• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4603663)   Today's Articles (4915)   Subscriber (49370)
For: Zhu M, Wachs IE. Determining Number of Active Sites and TOF for the High-Temperature Water Gas Shift Reaction by Iron Oxide-Based Catalysts. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02961] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Yalcin O, Sourav S, Wachs IE. Design of Cr-Free Promoted Copper-Iron Oxide-Based High-Temperature Water-Gas Shift Catalysts. ACS Catal 2023;13:12681-12691. [PMID: 37822859 PMCID: PMC10563126 DOI: 10.1021/acscatal.3c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/19/2023] [Indexed: 10/13/2023]
2
Zhao J, Bai Y, Li Z, Liu J, Wang W, Wang P, Yang B, Shi R, Waterhouse GIN, Wen XD, Dai Q, Zhang T. Plasmonic Cu Nanoparticles for the Low-temperature Photo-driven Water-gas Shift Reaction. Angew Chem Int Ed Engl 2023;62:e202219299. [PMID: 36734471 DOI: 10.1002/anie.202219299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
3
Influence of oxygen vacancies of CeO2 on reverse water gas shift reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
4
Chen Y, Lin J, Wang X. Noble-metal based single-atom catalysts for the water-gas shift reaction. Chem Commun (Camb) 2021;58:208-222. [PMID: 34878466 DOI: 10.1039/d1cc04051k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
5
Gu M, Dai S, Qiu R, Ford ME, Cao C, Wachs IE, Zhu M. Structure–Activity Relationships of Copper- and Potassium-Modified Iron Oxide Catalysts during Reverse Water–Gas Shift Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03792] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
6
Tian P, Gu M, Qiu R, Yang Z, Xuan F, Zhu M. Tunable Carbon Dioxide Activation Pathway over Iron Oxide Catalysts: Effects of Potassium. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
7
Kiani D, Sourav S, Tang Y, Baltrusaitis J, Wachs IE. Methane activation by ZSM-5-supported transition metal centers. Chem Soc Rev 2021;50:1251-1268. [PMID: 33284308 DOI: 10.1039/d0cs01016b] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
8
Damma D, Jampaiah D, Welton A, Boolchand P, Arvanitis A, Dong J, Smirniotis PG. Effect of Nb modification on the structural and catalytic property of Fe/Nb/M (M = Mn, Co, Ni, and Cu) catalyst for high temperature water-gas shift reaction. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
9
Hongmanorom P, Ashok J, Das S, Dewangan N, Bian Z, Mitchell G, Xi S, Borgna A, Kawi S. Zr–Ce-incorporated Ni/SBA-15 catalyst for high-temperature water gas shift reaction: Methane suppression by incorporated Zr and Ce. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
10
Zhu M, Tian P, Ford ME, Chen J, Xu J, Han YF, Wachs IE. Nature of Reactive Oxygen Intermediates on Copper-Promoted Iron–Chromium Oxide Catalysts during CO2 Activation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01311] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Cr-Free, Cu Promoted Fe Oxide-Based Catalysts for High-Temperature Water-Gas Shift (HT-WGS) Reaction. Catalysts 2020. [DOI: 10.3390/catal10030305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
12
Zhu M, Tian P, Chen J, Ford ME, Xu J, Wachs IE, Han Y. Activation and deactivation of the commercial‐type CuO–Cr 2 O 3 –Fe 2 O 3 high temperature shift catalyst. AIChE J 2019. [DOI: 10.1002/aic.16846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
13
Pu T, Tian H, Ford ME, Rangarajan S, Wachs IE. Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03443] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
14
Cao Y, Peng X, Tan Z, Liu Y, Wang X, Zhao W, Jiang L. Structural Evolution of Active Entities on Co3O4/CeO2 Catalyst during Water Gas Shift Reaction. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
15
Zhu M, Tian P, Kurtz R, Lunkenbein T, Xu J, Schlögl R, Wachs IE, Han Y. Strong Metal–Support Interactions between Copper and Iron Oxide during the High‐Temperature Water‐Gas Shift Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
16
Zhu M, Tian P, Kurtz R, Lunkenbein T, Xu J, Schlögl R, Wachs IE, Han YF. Strong Metal-Support Interactions between Copper and Iron Oxide during the High-Temperature Water-Gas Shift Reaction. Angew Chem Int Ed Engl 2019;58:9083-9087. [PMID: 31074080 DOI: 10.1002/anie.201903298] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/16/2019] [Indexed: 11/09/2022]
17
Polo-Garzon F, Bao Z, Zhang X, Huang W, Wu Z. Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01097] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
18
Salama ES, Roh HS, Dev S, Khan MA, Abou-Shanab RAI, Chang SW, Jeon BH. Algae as a green technology for heavy metals removal from various wastewater. World J Microbiol Biotechnol 2019;35:75. [DOI: 10.1007/s11274-019-2648-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/24/2019] [Indexed: 12/21/2022]
19
Polo-Garzon F, Fung V, Nguyen L, Tang Y, Tao F, Cheng Y, Daemen LL, Ramirez-Cuesta AJ, Foo GS, Zhu M, Wachs IE, Jiang DE, Wu Z. Elucidation of the Reaction Mechanism for High-Temperature Water Gas Shift over an Industrial-Type Copper–Chromium–Iron Oxide Catalyst. J Am Chem Soc 2019;141:7990-7999. [DOI: 10.1021/jacs.9b03516] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
20
Recent advances in iron-based high-temperature water-gas shift catalysis for hydrogen production. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
21
Zhu M, Wachs IE. A perspective on chromium-Free iron oxide-based catalysts for high temperature water-gas shift reaction. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.08.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
22
Jha A, Lee YL, Jang WJ, Shim JO, Jeon KW, Na HS, Kim HM, Roh HS, Jeong DW, Jeon SG, Na JG, Yoon WL. Effect of the redox properties of support oxide over cobalt-based catalysts in high temperature water-gas shift reaction. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2016.12.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
23
Keturakis CJ, Zhu M, Gibson EK, Daturi M, Tao F, Frenkel AI, Wachs IE. Dynamics of CrO3–Fe2O3 Catalysts during the High-Temperature Water-Gas Shift Reaction: Molecular Structures and Reactivity. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01281] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
24
Zhu M, Rocha TCR, Lunkenbein T, Knop-Gericke A, Schlögl R, Wachs IE. Promotion Mechanisms of Iron Oxide-Based High Temperature Water–Gas Shift Catalysts by Chromium and Copper. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00698] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
25
Zhu M, Wachs IE. Resolving the Reaction Mechanism for H2 Formation from High-Temperature Water–Gas Shift by Chromium–Iron Oxide Catalysts. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00659] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA