1
|
Pulido-Díaz IT, Martínez D, Salas-Martin KP, Portales-Martínez B, Agustin D, Reina A, Guerrero-Ríos I. Biomass-derived substrate hydrogenation over rhodium nanoparticles supported on functionalized mesoporous silica. NANOSCALE 2024; 16:22216-22229. [PMID: 39555900 DOI: 10.1039/d4nr02579b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The use of supported rhodium nanoparticles (RhNPs) is gaining attention due to the drive for better catalyst performance and sustainability. Silica-based supports are promising for RhNP immobilization because of their thermal and chemical stability. Functionalizing silica allows for the design of catalysts with improved activity for biomass transformations. In this study, we synthesized rhodium nanoparticles (RhNPs) supported on N-functionalized silica-based materials, utilizing SBA-15 as the support and functionalizing it with either nicotinamide or an imidazolium-based ionic liquid. Solid-state 29Si and 13C NMR experiments confirmed successful ligand anchoring onto the silica surface. RhNPs@SBA-15-Imz[NTf2] and RhNPs@SBA-15-NIC were efficiently prepared and extensively characterized, revealing small, spherical, and well-dispersed fcc Rh nanoparticles on the support surface, confirmed by XPS analyses detecting metallic rhodium, Rh(I), and Rh(III) species. The catalytic performance of these materials is assessed in the hydrogenation of biomass-derived substrates, including furfural, levulinic acid, terpenes, vanillin, and eugenol, among others, underscoring their potential in sustainable chemical transformations. The nanocatalysts demonstrated excellent recyclability and resistance to metal leaching over multiple cycles. The study shows that neutral and ionic silica grafting fragments differently stabilize RhNPs, affecting their morphology, size, and interaction with silanol groups, which impacts their catalytic activity.
Collapse
Affiliation(s)
- Israel T Pulido-Díaz
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination (LCC), Université de Toulouse, UPS, INPT, 205, route de Narbonne, 31077 Toulouse, France
| | - Draco Martínez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| | - Karla P Salas-Martin
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| | - Benjamín Portales-Martínez
- CONACYT, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Laboratorio Nacional de Conversión y Almacenamiento de Energía, Instituto Politécnico Nacional, Calzada Legaría 694, Col. Irrigación, Ciudad de México, 11500, Mexico
| | - Dominique Agustin
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination (LCC), Université de Toulouse, UPS, INPT, 205, route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, IUT P. Sabatier, Département de Chimie, Av. G. Pompidou, BP 20258, 81104 Castres CEDEX, France
| | - Antonio Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| | - Itzel Guerrero-Ríos
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| |
Collapse
|
2
|
Wang XG, Ajisafe MP, Fayad E, Katouah HA, Qin HL. A protocol for hydrogenation of aldehydes and ketones to alcohols in aqueous media at room temperature in high yields and purity. Org Biomol Chem 2024; 22:5325-5332. [PMID: 38874178 DOI: 10.1039/d4ob00798k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
In this paper, the hydrogenation of aldehydes and ketones using the RANEY® nickel catalyst was successfully applied for the synthesis of alcohol compounds without additional column chromatographic purification. This synthetic strategy features a wide range of substrates, excellent atom economy, high chemical discrimination and the use of a ligand-free catalytic system. Reactions were performed at room temperature in water providing alcohols in high yields and purity.
Collapse
Affiliation(s)
- Xiao-Ge Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Monday Peter Ajisafe
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hanadi A Katouah
- Chemistry Department, College of Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
3
|
Zenner J, Tran K, Kang L, Kinzel NW, Werlé C, DeBeer S, Bordet A, Leitner W. Synthesis, Characterization, and Catalytic Application of Colloidal and Supported Manganese Nanoparticles. Chemistry 2024; 30:e202304228. [PMID: 38415315 DOI: 10.1002/chem.202304228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Colloidal and supported manganese nanoparticles were synthesized following an organometallic approach and applied in the catalytic transfer hydrogenation (CTH) of aldehydes and ketones. Reaction parameters for the preparation of colloidal nanoparticles (NPs) were optimized to yield small (2-2.5 nm) and well-dispersed NPs. Manganese NPs were further immobilized on an imidazolium-based supported ionic phase (SILP) and characterized to evaluate NP size, metal loading, and oxidation states. Oxidation of the Mn NPs by the support was observed resulting in an average formal oxidation state of +2.5. The MnOx@SILP material showed promising performance in the CTH of aldehydes and ketones using 2-propanol as a hydrogen donor, outperforming previously reported Mn NPs-based CTH catalysts in terms of metal loading-normalized turnover numbers. Interestingly, MnOx@SILP were found to lose activity upon air exposure, which correlates with an additional increase in the average oxidation state of Mn as revealed by X-ray absorption spectroscopic studies.
Collapse
Affiliation(s)
- Johannes Zenner
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Kelly Tran
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Liqun Kang
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim, Germany
| | - Niklas W Kinzel
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
4
|
Levin N, Goclik L, Walschus H, Antil N, Bordet A, Leitner W. Decarboxylation and Tandem Reduction/Decarboxylation Pathways to Substituted Phenols from Aromatic Carboxylic Acids Using Bimetallic Nanoparticles on Supported Ionic Liquid Phases as Multifunctional Catalysts. J Am Chem Soc 2023; 145:22845-22854. [PMID: 37815193 PMCID: PMC10591467 DOI: 10.1021/jacs.3c09290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 10/11/2023]
Abstract
Valuable substituted phenols are accessible via the selective decarboxylation of hydroxybenzoic acid derivatives using multifunctional catalysts composed of bimetallic iron-ruthenium nanoparticles immobilized on an amine-functionalized supported ionic liquid phase (Fe25Ru75@SILP+IL-NEt2). The individual components of the catalytic system are assembled using a molecular approach to bring metal and amine sites into close contact on the support material, providing high stability and high decarboxylation activity. Operating under a hydrogen atmosphere was found to be essential to achieve high selectivity and yields. As the catalyst materials enable also the selective hydrogenation and hydrodeoxygenation of various additional functional groups (i.e., formyl, acyl, and nitro substituents), direct access to the corresponding phenols can be achieved via integrated tandem reactions. The approach opens versatile synthetic pathways for the production of valuable phenols from a wide range of readily available substrates, including compounds derived from lignocellulosic biomass.
Collapse
Affiliation(s)
- Natalia Levin
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Lisa Goclik
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Henrik Walschus
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Neha Antil
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Alexis Bordet
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
5
|
Kalsi D, Louis Anandaraj SJ, Durai M, Weidenthaler C, Emondts M, Nolan SP, Bordet A, Leitner W. One-Pot Multicomponent Synthesis of Allyl and Alkylamines Using a Catalytic System Composed of Ruthenium Nanoparticles on Copper N-Heterocyclic Carbene-Modified Silica. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Deepti Kalsi
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Savarithai J. Louis Anandaraj
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Manisha Durai
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
6
|
Bimetallic MxRu100-x Nanoparticles (M = Fe, Co) on Supported Ionic Liquid Phases (MxRu100-x@SILP) as Hydrogenation Catalysts: Influence of M and M:Ru ratio on Activity and Selectivity. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Doherty S, Knight JG, Backhouse T, Tran TST, Paterson R, Stahl F, Alharbi HY, Chamberlain TW, Bourne RA, Stones R, Griffiths A, White JP, Aslam Z, Hardare C, Daly H, Hart J, Temperton RH, O'Shea JN, Rees NH. Highly efficient and selective aqueous phase hydrogenation of aryl ketones, aldehydes, furfural and levulinic acid and its ethyl ester catalyzed by phosphine oxide-decorated polymer immobilized ionic liquid-stabilized ruthenium nanoparticles. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00205a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phosphine oxide-decorated polymer immobilized ionic liquid stabilized RuNPs catalyse the hydrogenation of aryl ketones with remarkable selectivity for the CO bond, complete hydrogenation to the cyclohexylalcohol and hydrogenation of levulinic acid to γ-valerolactone.
Collapse
Affiliation(s)
- S. Doherty
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - J. G. Knight
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - T. Backhouse
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - T. S. T. Tran
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - R. Paterson
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - F. Stahl
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - H. Y. Alharbi
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - T. W. Chamberlain
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - R. A. Bourne
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - R. Stones
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - A. Griffiths
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - J. P. White
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - Z. Aslam
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - C. Hardare
- School of Chemical Engineering and Analytical Sciences, The University of Manchester, The Mill, Sackville Street Campus, Manchester, M13 9PL, UK
| | - H. Daly
- School of Chemical Engineering and Analytical Sciences, The University of Manchester, The Mill, Sackville Street Campus, Manchester, M13 9PL, UK
| | - J. Hart
- School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - R. H. Temperton
- School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - J. N. O'Shea
- School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - N. H. Rees
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| |
Collapse
|
8
|
Matsuda S, Masuda S, Takano S, Ichikuni N, Tsukuda T. Synergistic Effect in Ir- or Pt-Doped Ru Nanoparticles: Catalytic Hydrogenation of Carbonyl Compounds under Ambient Temperature and H 2 Pressure. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shotaro Matsuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuyuki Ichikuni
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoicho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
9
|
Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO 2-responsive support. Nat Chem 2021; 13:916-922. [PMID: 34226704 PMCID: PMC8440215 DOI: 10.1038/s41557-021-00735-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
With the advent of renewable carbon resources, multifunctional catalysts are becoming essential to hydrogenate selectively biomass-derived substrates and intermediates. However, the development of adaptive catalytic systems, that is, with reversibly adjustable reactivity, able to cope with the intermittence of renewable resources remains a challenge. Here, we report the preparation of a catalytic system designed to respond adaptively to feed gas composition in hydrogenation reactions. Ruthenium nanoparticles immobilized on amine-functionalized polymer-grafted silica act as active and stable catalysts for the hydrogenation of biomass-derived furfural acetone and related substrates. Hydrogenation of the carbonyl group is selectively switched on or off if pure H2 or a H2/CO2 mixture is used, respectively. The formation of alkylammonium formate species by the catalytic reaction of CO2 and H2 at the amine-functionalized support has been identified as the most likely molecular trigger for the selectivity switch. As this reaction is fully reversible, the catalyst performance responds almost in real time to the feed gas composition. ![]()
A multifunctional catalytic system composed of ruthenium nanoparticles immobilized on a silica surface decorated with an amine-functionalized polymer is used for the hydrogenation of biomass-derived furfural acetone and related substrates. The presence or absence of CO2 in the gas feed alters the selectivity of the hydrogenation—producing either a ketone or a saturated alcohol, respectively—in a fully reversible manner.
Collapse
|
10
|
Bordet A, Leitner W. Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis. Acc Chem Res 2021; 54:2144-2157. [PMID: 33822579 PMCID: PMC8154204 DOI: 10.1021/acs.accounts.1c00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 01/08/2023]
Abstract
The synthesis and use of supported metal nanoparticle catalysts have a long-standing tradition in catalysis, typically associated with the field of heterogeneous catalysis. More recently, the development and understanding of catalytic systems composed of metal nanoparticles (NPs) that are synthesized from organometallic precursors on molecularly modified surfaces (MMSs) have opened a conceptually new approach to the design of multifunctional catalysts (NPs@MMS). These complex yet fascinating materials bridge molecular ("homogeneous") and material ("heterogeneous") approaches to catalysis and provide access to catalytic systems with tailor-made reactivity through judicious combinations of supports, molecular modifiers, and nanoparticle precursors. A particularly promising field of application is the controlled activation and transfer of dihydrogen, enabling highly selective hydrogenation and hydrogenolysis reactions as relevant for the conversion of biogenic feedstocks and platform chemicals as well as for novel synthetic pathways to fine chemicals and even pharmaceuticals. Consequently, the topic offers an emerging field for interdisciplinary research activities involving organometallic chemists, material scientists, synthetic organic chemists, and catalysis experts.This Account will provide a brief overview of the historical background and cover examples from the most recent developments in the field. A coherent account on the methodological and experimental basis will be given from the long-standing experience in our laboratories. MMSs are widely accessible via chemisorption and physisorption methods for the generation of stable molecular environments on solid surfaces, whereby a special emphasis is given here to ionic liquid-type molecules as modifiers (supported ionic liquid phases, SILPs) and silica as support material. Metal nanoparticles are synthesized following an organometallic approach, allowing the controlled formation of small and uniformly dispersed monometallic or multimetallic NPs in defined composition. A combination of techniques from molecular and material characterization provides a detailed insight into the structure of the resulting materials across various scales (electron microscopy, solid-state NMR, XPS, XAS, etc.).The molecular functionalities grafted on the silica surface have a pronounced influence on the formation, stabilization, and reactivity of the NPs. The complementary and synergistic fine-tuning of the metal and its molecular environment in NPs@MMSs allow in particular the control of the activation of hydrogen and its transfer to substrates. Monometallic (Ru, Rh, Pd) monofunctional NPs@MMSs possess excellent activities for the hydrogenation of alkenes, alkynes, and arenes for which a nonpolarized (homolytic) activation of H2 is predominant. The incorporation of 3d metals in noble metal NPs to give bimetallic (FeRu, CoRh, etc.) monofunctional NPs@MMSs favors a more polarized H2 activation and thus its transfer to the C═O bond, while at the same time preventing the arrangement of noble metal atoms necessary for ring hydrogenation. The incorporation of reactive functionalities, such as, for example, a -SO3H moiety on NPs@MMSs, results in bifunctional catalysts enabling the heterolytic cleavage corresponding to a formal H-/H+ transfer. Consequently, such catalysts possess excellent deoxygenation activity with strong synergistic effects arising from an intimate contact between the nanoparticles and the molecular functionality.While many more efforts are still required to explore, control, and understand the chemistry of NPs@MMS catalysts fully, the currently available examples already highlight the large potential of this approach for the rational design of multifunctional catalytic systems.
Collapse
Affiliation(s)
- Alexis Bordet
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
11
|
Mustieles Marin I, Asensio JM, Chaudret B. Bimetallic Nanoparticles Associating Noble Metals and First-Row Transition Metals in Catalysis. ACS NANO 2021; 15:3550-3556. [PMID: 33660508 DOI: 10.1021/acsnano.0c09744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bimetallic nanoparticles (NPs) are complex systems with properties that far exceed those of the individual constituents. In particular, association of a noble metal and a first-row transition metal are attracting increasing interest for applications in catalysis, electrocatalysis, and magnetism, among others. Such objects display a rich structural chemistry thanks to their ability to form intermetallic phases, random alloys, or core-shell species. However, under reaction conditions, the surface of these nanostructures may be modified due to migration, segregation, or isolation of single atoms, leading to the formation of original structures with enhanced catalytic activity. In this respect, Zakhtser et al. report in this issue of ACS Nano the synthesis and study of the chemical evolution of the surface of a series of PtZn nanostructured alloys. In this Perspective, we report some selected examples of bimetallic nanocatalysts and their increased activity compared to that of the corresponding pure noble metal, with a special focus on Pt-based systems. We also discuss the mobility of the species present on the catalyst surface and the electronic influence of one metal to the other.
Collapse
Affiliation(s)
- Irene Mustieles Marin
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Juan M Asensio
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Bruno Chaudret
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
12
|
Rengshausen S, Van Stappen C, Levin N, Tricard S, Luska KL, DeBeer S, Chaudret B, Bordet A, Leitner W. Organometallic Synthesis of Bimetallic Cobalt-Rhodium Nanoparticles in Supported Ionic Liquid Phases (Co x Rh 100- x @SILP) as Catalysts for the Selective Hydrogenation of Multifunctional Aromatic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006683. [PMID: 33346403 DOI: 10.1002/smll.202006683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The synthesis, characterization, and catalytic properties of bimetallic cobalt-rhodium nanoparticles of defined Co:Rh ratios immobilized in an imidazolium-based supported ionic liquid phase (Cox Rh100- x @SILP) are described. Following an organometallic approach, precise control of the Co:Rh ratios is accomplished. Electron microscopy and X-ray absorption spectroscopy confirm the formation of small, well-dispersed, and homogeneously alloyed zero-valent bimetallic nanoparticles in all investigated materials. Benzylideneacetone and various bicyclic heteroaromatics are used as chemical probes to investigate the hydrogenation performances of the Cox Rh100- x @SILP materials. The Co:Rh ratio of the nanoparticles is found to have a critical influence on observed activity and selectivity, with clear synergistic effects arising from the combination of the noble metal and its 3d congener. In particular, the ability of Cox Rh100- x @SILP catalysts to hydrogenate 6-membered aromatic rings is found to experience a remarkable sharp switch in a narrow composition range between Co25 Rh75 (full ring hydrogenation) and Co30 Rh70 (no ring hydrogenation).
Collapse
Affiliation(s)
- Simon Rengshausen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Simon Tricard
- Laboratoire de Physique et Chimie des Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Kylie L Luska
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| |
Collapse
|
13
|
Bordet A, Moos G, Welsh C, Licence P, Luska KL, Leitner W. Molecular Control of the Catalytic Properties of Rhodium Nanoparticles in Supported Ionic Liquid Phase (SILP) Systems. ACS Catal 2020; 10:13904-13912. [PMID: 33343998 PMCID: PMC7737233 DOI: 10.1021/acscatal.0c03559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Rhodium nanoparticles (NPs) immobilized on imidazolium-based supported ionic liquid phases (Rh@SILP) act as effective catalysts for the hydrogenation of biomass-derived furfuralacetone. The structure of ionic liquid-type (IL) molecular modifiers was systematically varied regarding spacer, side chain, and anion to assess the influence on the NP synthesis and their catalytic properties. Well-dispersed Rh NPs with diameters in the range of 0.6-2.0 nm were formed on all SILP materials, whereby the actual size was dependent significantly on the IL structure. The resulting variations in catalytic activity for hydrogenation of the C=O moiety in furfuralacetone allowed control of the product selectivity to obtain either the saturated alcohol or the ketone in high yield. Experiments conducted under batch and continuous flow conditions demonstrated that Rh NPs immobilized on SILPs with suitable IL structures are more active and much more stable than Rh@SiO2 catalyst synthesized on unmodified silica.
Collapse
Affiliation(s)
- Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Gilles Moos
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Calum Welsh
- The University of Nottingham, School of Chemistry, Clifton Boulevard, Nottingham NG7 2RD, United Kingdom
| | - Peter Licence
- The University of Nottingham, School of Chemistry, Clifton Boulevard, Nottingham NG7 2RD, United Kingdom
| | - Kylie L. Luska
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| |
Collapse
|
14
|
Chen M, Cui Y, Qian W, Peng Q, Wang J, Gong H, Fang J, Dai S, Hou Z. Thermoregulated Ionic Liquid-Stabilizing Ru/CoO Nanocomposites for Catalytic Hydrogenation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11589-11599. [PMID: 32894945 DOI: 10.1021/acs.langmuir.0c02153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catalytic hydrogenations represent fundamental processes and allow for atom-efficient and clean functional group transformations for the production of chemical intermediates and fine chemicals in chemical industry. Herein, the Ru/CoO nanocomposites have been constructed and applied as nanocatalysts for the hydrogenation of phenols and furfurals into the corresponding cyclohexanols and tetrahydrofurfuryl alcohols, respectively. The functionalized ionic liquid acted not only as a ligand for stabilizing the Ru/CoO nanocatalyst but also as a thermoregulated agent. The as-obtained nanocatalyst showed superior activity, and it could be conveniently recovered via the thermoregulating phase separation. In six recycle experiments, the catalysts maintained excellent performance. It was observed that the catalytic performance highly hinged on the molar ratio of Ru to Co in the nanocatalyst. The catalyst characterization was carried out by high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy, X-ray diffraction, high-resolution mass spectrometry, Fourier transform infrared, nuclear magnetic resonance, and UV-vis. Especially, the characterization by HRTEM and HAADF-STEM images of the nanocatalyst demonstrated that Ru(0) and Co(II) species were distributed uniformly and the Ru and Co(II) species were close to each other. However, Co(0) was generated and an electronic transfer from Co to Ru species could occur under the hydrogenation conditions. The 13C NMR characterization indicated further that Co(II) sites were mainly responsible for phenol adsorption. Meanwhile, the adjacent electron-rich Ru(0) sites can promote H2 dissociation and favor for the sequential hydrogenation.
Collapse
Affiliation(s)
- Manyu Chen
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Cui
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wei Qian
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajia Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honghui Gong
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Fang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Goclik L, Offner-Marko L, Bordet A, Leitner W. Selective hydrodeoxygenation of hydroxyacetophenones to ethyl-substituted phenol derivatives using a FeRu@SILP catalyst. Chem Commun (Camb) 2020; 56:9509-9512. [PMID: 32686801 DOI: 10.1039/d0cc03695a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective hydrodeoxygenation of hydroxyacetophenone derivatives is achieved opening a versatile pathway for the production of valuable substituted ethylphenols from readily available substrates. Bimetallic iron ruthenium nanoparticles immobilized on an imidazolium-based supported ionic liquid phase (Fe25Ru75@SILP) show high activity and stability for a broad range of substrates without acidic co-catalysts.
Collapse
Affiliation(s)
- Lisa Goclik
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Lisa Offner-Marko
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
16
|
Moos G, Emondts M, Bordet A, Leitner W. Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst. Angew Chem Int Ed Engl 2020; 59:11977-11983. [PMID: 32220119 PMCID: PMC7383641 DOI: 10.1002/anie.201916385] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 11/18/2022]
Abstract
Rhodium nanoparticles immobilized on an acid‐free triphenylphosphonium‐based supported ionic liquid phase (Rh@SILP(Ph3‐P‐NTf2)) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2, ionic liquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionic liquid is required for the deoxygenation reactivity. The Rh@SILP(Ph3‐P‐NTf2) catalyst was active for the hydrodeoxygenation of benzylic ketones under mild conditions, and the product distribution for non‐benzylic ketones was controlled with high selectivity between the hydrogenated (alcohol) and hydrodeoxygenated (alkane) products by adjusting the reaction temperature. The versatile Rh@SILP(Ph3‐P‐NTf2) catalyst opens the way to the production of a wide range of high‐value cyclohexane derivatives by the hydrogenation and/or hydrodeoxygenation of Friedel–Crafts acylation products and lignin‐derived aromatic ketones.
Collapse
Affiliation(s)
- Gilles Moos
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.,Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.,Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
17
|
Moos G, Emondts M, Bordet A, Leitner W. Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gilles Moos
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
18
|
Qadir MI, Castegnaro MV, Selau FF, Samperi M, Fernandes JA, Morais J, Dupont J. Catalytic Semi-Water-Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel. CHEMSUSCHEM 2020; 13:1817-1824. [PMID: 32022428 DOI: 10.1002/cssc.201903417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Formic acid (FA) is a promising CO and hydrogen energy carrier, and currently its generation is mainly centered on the hydrogenation of CO2 . However, it can also be obtained by the hydrothermal conversion of CO with H2 O at very high pressures (>100 bar) and temperatures (>200 °C), which requires days to complete. Herein, it is demonstrated that by using a nano-Ru/Fe alloy embedded in an ionic liquid (IL)-hybrid silica in the presence of the appropriate IL in water, CO can be catalytically converted into free FA (0.73 m) under very mild reactions conditions (10 bar at 80 °C) with a turnover number of up to 1269. The catalyst was prepared by simple reduction/decomposition of Ru and Fe complexes in the IL, and it was then embedded into an IL-hybrid silica {1-n-butyl-3-(3-trimethoxysilylpropyl)-imidazolium cations associated with hydrophilic (acetate, SILP-OAc) and hydrophobic [bis((trifluoromethyl)sulfonyl)amide, SILP-NTf2 ] anions}. The location of the alloy nanoparticles on the support is strongly related to the nature of the anion, that is, in the case of hydrophilic SILP-OAc, RuFe nanoparticles are more exposed to the support surface than in the case of the hydrophobic SILP-NTf2 , as determined by Rutherford backscattering spectrometry. This catalytic membrane in the presence of H2 O/CO and an appropriate IL, namely, 1,2-dimethyl-3-n-butylimidazolium 2-methyl imidazolate (BMMIm⋅MeIm), is stable and recyclable for at least five runs, yielding a total of 4.34 m of free FA.
Collapse
Affiliation(s)
- Muhammad I Qadir
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, RS, Brazil
| | - Marcus V Castegnaro
- Institute of Physics, Federal University of Rio Grande do Sul, Campus Agronomia, Porto Alegre, 90650-001, Brazil
| | - Felipe F Selau
- Institute of Physics, Federal University of Rio Grande do Sul, Campus Agronomia, Porto Alegre, 90650-001, Brazil
| | - Mario Samperi
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Jesum Alves Fernandes
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Jonder Morais
- Institute of Physics, Federal University of Rio Grande do Sul, Campus Agronomia, Porto Alegre, 90650-001, Brazil
| | - Jairton Dupont
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, RS, Brazil
| |
Collapse
|
19
|
El Sayed S, Bordet A, Weidenthaler C, Hetaba W, Luska KL, Leitner W. Selective Hydrogenation of Benzofurans Using Ruthenium Nanoparticles in Lewis Acid-Modified Ruthenium-Supported Ionic Liquid Phases. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05124] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sami El Sayed
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Walid Hetaba
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4, 14195 Berlin, Germany
| | - Kylie L. Luska
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
20
|
Affiliation(s)
- M. Rosa Axet
- UPR8241, Université de Toulouse, UPS, INPT, CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de NarbonneF-31077 Toulouse cedex 4, France
| | - Karine Philippot
- UPR8241, Université de Toulouse, UPS, INPT, CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de NarbonneF-31077 Toulouse cedex 4, France
| |
Collapse
|
21
|
Chatterjee B, Kalsi D, Kaithal A, Bordet A, Leitner W, Gunanathan C. One-pot dual catalysis for the hydrogenation of heteroarenes and arenes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00928h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic system resulting from a monohydrido bridged ruthenium complex hydrogenated both heteroarenes and arenes, exhibited dual catalysis and provided access to valuable saturated heterocycles and cycloalkanes.
Collapse
Affiliation(s)
- Basujit Chatterjee
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Deepti Kalsi
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Akash Kaithal
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
| | - Chidambaram Gunanathan
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| |
Collapse
|
22
|
Kacem S, Emondts M, Bordet A, Leitner W. Selective hydrogenation of fluorinated arenes using rhodium nanoparticles on molecularly modified silica. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01716g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh nanoparticles prepared on hydrophobic molecularly modified silica act as effective catalysts for the hydrogenation of fluoroarenes to fluorocyclohexane derivatives.
