of electrochemical reactions; it also proposes some degradation mechanisms. The review concludes by offering suggestions for future research.
Collapse
Affiliation(s)
- Lindong Liu
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Zhejiang, 312000, China
| | - Wanting Li
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xianbo He
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jiao Yang
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Nian Liu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
18
|
Kim D, Zhou C, Zhang M, Cargnello M. Voltage cycling process for the electroconversion of biomass-derived polyols. Proc Natl Acad Sci U S A 2021; 118:e2113382118. [PMID: 34615713 PMCID: PMC8522268 DOI: 10.1073/pnas.2113382118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Electrification of chemical reactions is crucial to fundamentally transform our society that is still heavily dependent on fossil resources and unsustainable practices. In addition, electrochemistry-based approaches offer a unique way of catalyzing reactions by the fast and continuous alteration of applied potentials, unlike traditional thermal processes. Here, we show how the continuous cyclic application of electrode potential allows Pt nanoparticles to electrooxidize biomass-derived polyols with turnover frequency improved by orders of magnitude compared with the usual rates at fixed potential conditions. Moreover, secondary alcohol oxidation is enhanced, with a ketoses-to-aldoses ratio increased up to sixfold. The idea has been translated into the construction of a symmetric single-compartment system in a two-electrode configuration. Its operation via voltage cycling demonstrates high-rate sorbitol electrolysis with the formation of H2 as a desired coproduct at operating voltages below 1.4 V. The devised method presents a potential approach to using renewable electricity to drive chemical processes.
Collapse
Affiliation(s)
- Dohyung Kim
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Chengshuang Zhou
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Miao Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Matteo Cargnello
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305;
- SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305
| |
Collapse
|
19
|
Hersbach TJP, Garcia AC, Kroll T, Sokaras D, Koper MTM, Garcia-Esparza AT. Base-Accelerated Degradation of Nanosized Platinum Electrocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas J. P. Hersbach
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Amanda C. Garcia
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Angel T. Garcia-Esparza
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| |
Collapse
|
20
|
Soto-Pérez J, Betancourt LE, Trinidad P, Larios E, Rojas-Pérez A, Quintana G, Sasaki K, Pollock CJ, Debefve LM, Cabrera CR. In Situ X-ray Absorption Spectroscopy of PtNi-Nanowire/Vulcan XC-72R under Oxygen Reduction Reaction in Alkaline Media. ACS OMEGA 2021; 6:17203-17216. [PMID: 34278107 PMCID: PMC8280705 DOI: 10.1021/acsomega.1c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Studying the oxygen reduction reaction (ORR) in the alkaline electrolyte has proven to promote better catalytic responses and accessibility to commercialization. Ni-nanowires (NWs) were synthesized via the solvothermal method and modified with Pt using the spontaneous galvanic displacement method to obtain PtNi-NWs. Carbon Vulcan XC-72R (V) was used as the catalyst support, and they were doped with NH3 to obtain PtNi-NWs/V and PtNi-NWs/V-NH3. Their electrocatalytic response for the ORR was tested and PtNi-NWs/V provided the highest specific activity with logarithmic values of 0.707 and 1.01 (mA/cm2 Pt) at 0.90 and 0.85 V versus reversible hydrogen electrode (RHE), respectively. PtNi-NWs showed the highest half-wave potential (E 1/2 = 0.89 V) at 1600 rpm and 12 μgPt/cm2 in 0.1 M KOH at 25.00 ± 0.01 °C. Additionally, the catalysts followed a four-electron pathway according to the Koutecký-Levich analysis. Moreover, durability experiments demonstrated that the PtNi-NW/V performance loss was like that of commercial Pt/V along 10,000 cycles. Electrochemical ORR in situ X-ray absorption spectroscopy results showed that the Pt L3 edge white line in the PtNi-NW catalysts changed while the electrochemical potential was lowered to negatives values, from 1.0 to 0.3 V versus RHE. The Pt/O region in the in situ Fourier transforms remained the same as the potentials were applied, suggesting an alloy formation between Pt and Ni, and Pt/Pt contracted in the presence of Ni. These results provide a better understanding of PtNi-NWs in alkaline electrolytes, suggesting that they are active catalysts for ORR and can be tuned for fuel cell studies.
Collapse
Affiliation(s)
- Joesene Soto-Pérez
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925-2537, Puerto Rico
| | - Luis E. Betancourt
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Pedro Trinidad
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925-2537, Puerto Rico
| | - Eduardo Larios
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Arnulfo Rojas-Pérez
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925-2537, Puerto Rico
| | - Gerardo Quintana
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925-2537, Puerto Rico
| | - Kotaro Sasaki
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Christopher J. Pollock
- Cornell
High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, New York 14853, United Sates
| | - Louise M. Debefve
- Cornell
High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, New York 14853, United Sates
| | - Carlos R. Cabrera
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925-2537, Puerto Rico
| |
Collapse
|
21
|
Zhang J, Yuan Y, Gao L, Zeng G, Li M, Huang H. Stabilizing Pt-Based Electrocatalysts for Oxygen Reduction Reaction: Fundamental Understanding and Design Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006494. [PMID: 33825222 DOI: 10.1002/adma.202006494] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) with high efficiency and nonpollution characteristics have attracted massive attention from both academic and industrial communities due to their irreplaceable roles in building the future sustainable energy system. However, the stability issue of Pt-based catalysts for oxygen reduction reaction (ORR) has become a central constraint to the widespread deployment of the devices relative to the catalytic activity. This review aims to provide comprehensive insights into how to improve the stability of Pt-based catalysts for ORR. First, the basic physical chemistry behind the catalyst degradation, including the fundamental understandings of carbon corrosion, catalyst dissolution, and particle sintering, is highlighted. After a discussion of advanced characterization techniques for the catalyst degradation, the design strategies for improving the stability of Pt-based catalysts are summarized. Finally, further insights into the remaining challenges and future research directions are also provided.
Collapse
Affiliation(s)
- Jiawei Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yuliang Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Gangming Zeng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
22
|
Li J, Banis MN, Ren Z, Adair KR, Doyle-Davis K, Meira DM, Finfrock YZ, Zhang L, Kong F, Sham TK, Li R, Luo J, Sun X. Unveiling the Nature of Pt Single-Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007245. [PMID: 33605070 DOI: 10.1002/smll.202007245] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Single-atom catalysts (SACs) have attracted significant attention due to their superior catalytic activity and selectivity. However, the nature of active sites of SACs under realistic reaction conditions is ambiguous. In this work, high loading Pt single atoms on graphitic carbon nitride (g-C3 N4 )-derived N-doped carbon nanosheets (Pt1 /NCNS) is achieved through atomic layer deposition. Operando X-ray absorption spectroscopy (XAS) is performed on Pt single atoms and nanoparticles (NPs) in both the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The operando results indicate that the total unoccupied density of states of Pt 5d orbitals of Pt1 atoms is higher than that of Pt NPs under HER condition, and that a stable Pt oxide is formed during ORR on Pt1 /NCNS, which may suppress the adsorption and activation of O2 . This work unveils the nature of Pt single atoms under realistic HER and ORR conditions, providing a deeper understanding for designing advanced SACs.
Collapse
Affiliation(s)
- Junjie Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Mohammad Norouzi Banis
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Zhouhong Ren
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Keegan R Adair
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Kieran Doyle-Davis
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Debora Motta Meira
- CLS @ APS, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
- Science Division, Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Y Zou Finfrock
- CLS @ APS, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
- Science Division, Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Fanpeng Kong
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Ruying Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
23
|
Yang Y, Xiong Y, Zeng R, Lu X, Krumov M, Huang X, Xu W, Wang H, DiSalvo FJ, Brock JD, Muller DA, Abruña HD. Operando Methods in Electrocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04789] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Francis J. DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joel. D. Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Zhao X, Cheng H, Song L, Han L, Zhang R, Kwon G, Ma L, Ehrlich SN, Frenkel AI, Yang J, Sasaki K, Xin HL. Rhombohedral Ordered Intermetallic Nanocatalyst Boosts the Oxygen Reduction Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xueru Zhao
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hao Cheng
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Liang Song
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lili Han
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Rui Zhang
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Gihan Kwon
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N. Ehrlich
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Anatoly I. Frenkel
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jing Yang
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Kotaro Sasaki
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
25
|
Acetonitrile’s Effect on the Efficiency of Ethanol Electrooxidation at a Polycrystalline Pt Electrode in Relation to pH-Dependent Fuel Cell Applications. Catalysts 2020. [DOI: 10.3390/catal10111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present paper reports cyclic voltammetric and a.c. impedance spectroscopy investigations on the influence of the acetonitrile concentration on the kinetics (and individual product’s efficiency) of the ethanol oxidation reaction (EOR), performed on a polycrystalline Pt electrode surface in 0.5 M H2SO4 and 0.1 M NaOH supporting solutions. The kinetics of the EOR were examined at room temperature over the voltammetric potential range, which covers the electrooxidation of surface-adsorbed COAds species, as well as the formation of acetaldehyde molecules. In addition, the time-dependent efficiency of acetate and acetaldehyde formation in relation to the initial acetonitrile content for both acidic and alkaline electrolytes was evaluated by means of spectrophotometric Ultraviolet/ Visible Spectroscopy (UV-VIS) instrumental analysis.
Collapse
|
26
|
Schmies H, Bergmann A, Hornberger E, Drnec J, Wang G, Dionigi F, Kühl S, Sandbeck DJS, Mayrhofer KJJ, Ramani V, Cherevko S, Strasser P. Anisotropy of Pt nanoparticles on carbon- and oxide-support and their structural response to electrochemical oxidation probed by in situ techniques. Phys Chem Chem Phys 2020; 22:22260-22270. [PMID: 33001131 DOI: 10.1039/d0cp03233f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identifying the structural response of nanoparticle-support ensembles to the reaction conditions is essential to determine their structure in the catalytically active state as well as to unravel the possible degradation pathways. In this work, we investigate the (electronic) structure of carbon- and oxide-supported Pt nanoparticles during electrochemical oxidation by in situ X-ray diffraction, absorption spectroscopy as well as the Pt dissolution rate by in situ mass spectrometry. We prepared ellipsoidal Pt nanoparticles by impregnation of the carbon and titanium-based oxide support as well as spherical Pt nanoparticles on an indium-based oxide support by a surfactant-assisted synthesis route. During electrochemical oxidation, we show that the oxide-supported Pt nanoparticles resist (bulk) oxide formation and Pt dissolution. The lattice of smaller Pt nanoparticles exhibits a size-induced lattice contraction in the as-prepared state with respect to bulk Pt but it expands reversibly during electrochemical oxidation. This expansion is suppressed for the Pt nanoparticles with a bulk-like relaxed lattice. We could correlate the formation of d-band vacancies in the metallic Pt with Pt lattice expansion. PtOx formation is strongest for platelet-like nanoparticles and we explain this with a higher fraction of exposed Pt(100) facets. Of all investigated nanoparticle-support ensembles, the structural response of RuO2/TiO2-supported Pt nanoparticles is the most promising with respect to their morphological and structural integrity under electrochemical reaction conditions.
Collapse
Affiliation(s)
- Henrike Schmies
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhao X, Xi C, Zhang R, Song L, Wang C, Spendelow JS, Frenkel AI, Yang J, Xin HL, Sasaki K. High-Performance Nitrogen-Doped Intermetallic PtNi Catalyst for the Oxygen Reduction Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03036] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xueru Zhao
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cong Xi
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Liang Song
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chenyu Wang
- Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jacob S. Spendelow
- Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Anatoly I. Frenkel
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jing Yang
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Kotaro Sasaki
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
28
|
Han J, Bian J, Sun C. Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction. RESEARCH 2020; 2020:9512763. [PMID: 32864623 PMCID: PMC7443255 DOI: 10.34133/2020/9512763] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Oxygen reduction reaction (ORR) plays significant roles in electrochemical energy storage and conversion systems as well as clean synthesis of fine chemicals. However, the ORR process shows sluggish kinetics and requires platinum-group noble metal catalysts to accelerate the reaction. The high cost, rare reservation, and unsatisfied durability significantly impede large-scale commercialization of platinum-based catalysts. Single-atom electrocatalysts (SAECs) featuring with well-defined structure, high intrinsic activity, and maximum atom efficiency have emerged as a novel field in electrocatalytic science since it is promising to substitute expensive platinum-group noble metal catalysts. However, finely fabricating SAECs with uniform and highly dense active sites, fully maximizing the utilization efficiency of active sites, and maintaining the atomically isolated sites as single-atom centers under harsh electrocatalytic conditions remain urgent challenges. In this review, we summarized recent advances of SAECs in synthesis, characterization, oxygen reduction reaction (ORR) performance, and applications in ORR-related H2O2 production, metal-air batteries, and low-temperature fuel cells. Relevant progress on tailoring the coordination structure of isolated metal centers by doping other metals or ligands, enriching the concentration of single-atom sites by increasing metal loadings, and engineering the porosity and electronic structure of the support by optimizing the mass and electron transport are also reviewed. Moreover, general strategies to synthesize SAECs with high metal loadings on practical scale are highlighted, the deep learning algorithm for rational design of SAECs is introduced, and theoretical understanding of active-site structures of SAECs is discussed as well. Perspectives on future directions and remaining challenges of SAECs are presented.
Collapse
Affiliation(s)
- Junxing Han
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Bian
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwen Sun
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Yang X, Zhang Y, Fu Z, Lu Z, Zhang X, Wang Y, Yang Z, Wu R. Tailoring the Electronic Structure of Transition Metals by the V 2C MXene Support: Excellent Oxygen Reduction Performance Triggered by Metal-Support Interactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28206-28216. [PMID: 32463647 DOI: 10.1021/acsami.0c06174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The enhancement of oxygen reduction reaction (ORR) activity can significantly boost the performance of fuel cells. MXene-supported transition metals with strong metal-support interactions (SMSI) are an effective strategy to increase the catalytic activity and durability while decreasing the usage of noble metals. Herein, a series of composites of transition-metal atoms (Ni, Pd, Pt, Cu, Ag, and Au) deposited on V2C MXene are designed as potential catalysts for ORR using density functional theory. The calculation results demonstrate that all the transition metals prefer to form a monolayer on V2C (TMML/V2C) with high thermodynamic stability because of SMSI, in which the Pd, Pt, Ag, and Au monolayers exhibit high chemical stability during the ORR process. PtML/V2C exhibits the highest activity toward ORR with the overpotential down to 0.38 V and the largest energy barrier of 0.48 eV. The excellent catalytic performance originates from the modification of the electronic structure by the V2C support because of SMSI. Our studies elucidate the SMSI between transition-metal atoms and V2C MXene from the atomic level and thus rationally design the ORR catalyst at the cathode of fuel cells to enhance the activity while possessing high stability and less Pt usage.
Collapse
Affiliation(s)
- Xinwei Yang
- School of Physics, Henan Normal University, Xinxiang 453007, China
- College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China
- Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Xinxiang 453007, China
| | - Yanxing Zhang
- School of Physics, Henan Normal University, Xinxiang 453007, China
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Zhaoming Fu
- School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Zhansheng Lu
- School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Xilin Zhang
- School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Yan Wang
- School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Zongxian Yang
- School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, United States
| |
Collapse
|
30
|
Song L, Liang Z, Nagamori K, Igarashi H, Vukmirovic MB, Adzic RR, Sasaki K. Enhancing Oxygen Reduction Performance of Pt Monolayer Catalysts by Pd(111) Nanosheets on WNi Substrates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liang Song
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhixiu Liang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | | | | - Miomir B. Vukmirovic
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Radoslav R. Adzic
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kotaro Sasaki
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
31
|
Khare R, Jentys A, Lercher JA. Development of photochemical and electrochemical cells for operando X-ray absorption spectroscopy during photocatalytic and electrocatalytic reactions. Phys Chem Chem Phys 2020; 22:18891-18901. [PMID: 32350496 DOI: 10.1039/d0cp00654h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemical and electrochemical reactions are highly relevant processes for (i) transforming chemicals (e.g. photoreduction of isopropanol to acetone, electrochemical hydrogenation of benzaldehyde to benzyl alcohol, etc.), and (ii) sustainable energy production (e.g. photoreduction of CO2 to methanol, electrocatalytic H2 evolution reaction). It is therefore of importance to monitor the structural changes and to understand the properties of active sites under photocatalytic and electrocatalytic reaction conditions. Operando X-ray absorption spectroscopy (XAS) provides the means to investigate the nature of active sites under realistic reaction conditions. In this contribution, we describe the successful development of photochemical and electrochemical cells for operando XAS measurements during photocatalytic and electrocatalytic reactions. We have used the operando photochemical cell to monitor the formation of Pt nanoparticles on graphitic carbon nitride nanosheets (g-C3N4-ns) via photodeposition under visible light illumination and observed the formation of highly dispersed Pt nanoparticles with an estimated size of ∼2.5 nm and >60% dispersion. We have also tested this cell to follow the oxidation state of Pt in Pt/TiO2 and Pt/g-C3N4-ns during H2 evolution reaction (HER). We observed that Pt predominantly existed as metallic (reduced) Pt0 species under HER conditions, and that PtOx species were partially reduced from PtIV to Pt0 upon illumination with UV or visible light. The rates of H2 evolution obtained in the photochemical cell (12.1 mmol g-1 h-1 on Pt/TiO2 and 1.01 mmol g-1 h-1 on Pt/g-C3N4-ns) were comparable to that obtained in a standard top-irradiated photoreactor (16.6 mmol g-1 h-1 on Pt/TiO2 and 1.76 mmol g-1 h-1 on Pt/g-C3N4-ns). The operando electrochemical cell was successfully tested to monitor the changes in the structure and oxidation state of Pd in Pd/C electrocatalyst during electrocatalytic hydrogenation (ECH) of benzaldehyde. It was demonstrated that Pd in Pd/C was present in a partially reduced state (∼80% Pd0 and ∼20% PdII) and Pd nanoparticles did not degrade upon the application of an external potential under ECH reaction conditions.
Collapse
Affiliation(s)
- Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching, Germany.
| | - Andreas Jentys
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching, Germany.
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching, Germany. and Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, USA
| |
Collapse
|
32
|
A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat Commun 2019; 10:4585. [PMID: 31594928 PMCID: PMC6783464 DOI: 10.1038/s41467-019-12510-0] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/13/2019] [Indexed: 11/09/2022] Open
Abstract
There is interest in metal single atom catalysts due to their remarkable activity and stability. However, the synthesis of metal single atom catalysts remains somewhat ad hoc, with no universal strategy yet reported that allows their generic synthesis. Herein, we report a universal synthetic strategy that allows the synthesis of transition metal single atom catalysts containing Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Pt or combinations thereof. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure spectroscopy confirm that the transition metal atoms are uniformly dispersed over a carbon black support. The introduced synthetic method allows the production of carbon-supported metal single atom catalysts in large quantities (>1 kg scale) with high metal loadings. A Ni single atom catalyst exhibits outstanding activity for electrochemical reduction of carbon dioxide to carbon monoxide, achieving a 98.9% Faradaic efficiency at -1.2 V.
Collapse
|
33
|
Guerrero-Pérez M, López-Medina R, Rojas-Garcia E, Bañares M. XANES study of the dynamic states of V-based oxide catalysts under partial oxidation reaction conditions. Catal Today 2019. [DOI: 10.1016/j.cattod.2017.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Bergmann A, Roldan Cuenya B. Operando Insights into Nanoparticle Transformations during Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01831] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
35
|
Wang M, Árnadóttir L, Xu ZJ, Feng Z. In Situ X-ray Absorption Spectroscopy Studies of Nanoscale Electrocatalysts. NANO-MICRO LETTERS 2019; 11:47. [PMID: 34138000 PMCID: PMC7770664 DOI: 10.1007/s40820-019-0277-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/13/2019] [Indexed: 05/06/2023]
Abstract
Nanoscale electrocatalysts have exhibited promising activity and stability, improving the kinetics of numerous electrochemical reactions in renewable energy systems such as electrolyzers, fuel cells, and metal-air batteries. Due to the size effect, nano particles with extreme small size have high surface areas, complicated morphology, and various surface terminations, which make them different from their bulk phases and often undergo restructuring during the reactions. These restructured materials are hard to probe by conventional ex-situ characterizations, thus leaving the true reaction centers and/or active sites difficult to determine. Nowadays, in situ techniques, particularly X-ray absorption spectroscopy (XAS), have become an important tool to obtain oxidation states, electronic structure, and local bonding environments, which are critical to investigate the electrocatalysts under real reaction conditions. In this review, we go over the basic principles of XAS and highlight recent applications of in situ XAS in studies of nanoscale electrocatalysts.
Collapse
Affiliation(s)
- Maoyu Wang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Líney Árnadóttir
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
36
|
Electrochemical Adsorption on Pt Nanoparticles in Alkaline Solution Observed Using In Situ High Energy Resolution X-ray Absorption Spectroscopy. NANOMATERIALS 2019; 9:nano9040642. [PMID: 31009992 PMCID: PMC6523608 DOI: 10.3390/nano9040642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023]
Abstract
The oxygen reduction reaction (ORR) on Pt/C in alkaline solution was studied by in situ high energy resolution X-ray absorption spectroscopy. To discuss the X-ray absorption near-edge structure (XANES), this paper introduced the rate of change of the Δμ (RCD), which is an analysis method that is sensitive to surface adsorption. The surface adsorptions as hydrogen (below 0.34 V), superoxide anion (from 0.34 V to 0.74 V), hydroxyl species (from 0.44 V to 0.74 V), atomic oxygen (above 0.74 V), and α-PtO2 (above 0.94 V) were distinguished. It is clarified that the catalytic activity in an alkaline solution is enhanced by the stability of atomic oxygen and the low stability of superoxide anion/peroxide adsorption on the platinum surface.
Collapse
|
37
|
Marinkovic NS, Li M, Adzic RR. Pt-Based Catalysts for Electrochemical Oxidation of Ethanol. Top Curr Chem (Cham) 2019; 377:11. [PMID: 30949779 DOI: 10.1007/s41061-019-0236-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
Despite its attractive features as a power source for direct alcohol fuel cells, utilization of ethanol is still hampered by both fundamental and technical challenges. The rationale behind the slow and incomplete ethanol oxidation reaction (EOR) with low selectivity towards CO2 on most Pt-based catalysts is still far from being understood, and a number of practical problems need to be addressed before an efficient and low-cost catalyst is designed. Some recent achievements towards solving these problems are presented. Pt film electrodes and Pt monolayer (PtML) electrodes on various single crystal substrates showed that EOR follows the partial oxidation pathway without C-C bond cleavage, with acetic acid and acetaldehyde as the final products. The role of the substrate lattice on the catalytic properties of PtML was proven by the choice of appropriate M(111) structure (M = Pd, Ir, Rh, Ru and Au) showing enhanced kinetics when PtML is under tensile strain on Au(111) electrode. Nanostructured electrocatalysts containing Pt-Rh solid solution on SnO2 and Pt monolayer on non-noble metals are shown, optimized, and characterized by in situ methods. Electrochemical, in situ Fourier transform infrared (FTIR) and X-ray absorption spectroscopy (XAS) techniques highlighted the effect of Rh in facilitating C-C bond splitting in the ternary PtRh/SnO2 catalyst. In situ FTIR proved quantitatively the enhancement in the total oxidation pathway to CO2, and in situ XAS confirmed that Pt and Rh form a solid solution that remains in metallic form through a wide range of potentials due to the presence of SnO2. Combination of these findings with density functional theory calculations revealed the EOR reaction pathway and the role of each constituent of the ternary PtRh/SnO2 catalyst. The optimal Pt:Rh:Sn atomic ratio was found by the two in situ techniques. Attempts to replace Rh with cost-effective alternatives for commercially viable catalysts has shown that Ir can also split the C-C bond in ethanol, but the performance of optimized Pt-Rh-SnO2 is still higher than that of the Pt-Ir-SnO2 catalyst.
Collapse
Affiliation(s)
| | - Meng Li
- Brookhaven National Laboratory, Upton, NY, USA
| | | |
Collapse
|
38
|
Jackson C, Smith GT, Markiewicz M, Inwood DW, Leach AS, Whalley PS, Kucernak AR, Russell AE, Kramer D, Levecque PB. Support induced charge transfer effects on electrochemical characteristics of Pt nanoparticle electrocatalysts. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Ding M, Zhong G, Zhao Z, Huang Z, Li M, Shiu HY, Liu Y, Shakir I, Huang Y, Duan X. On-Chip in Situ Monitoring of Competitive Interfacial Anionic Chemisorption as a Descriptor for Oxygen Reduction Kinetics. ACS CENTRAL SCIENCE 2018; 4:590-599. [PMID: 29806005 PMCID: PMC5968516 DOI: 10.1021/acscentsci.8b00082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Indexed: 05/05/2023]
Abstract
The development of future sustainable energy technologies relies critically on our understanding of electrocatalytic reactions occurring at the electrode-electrolyte interfaces, and the identification of key reaction promoters and inhibitors. Here we present a systematic in situ nanoelectronic measurement of anionic surface adsorptions (sulfates, halides, and cyanides) on ultrathin platinum nanowires during active electrochemical processes, probing their competitive adsorption behavior with oxygenated species and correlating them to the electrokinetics of the oxygen reduction reaction (ORR). The competitive anionic adsorption features obtained from our studies provide fundamental insight into the surface poisoning of Pt-catalyzed ORR kinetics by various anionic species. Particularly, the unique nanoelectronic approach enables highly sensitive characterization of anionic adsorption and opens an efficient pathway to address the practical poisoning issue (at trace level contaminations) from a fundamental perspective. Through the identified nanoelectronic indicators, we further demonstrate that rationally designed competitive anionic adsorption may provide improved poisoning resistance, leading to performance (activity and lifetime) enhancement of energy conversion devices.
Collapse
Affiliation(s)
- Mengning Ding
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Guangyan Zhong
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Zipeng Zhao
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Zhihong Huang
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Mufan Li
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Hui-Ying Shiu
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Yuan Liu
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Imran Shakir
- Sustainable
Energy Technologies Centre, College of Engineering, King Saud University, Riyadh 11421, Kingdom of Saudi Arabia
| | - Yu Huang
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
- (Y.H.) E-mail:
| | - Xiangfeng Duan
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
- (X.D.) E-mail:
| |
Collapse
|
40
|
Li L, Wong SS. Ultrathin Metallic Nanowire-Based Architectures as High-Performing Electrocatalysts. ACS OMEGA 2018; 3:3294-3313. [PMID: 31458586 PMCID: PMC6641357 DOI: 10.1021/acsomega.8b00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 05/24/2023]
Abstract
Fuel cells (FCs) convert chemical energy into electricity through electrochemical reactions. They maintain desirable functional advantages that render them as attractive candidates for renewable energy alternatives. However, the high cost and general scarcity of conventional FC catalysts largely limit the ubiquitous application of this device configuration. For example, under current consumption requirements, there is an insufficient global reserve of Pt to provide for the needs of an effective FC for every car produced. Therefore, it is absolutely necessary in the future to replace Pt either completely or in part with far more plentiful, abundant, cheaper, and potentially less toxic first row transition metals, because the high cost-to-benefit ratio of conventional catalysts is and will continue to be a major limiting factor preventing mass commercialization. We and other groups have explored a number of nanowire-based catalytic architectures, which are either Pt-free or with reduced Pt content, as an energy efficient solution with improved performance metrics versus conventional, currently commercially available Pt nanoparticles that are already well established in the community. Specifically, in this Perspective, we highlight strategies aimed at the rational modification of not only the physical structure but also the chemical composition as a means of developing superior electrocatalysts for a number of small-molecule-based anodic oxidation and cathodic reduction reactions, which underlie the overall FC behavior. In particular, we focus on efforts to precisely, synergistically, and simultaneously tune not only the size, morphology, architectural motif, surface chemistry, and chemical composition of the as-generated catalysts but also the nature of the underlying support so as to controllably improve performance metrics of the hydrogen oxidation reaction, the methanol oxidation reaction, the ethanol oxidation reaction, and the formic acid oxidation reaction, in addition to the oxygen reduction reaction.
Collapse
|
41
|
Jasim AM, Hoff SE, Xing Y. Enhancing methanol electrooxidation activity using double oxide catalyst support of tin oxide clusters on doped titanium dioxides. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Miyashita S, Wakisaka M, Iiyama A, Uchida H. Analysis of the Surface Oxidation Process on Pt Nanoparticles on a Glassy Carbon Electrode by Angle-Resolved, Grazing-Incidence X-ray Photoelectron Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8877-8882. [PMID: 28825832 DOI: 10.1021/acs.langmuir.7b01446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have analyzed the surface oxidation process of Pt nanoparticles that were uniformly dispersed on a glassy carbon electrode (Pt/GC), which was adopted as a model of a practical Pt/C catalyst for fuel cells, in N2-purged 0.1 M HF solution by using angle-resolved, grazing-incidence X-ray photoelectron spectroscopy combined with an electrochemical cell (EC-ARGIXPS). Positive shifts in the binding energies of Pt 4f spectra were clearly observed for the surface oxidation of Pt nanoparticles at potentials E > 0.7 V vs RHE, followed by a bulk oxidation of Pt to form Pt(II) at E > 1.1 V. Three types of oxygen species (H2Oad, OHad, and Oad) were identified in the O 1s spectra. It was found for the first time that the surface oxidation process of the Pt/GC electrode at E < ca. 0.8 V (OHad formation) is similar to that of a Pt(111) single-crystal electrode, whereas that in the high potential region (Oad formation) resembles that of a Pt(110) surface or polycrystalline Pt film.
Collapse
Affiliation(s)
| | | | | | - Hiroyuki Uchida
- Clean Energy Research Center, University of Yamanashi , 4 Takeda, Kofu 400-8510, Japan
| |
Collapse
|
43
|
Matsui H, Ishiguro N, Uruga T, Sekizawa O, Higashi K, Maejima N, Tada M. Operando 3D Visualization of Migration and Degradation of a Platinum Cathode Catalyst in a Polymer Electrolyte Fuel Cell. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201703940] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hirosuke Matsui
- Department of Chemistry; Graduate School of Science & Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS); Nagoya University; Furo, Chikusa, Nagoya Aichi 464-8602 Japan
| | | | - Tomoya Uruga
- Innovation Research Center for Fuel Cells; The University of Electro-Communications; Chofu Tokyo 182-8585 Japan
- Japan Synchrotron Radiation Research Center; SPring-8; Koto, Sayo Hyogo 679-5198 Japan
| | - Oki Sekizawa
- Innovation Research Center for Fuel Cells; The University of Electro-Communications; Chofu Tokyo 182-8585 Japan
- Japan Synchrotron Radiation Research Center; SPring-8; Koto, Sayo Hyogo 679-5198 Japan
| | - Kotaro Higashi
- Innovation Research Center for Fuel Cells; The University of Electro-Communications; Chofu Tokyo 182-8585 Japan
| | - Naoyuki Maejima
- Department of Chemistry; Graduate School of Science & Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS); Nagoya University; Furo, Chikusa, Nagoya Aichi 464-8602 Japan
| | - Mizuki Tada
- Department of Chemistry; Graduate School of Science & Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS); Nagoya University; Furo, Chikusa, Nagoya Aichi 464-8602 Japan
- RIKEN SPring-8 Center; Koto, Sayo Hyogo 679-5198 Japan
| |
Collapse
|
44
|
Matsui H, Ishiguro N, Uruga T, Sekizawa O, Higashi K, Maejima N, Tada M. Operando 3D Visualization of Migration and Degradation of a Platinum Cathode Catalyst in a Polymer Electrolyte Fuel Cell. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hirosuke Matsui
- Department of Chemistry; Graduate School of Science & Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS); Nagoya University; Furo, Chikusa, Nagoya Aichi 464-8602 Japan
| | | | - Tomoya Uruga
- Innovation Research Center for Fuel Cells; The University of Electro-Communications; Chofu Tokyo 182-8585 Japan
- Japan Synchrotron Radiation Research Center; SPring-8; Koto, Sayo Hyogo 679-5198 Japan
| | - Oki Sekizawa
- Innovation Research Center for Fuel Cells; The University of Electro-Communications; Chofu Tokyo 182-8585 Japan
- Japan Synchrotron Radiation Research Center; SPring-8; Koto, Sayo Hyogo 679-5198 Japan
| | - Kotaro Higashi
- Innovation Research Center for Fuel Cells; The University of Electro-Communications; Chofu Tokyo 182-8585 Japan