Collapse
Affiliation(s)
- Souha Kacem
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
| | - Meike Emondts
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI-Leibniz Institute for Interactive Materials
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
| |
Collapse
|
23
|
Jiang S, Ma C, Muller E, Pera-Titus M, Jérôme F, De Oliveira Vigier K. Selective Synthesis of THF-Derived Amines from Biomass-Derived Carbonyl Compounds. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shi Jiang
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS—Université de Poitiers, 1 rue Marcel Doré, ENSIP, TSA 41195, 86073 Poitiers Cedex 9, France
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China
| | - Changru Ma
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China
| | - Eric Muller
- SOLVAY—Advanced Organic Chemistry & Molecule Design Laboratory, Recherche & Innovation Centre de Lyon, 85 Avenue des Frères Perret, 69192 Saint Fons, France
| | - Marc Pera-Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS—Université de Poitiers, 1 rue Marcel Doré, ENSIP, TSA 41195, 86073 Poitiers Cedex 9, France
| | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS—Université de Poitiers, 1 rue Marcel Doré, ENSIP, TSA 41195, 86073 Poitiers Cedex 9, France
| |
Collapse
|
24
|
Palomo JM. Nanobiohybrids: a new concept for metal nanoparticles synthesis. Chem Commun (Camb) 2019; 55:9583-9589. [PMID: 31360955 DOI: 10.1039/c9cc04944d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In recent years, nanoscience and nanotechnology have brought a great revolution in different areas. In particular, the synthesis of transition metal nanoparticles has been of great relevance for their use in areas such as biomedicine, antimicrobial properties or catalytic applications for chemical synthesis. Recently, an innovative straightforward and very efficient synthesis of these nanoparticles by simply using enzymes as inductors in aqueous media has been described. This represents a very green alternative to the different methodologies described in the literature for metal nanoparticles preparation where harsh conditions are necessary. In this review the most recent advances in the synthesis of metal nanoparticles by this green technology, explaining the synthetic mechanism, the role of the enzyme in the formation of the nanoparticles and the effect on the final properties of these nanoparticles, are summarised. The application of these novel metal nanoparticles-enzyme hybrids in synthetic chemistry as heterogeneous catalysts with metal or dual (enzymatic and metallic) activity and their capacity as environmental and antimicrobial agents have also been discussed.
Collapse
Affiliation(s)
- Jose M Palomo
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, Cantoblanco, UAM Campus, 28049, Madrid, Spain.
| |
Collapse
|
25
|
Liu Y, Quan Z, He S, Zhao Z, Wang J, Wang B. Heterogeneous palladium-based catalyst promoted reduction of oximes to amines: using H2 at 1 atm in H2O under mild conditions. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00003h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly active palladium-based heterogeneous catalyst with excellent activity for the hydrogenation of oximes to form amines was prepared.
Collapse
Affiliation(s)
- Yaxu Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Hainan University
- Haikou 570228
- P.R. China
| | - Ziyi Quan
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Hainan University
- Haikou 570228
- P.R. China
| | - Shaopo He
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Hainan University
- Haikou 570228
- P.R. China
| | - Zexi Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Hainan University
- Haikou 570228
- P.R. China
| | - Jiang Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Hainan University
- Haikou 570228
- P.R. China
| | - Bo Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Hainan University
- Haikou 570228
- P.R. China
| |
Collapse
|
26
|
Guo L, Cui Y, Zhang P, Peng X, Yoneyama Y, Yang G, Tsubaki N. Enhanced Liquid Fuel Production from CO2
Hydrogenation: Catalytic Performance of Bimetallic Catalysts over a Two-Stage Reactor System. ChemistrySelect 2018. [DOI: 10.1002/slct.201803335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lisheng Guo
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| | - Yu Cui
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| | - Peipei Zhang
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| | - Xiaobo Peng
- National Institute for Materials Science, Tsukuba; Japan
| | - Yoshiharu Yoneyama
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| |
Collapse
|
27
|
Wang S, Huang H, Tsareva S, Bruneau C, Fischmeister C. Silver-Catalyzed Hydrogenation of Ketones under Mild Conditions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shengdong Wang
- Univ Rennes, CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-; 35042 Rennes France
| | - Haiyun Huang
- Univ Rennes, CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-; 35042 Rennes France
| | | | - Christian Bruneau
- Univ Rennes, CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-; 35042 Rennes France
| | - Cédric Fischmeister
- Univ Rennes, CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-; 35042 Rennes France
| |
Collapse
|
28
|
Catalytic potency of ionic liquid-stabilized metal nanoparticles towards greening biomass processing: Insights, limitations and prospects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Offner-Marko L, Bordet A, Moos G, Tricard S, Rengshausen S, Chaudret B, Luska KL, Leitner W. Bimetallic Nanoparticles in Supported Ionic Liquid Phases as Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates. Angew Chem Int Ed Engl 2018; 57:12721-12726. [PMID: 30176102 PMCID: PMC6175319 DOI: 10.1002/anie.201806638] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 11/23/2022]
Abstract
Bimetallic iron–ruthenium nanoparticles embedded in an acidic supported ionic liquid phase (FeRu@SILP+IL‐SO3H) act as multifunctional catalysts for the selective hydrodeoxygenation of carbonyl groups in aromatic substrates. The catalyst material is assembled systematically from molecular components to combine the acid and metal sites that allow hydrogenolysis of the C=O bonds without hydrogenation of the aromatic ring. The resulting materials possess high activity and stability for the catalytic hydrodeoxygenation of C=O groups to CH2 units in a variety of substituted aromatic ketones and, hence, provide an effective and benign alternative to traditional Clemmensen and Wolff–Kishner reductions, which require stoichiometric reagents. The molecular design of the FeRu@SILP+IL‐SO3H materials opens a general approach to multifunctional catalytic systems (MM′@SILP+IL‐func).
Collapse
Affiliation(s)
- Lisa Offner-Marko
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| | - Alexis Bordet
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany.,Laboratoire de Physique et Chemie de Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Gilles Moos
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| | - Simon Tricard
- Laboratoire de Physique et Chemie de Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Simon Rengshausen
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| | - Bruno Chaudret
- Laboratoire de Physique et Chemie de Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Kylie L Luska
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
30
|
Offner-Marko L, Bordet A, Moos G, Tricard S, Rengshausen S, Chaudret B, Luska KL, Leitner W. Bimetallic Nanoparticles in Supported Ionic Liquid Phases as Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lisa Offner-Marko
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
- Max-Planck-Institut für Chemische Energiekonversion; 45470 Mülheim an der Ruhr Germany
| | - Alexis Bordet
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
- Max-Planck-Institut für Chemische Energiekonversion; 45470 Mülheim an der Ruhr Germany
- Laboratoire de Physique et Chemie de Nano-Objets; Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215; 135 Avenue de Rangueil 31077 Toulouse France
| | - Gilles Moos
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
- Max-Planck-Institut für Chemische Energiekonversion; 45470 Mülheim an der Ruhr Germany
| | - Simon Tricard
- Laboratoire de Physique et Chemie de Nano-Objets; Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215; 135 Avenue de Rangueil 31077 Toulouse France
| | - Simon Rengshausen
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
- Max-Planck-Institut für Chemische Energiekonversion; 45470 Mülheim an der Ruhr Germany
| | - Bruno Chaudret
- Laboratoire de Physique et Chemie de Nano-Objets; Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215; 135 Avenue de Rangueil 31077 Toulouse France
| | - Kylie L. Luska
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
- Max-Planck-Institut für Chemische Energiekonversion; 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
31
|
Fe-Based Nano-Materials in Catalysis. MATERIALS 2018; 11:ma11050831. [PMID: 29772842 PMCID: PMC5978208 DOI: 10.3390/ma11050831] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 01/29/2023]
Abstract
The role of iron in view of its further utilization in chemical processes is presented, based on current knowledge of its properties. The addition of iron to a catalyst provides redox functionality, enhancing its resistance to carbon deposition. FeOx species can be formed in the presence of an oxidizing agent, such as CO2, H2O or O2, during reaction, which can further react via a redox mechanism with the carbon deposits. This can be exploited in the synthesis of active and stable catalysts for several processes, such as syngas and chemicals production, catalytic oxidation in exhaust converters, etc. Iron is considered an important promoter or co-catalyst, due to its high availability and low toxicity that can enhance the overall catalytic performance. However, its operation is more subtle and diverse than first sight reveals. Hence, iron and its oxides start to become a hot topic for more scientists and their findings are most promising. The scope of this article is to provide a review on iron/iron-oxide containing catalytic systems, including experimental and theoretical evidence, highlighting their properties mainly in view of syngas production, chemical looping, methane decomposition for carbon nanotubes production and propane dehydrogenation, over the last decade. The main focus goes to Fe-containing nano-alloys and specifically to the Fe–Ni nano-alloy, which is a very versatile material.
Collapse
|
32
|
Fang H, Yang J, Wen M, Wu Q. Nanoalloy Materials for Chemical Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705698. [PMID: 29450918 DOI: 10.1002/adma.201705698] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/18/2017] [Indexed: 06/08/2023]
Abstract
Nanoalloys (NAs), which are distinctly different from bulk alloys or single metals, take on intrinsic features including tunable components and ratios, variable constructions, reconfigurable electronic structures, and optimizable performances, which endow NAs with fascinating prospects in the catalysis field. Here, the focus is on NA materials for chemical catalysis (except photocatalysis or electrocatalysis). In terms of composition, NA systems are divided into three groups, noble metal, base metal, and noble/base metal mixed NAs. Their design and fabrication for the optimization of catalytic performance are systematically summarized. Additionally, the correlations between the composition/structure and catalytic properties are also mentioned. Lastly, the challenges faced in current research are discussed, and further pathways toward their development are suggested.
Collapse
Affiliation(s)
- Hao Fang
- School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Jinhu Yang
- School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Ming Wen
- School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
33
|
González Prieto M, Fortunatti Montoya M, Hegel PE, Pereda S. Supercritical reactors for the production of advanced bio-fuels: A review. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Gupta K, Rai RK, Singh SK. Metal Catalysts for the Efficient Transformation of Biomass-derived HMF and Furfural to Value Added Chemicals. ChemCatChem 2018. [DOI: 10.1002/cctc.201701754] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kavita Gupta
- Discipline of Chemistry; Indian Institute of Technology Indore; Indore 453552 Madhya Pradesh India
| | - Rohit K. Rai
- Discipline of Chemistry; Indian Institute of Technology Indore; Indore 453552 Madhya Pradesh India
| | - Sanjay K. Singh
- Discipline of Chemistry; Indian Institute of Technology Indore; Indore 453552 Madhya Pradesh India
- Discipline of Metallurgy Engineering and Materials Science; Indian Institute of Technology Indore; Indore 453552 Madhya Pradesh India
| |
Collapse
|
35
|
Wang D, Astruc D. The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chem Soc Rev 2018; 46:816-854. [PMID: 28101543 DOI: 10.1039/c6cs00629a] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Whereas noble metal compounds have long been central in catalysis, Earth-abundant metal-based catalysts have in the same time remained undeveloped. Yet the efficacy of Earth-abundant metal catalysts was already shown at the very beginning of the 20th century with the Fe-catalyzed Haber-Bosch process of ammonia synthesis and later in the Fischer-Tropsch reaction. Nanoscience has revolutionized the world of catalysis since it was observed that very small Au nanoparticles (NPs) and other noble metal NPs are extraordinarily efficient. Therefore the development of Earth-abundant metals NPs is more recent, but it has appeared necessary due to their "greenness". This review highlights catalysis by NPs of Earth-abundant transition metals that include Mn, Fe, Co, Ni, Cu, early transition metals (Ti, V, Cr, Zr, Nb and W) and their nanocomposites with emphasis on basic principles and literature reported during the last 5 years. A very large spectrum of catalytic reactions has been successfully disclosed, and catalysis has been examined for each metal starting with zero-valent metal NPs followed by oxides and other nanocomposites. The last section highlights the catalytic activities of bi- and trimetallic NPs. Indeed this later family is very promising and simultaneously benefits from increased stability, efficiency and selectivity, compared to monometallic NPs, due to synergistic substrate activation.
Collapse
Affiliation(s)
- Dong Wang
- ISM, UMR CNRS 5255, Univ. Bordeaux, 33405 Talence Cedex, France.
| | - Didier Astruc
- ISM, UMR CNRS 5255, Univ. Bordeaux, 33405 Talence Cedex, France.
| |
Collapse
|
36
|
Martínez-Prieto LM, Chaudret B. Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Acc Chem Res 2018; 51:376-384. [PMID: 29308876 DOI: 10.1021/acs.accounts.7b00378] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although there has been for the past 20 years great interest in the synthesis and use of metal nanoparticles, little attention has been paid to the complexity of the surface of these species. In particular, the different aspects concerning the ligands present, their location, their mode of binding, and their dynamics have been little studied. Our group has started in the early 1990s an investigation of the surface coordination chemistry of ruthenium and platinum nanoparticles but at that time with a lack of adequate techniques to fulfill our ambition. Over 10 years later, we went back to this problem and could obtain a more precise vision of the surface species. This Account is centered on ruthenium chemistry. This metal has been the most studied in our group, first thanks to the availability of a precursor, Ru(cyclooctadiene)(cyclooctatriene) (Ru(COD)(COT)), which possesses the ability to decompose in very mild conditions without leaving residues on the resulting nanoparticles and second because of the absence of magnetic perturbations (Knight shift, paramagnetism, ferromagnetism, etc.), which has allowed the use of solution and solid state NMR. In this respect, it has been possible to evidence the presence of a high concentration of hydrides on the surface of these particles, to study their dynamics, and to show that since the polarity of the Ru-H bond is similar to that of the C-H bond, a Ru/H NP would behave as a big lipophilic entity. The second point was to characterize the coordination of ancillary ligands. This has been achieved for different ligands, in particular phosphines and carbenes, which made possible the study of the modification of NP reactivity induced by surface ligands. This led to the conclusion that the presence of surface ligands can benefit both the activity of NP catalysts and their selectivity. If it was expected that the selectivity could be modulated, the promoting effect from the presence of ligands on, for example, arene or CO hydrogenation was totally unexpected. Playing with poison atoms (Sn, Fe, etc.) or ligands (CO) may allow us to play with the reactivity of the NPs to make them more selective for selected reactions. Finally, the search for specific ligands for nanoparticles is still in its infancy, but some examples have been found as have specific reactions of nanoparticles. Obviously arene hydrogenation and CO hydrogenation were well-known in heterogeneous catalysis, but we could demonstrate that they can be carried out in very mild conditions on ligand stabilized RuNPs. On the other hand, the enantiospecific C-H activation leading to enantioselective labeling of large organic or biomolecules or the C-C bond cleavage in mild conditions were both unexpected. There is still much work to perform for reaching the degree of control on nanoparticles that is presently achieved in organometallic molecular chemistry, but this work shows that it is possible.