| | - Naoyuki Maejima
- Department of Chemistry; Graduate School of Science & Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS); Nagoya University; Furo, Chikusa, Nagoya Aichi 464-8602 Japan
| | - Mizuki Tada
- Department of Chemistry; Graduate School of Science & Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS); Nagoya University; Furo, Chikusa, Nagoya Aichi 464-8602 Japan
- RIKEN SPring-8 Center; Koto, Sayo Hyogo 679-5198 Japan
| |
Collapse
|
45
|
Young MJ, Bedford NM, Jiang N, Lin D, Dai L. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:787-795. [PMID: 28664886 DOI: 10.1107/s1600577517006282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically for in situ high-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Z cell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2 under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2 diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.
Collapse
Affiliation(s)
- Matthias J Young
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Nicholas M Bedford
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Naisheng Jiang
- Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Deqing Lin
- Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Liming Dai
- Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
46
|
|
47
|
Drnec J, Ruge M, Reikowski F, Rahn B, Carlà F, Felici R, Stettner J, Magnussen OM, Harrington DA. Initial stages of Pt(111) electrooxidation: dynamic and structural studies by surface X-ray diffraction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Takahashi S, Takahashi N, Todoroki N, Wadayama T. Dealloying of Nitrogen-Introduced Pt-Co Alloy Nanoparticles: Preferential Core-Shell Formation with Enhanced Activity for Oxygen Reduction Reaction. ACS OMEGA 2016; 1:1247-1252. [PMID: 31457193 PMCID: PMC6640784 DOI: 10.1021/acsomega.6b00412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 06/07/2023]
Abstract
Voltammetric dealloying is a typical method to synthesize Pt-shell/less-noble metal (M) alloy core nanoparticles (NPs) toward the oxygen reduction reaction (ORR). The pristine nanostructures of the Pt-M alloy NPs should determine the ORR activity of the dealloyed NPs. In this study, we investigated the voltammetric dealloying behavior of the Pt-Co and nitrogen-introduced Pt-Co alloy NPs generated by synchronous arc-plasma deposition of Pt and Co. The results showed that the dealloying behavior is sensitive to cobalt nitride in the pristine NPs, leading to the preferential generation of a Pt-rich shell/Pt-Co alloy core architecture having enhanced ORR activity.
Collapse
|
49
|
Real-Time Optical Monitoring of Pt Catalyst Under the Potentiodynamic Conditions. Sci Rep 2016; 6:38847. [PMID: 27934945 PMCID: PMC5146959 DOI: 10.1038/srep38847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/11/2016] [Indexed: 11/08/2022] Open
Abstract
In situ monitoring of electrode materials reveals detailed physicochemical transition in electrochemical device. The key challenge is to explore the localized features of electrode surfaces, since the performance of an electrochemical device is determined by the summation of local architecture of the electrode material. Adaptive in situ techniques have been developed for numerous investigations; however, they require restricted measurement environments and provide limited information, which has impeded their widespread application. In this study, we realised an optics-based electrochemical in situ monitoring system by combining a dark-field micro/spectroscopy with an electrochemical workstation to investigate the physicochemical behaviours of Pt catalyst. We found that the localized plasmonic trait of a Pt-decorated Au nanoparticle as a model system varied in terms of its intensity and wavelength during the iterations of a cyclic voltammetry test. Furthermore, we show that morphological and compositional changes of the Pt catalyst can be traced in real time using changes in quantified plasmonic characteristics, which is a distinct advantage over the conventional electrochemistry-based in situ monitoring systems. These results indicate the substantial promise of online operando observation in a wide range of electrical energy conversion systems and electrochemical sensing areas.
Collapse
|
50
|
|