Collapse
Affiliation(s)
- Luis M. Martínez-Prieto
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Bruno Chaudret
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135, Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
37
|
Qadir MI, Weilhard A, Fernandes JA, de Pedro I, Vieira BJC, Waerenborgh JC, Dupont J. Selective Carbon Dioxide Hydrogenation Driven by Ferromagnetic RuFe Nanoparticles in Ionic Liquids. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03804] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muhammad I. Qadir
- Institute
of Chemistry, UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| | - Andreas Weilhard
- GSK
Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, NG8 2GT Nottingham, UK
| | - Jesum A. Fernandes
- GSK
Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, NG8 2GT Nottingham, UK
| | - Imanol de Pedro
- Departmento
CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 390005 Santander, Spain
| | - Bruno J. C. Vieira
- Centro
de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - João C. Waerenborgh
- Centro
de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Jairton Dupont
- Institute
of Chemistry, UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
- GSK
Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, NG8 2GT Nottingham, UK
| |
Collapse
|
38
|
Al-Kharusi HN, Wu L, Whittell G, Harniman R, Manners I. Synthesis, thin-film self-assembly, and pyrolysis of ruthenium-containing polyferrocenylsilane block copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00168e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The self-assembly of a ruthenium-containing polyferrocenylsilane in bulk and thin films yielded spherical or cylindrical domains in a PS matrix; pyrolysis provided a route to bimetallic Fe/Ru NPs for potential catalytic applications.
Collapse
Affiliation(s)
| | - Lipeng Wu
- School of Chemistry
- University of Bristol
- UK
| | | | | | | |
Collapse
|
39
|
Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 2018; 47:8349-8402. [DOI: 10.1039/c8cs00410b] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functionalised heterogeneous catalysts show great potentials for efficient valorisation of renewable biomass to value-added chemicals and high-energy density fuels.
Collapse
Affiliation(s)
- Putla Sudarsanam
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Ruyi Zhong
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
- Dalian Institute of Chemical Physics
| | - Sander Van den Bosch
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Simona M. Coman
- University of Bucharest
- Department of Organic Chemistry
- Biochemistry and Catalysis
- Bucharest 030016
- Romania
| | - Vasile I. Parvulescu
- University of Bucharest
- Department of Organic Chemistry
- Biochemistry and Catalysis
- Bucharest 030016
- Romania
| | - Bert F. Sels
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| |
Collapse
|
40
|
Muratsugu S, Yamaguchi A, Yokota GI, Maeno T, Tada M. Tuning the structure and catalytic activity of Ru nanoparticle catalysts by single 3d transition-metal atoms in Ru12–metalloporphyrin precursors. Chem Commun (Camb) 2018; 54:4842-4845. [DOI: 10.1039/c7cc09862f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The single 3d metal atoms at the central position of the Ru12–metalloporphyrin complex precursors exerted a significant influence on the structure and hydrogenation performance of the Ru nanoparticles on the SiO2 surface.
Collapse
Affiliation(s)
- Satoshi Muratsugu
- Department of Chemistry
- Graduate School of Science, Nagoya University
- Nagoya
- Japan
| | - Atsuki Yamaguchi
- Department of Chemistry
- Graduate School of Science, Nagoya University
- Nagoya
- Japan
| | - Gen-ichi Yokota
- Department of Chemistry
- Graduate School of Science, Nagoya University
- Nagoya
- Japan
| | - Tomoaki Maeno
- Department of Chemistry
- Graduate School of Science, Nagoya University
- Nagoya
- Japan
| | - Mizuki Tada
- Department of Chemistry
- Graduate School of Science, Nagoya University
- Nagoya
- Japan
- Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Science (IRCCS)
| |
Collapse
|
41
|
Calabria L, Fernandes JA, Migowski P, Bernardi F, Baptista DL, Leal R, Grehl T, Dupont J. Confined naked gold nanoparticles in ionic liquid films. NANOSCALE 2017; 9:18753-18758. [PMID: 29168524 DOI: 10.1039/c7nr06167f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Surface-clean Au nanoparticles (NPs) confined in films of ionic liquids (ILs) can be easily fabricated by sputtering deposition. A silicon wafer coated with films of both hydrophobic (bis((trifluoromethyl)sulfonyl)amide, NTf2-) and hydrophilic (tetrafluoroborate, BF4-) imidazolium-based ILs forms an 'ionic carpet-like' structure that can be easily decorated with Au NPs of 5.1 and 6.5 nm mean diameter, respectively. The depth profile distribution of the Au NPs depends on the arrangement of the IL, which is controlled mainly by the anion volume. Higher concentrations of Au NPs are found closer to the IL surface for the system containing a larger anion (NTf2) whereas Au NPs are located deeper in the IL for the system containing a smaller anion (BF4). The Au NPs are well distributed over the IL/Si support and are strictly confined in a single layer of the IL. This method is among the most simple and versatile for the generation of liquid layers containing surface-clean, stable and confined Au NPs.
Collapse
Affiliation(s)
- Luciane Calabria
- Institute of Chemistry-UFRGS, Porto Alegre, 91501-970, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Olivier-Bourbigou H, Chizallet C, Dumeignil F, Fongarland P, Geantet C, Granger P, Launay F, Löfberg A, Massiani P, Maugé F, Ouali A, Roger AC, Schuurman Y, Tanchoux N, Uzio D, Jérôme F, Duprez D, Pinel C. The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects. ChemCatChem 2017. [DOI: 10.1002/cctc.201700426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Céline Chizallet
- Catalysis and Separation Division; IFP Energies nouvelles; F-69360 Solaize France
| | - Franck Dumeignil
- Unité de Catalyse et Chimie du Solide; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; F-59000 Lille France
| | - Pascal Fongarland
- Laboratoire de Génie des Procédés Catalytiques (LGPC); Univ. Lyon, Université Claude Bernard Lyon 1, CPE, CNRS; F-69616 Villeurbanne France
| | - Christophe Geantet
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON); Université Claude Bernard Lyon 1, CNRS; F-69626 Villeurbanne France
| | - Pascal Granger
- Unité de Catalyse et Chimie du Solide; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; F-59000 Lille France
| | - Franck Launay
- Laboratoire de Réactivité de Surface (LRS); Sorbonne Universités, UPMC Univ Paris 06, CNRS; F-75005 Paris France
| | - Axel Löfberg
- Unité de Catalyse et Chimie du Solide; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; F-59000 Lille France
| | - Pascale Massiani
- Laboratoire de Réactivité de Surface (LRS); Sorbonne Universités, UPMC Univ Paris 06, CNRS; F-75005 Paris France
| | - Françoise Maugé
- Laboratoire Catalyse et Spectrochimie (LCS); ENSICAEN, CNRS; F-14000 Caen France
| | - Armelle Ouali
- Institut Charles Gerhardt Montpellier (ICGM); Université Montpellier, CNRS; F-34095 Montpellier France
| | - Anne-Cécile Roger
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES); Université de Strasbourg, CNRS; F-67087 Strasbourg France
| | - Yves Schuurman
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON); Université Claude Bernard Lyon 1, CNRS; F-69626 Villeurbanne France
| | - Nathalie Tanchoux
- Institut Charles Gerhardt Montpellier (ICGM); Université Montpellier, CNRS; F-34095 Montpellier France
| | - Denis Uzio
- Catalysis and Separation Division; IFP Energies nouvelles; F-69360 Solaize France
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP); Université de Poitiers, ENSIP, CNRS; F-86073 Poitiers France
| | - Daniel Duprez
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP); Université de Poitiers, ENSIP, CNRS; F-86073 Poitiers France
| | - Catherine Pinel
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON); Université Claude Bernard Lyon 1, CNRS; F-69626 Villeurbanne France
| |
Collapse
|
43
|
Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Höinghaus K. Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angew Chem Int Ed Engl 2017; 56:5412-5452. [DOI: 10.1002/anie.201607257] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/18/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Walter Leitner
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Germany
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Germany
| | - Stefan Pischinger
- Lehrstuhl für Verbrennungskraftmaschinen und Institut für Thermodynamik; RWTH Aachen University; Forckenbeckstrasse 4 52074 Aachen Germany
| | - Heinz Pitsch
- Institut für Technische Verbrennung; RWTH Aachen University; Templergraben 64 52056 Aachen Germany
| | | |
Collapse
|
44
|
Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Höinghaus K. Synthese, motorische Verbrennung, Emissionen: Chemische Aspekte des Kraftstoffdesigns. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607257] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Walter Leitner
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Deutschland
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Deutschland
| | - Stefan Pischinger
- Lehrstuhl für Verbrennungskraftmaschinen und Institut für Thermodynamik; RWTH Aachen University; Forckenbeckstraße 4, 5 2074 Aachen Deutschland
| | - Heinz Pitsch
- Institut für Technische Verbrennung; RWTH Aachen University; Templergraben 64 52056 Aachen Deutschland
| | | |
Collapse
|
45
|
Luza L, Rambor CP, Gual A, Alves Fernandes J, Eberhardt D, Dupont J. Revealing Hydrogenation Reaction Pathways on Naked Gold Nanoparticles. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00391] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Leandro Luza
- Institute
of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento
Gonçalves, 9500 Porto Alegre, Brazil
| | - Camila P. Rambor
- Institute
of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento
Gonçalves, 9500 Porto Alegre, Brazil
| | - Aitor Gual
- GSK
Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, NG7 2TU Nottingham, U.K
| | - Jesum Alves Fernandes
- GSK
Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, NG7 2TU Nottingham, U.K
| | - Dario Eberhardt
- Physics
Faculty, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil
| | - Jairton Dupont
- Institute
of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento
Gonçalves, 9500 Porto Alegre, Brazil
- GSK
Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, NG7 2TU Nottingham, U.K
| |
Collapse
|
46
|
Abstract
This review presents the recent remarkable developments of efficient Earth-abundant transition-metal nanocatalysts.
Collapse
Affiliation(s)
- Dong Wang
- ISM
- UMR CNRS 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | - Didier Astruc
- ISM
- UMR CNRS 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| |
Collapse
|
47
|
Dietrich C, Schild D, Wang W, Kübel C, Behrens S. Bimetallic Pt/Sn-based Nanoparticles in Ionic Liquids as Nanocatalysts for the Selective Hydrogenation of Cinnamaldehyde. Z Anorg Allg Chem 2016. [DOI: 10.1002/zaac.201600391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christine Dietrich
- Institute of Catalysis Research and Technology (IKFT); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Dieter Schild
- Institute for Nuclear Waste Disposal (INE); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Wu Wang
- Institute of Nanotechnology (INT); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christian Kübel
- Institute of Nanotechnology (INT); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Silke Behrens
- Institute of Catalysis Research and Technology (IKFT); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
48
|
Simonelli L, Marini C, Olszewski W, ��vila P��rez M, Ramanan N, Guilera G, Cuartero V, Klementiev K. CL��SS: The hard X-ray absorption beamline of the ALBA CELLS synchrotron. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23311940.2016.1231987] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- L. Simonelli
- CELLS - ALBA Synchrotron Radiation Facility Carrer de la Llum 2-26 08290 Cerdanyola del Valles Barcelona Spain
| | - C. Marini
- CELLS - ALBA Synchrotron Radiation Facility Carrer de la Llum 2-26 08290 Cerdanyola del Valles Barcelona Spain
| | - W. Olszewski
- CELLS - ALBA Synchrotron Radiation Facility Carrer de la Llum 2-26 08290 Cerdanyola del Valles Barcelona Spain
- Faculty of Physics, University of Bialystok 1L K. Ciolkowskiego Str. 15-245 Bialystok Poland
| | - M. ��vila P��rez
- CELLS - ALBA Synchrotron Radiation Facility Carrer de la Llum 2-26 08290 Cerdanyola del Valles Barcelona Spain
| | - N. Ramanan
- CELLS - ALBA Synchrotron Radiation Facility Carrer de la Llum 2-26 08290 Cerdanyola del Valles Barcelona Spain
| | - G. Guilera
- CELLS - ALBA Synchrotron Radiation Facility Carrer de la Llum 2-26 08290 Cerdanyola del Valles Barcelona Spain
- Future Cities Catapult One Sekforde Street EC1R 0BE London UK
| | - V. Cuartero
- CELLS - ALBA Synchrotron Radiation Facility Carrer de la Llum 2-26 08290 Cerdanyola del Valles Barcelona Spain
- ESRF-The European Synchrotron 71, Avenue des Martyrs Grenoble France
| | | |
Collapse
|