1
|
Carder HM, Occhialini G, Bistoni G, Riplinger C, Kwan EE, Wendlandt AE. The sugar cube: Network control and emergence in stereoediting reactions. Science 2024; 385:456-463. [PMID: 39052778 DOI: 10.1126/science.adp2447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
Stereochemical editing strategies have recently enabled the transformation of readily accessible substrates into rare and valuable products. Typically, site selectivity is achieved by minimizing kinetic complexity by using protecting groups to suppress reactivity at undesired sites (substrate control) or by using catalysts with tailored shapes to drive reactivity at the desired site (catalyst control). We propose "network control," a contrasting paradigm that exploits hidden interactions between rate constants to greatly amplify modest intrinsic biases and enable precise multisite editing. When network control is applied to the photochemical isomerization of hexoses, six of the eight possible diastereomers can be selectively obtained. The amplification effect can be viewed as a mesoscale phenomenon between the limiting regimes of kinetic control in simple chemical systems and metabolic regulation in complex biological systems.
Collapse
Affiliation(s)
- Hayden M Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gino Occhialini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Bistoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | | | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Marinus N, Reintjens NRM, Haldimann K, Mouthaan MLMC, Hobbie SN, Witte MD, Minnaard AJ. Site-Selective Palladium-catalyzed Oxidation of Unprotected Aminoglycosides and Sugar Phosphates. Chemistry 2024; 30:e202400017. [PMID: 38284753 DOI: 10.1002/chem.202400017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
The site-selective modification of complex biomolecules by transition metal-catalysis is highly warranted, but often thwarted by the presence of Lewis basic functional groups. This study demonstrates that protonation of amines and phosphates in carbohydrates circumvents catalyst inhibition in palladium-catalyzed site-selective oxidation. Both aminoglycosides and sugar phosphates, compound classes that up till now largely escaped direct modification, are oxidized with good efficiency. Site-selective oxidation of kanamycin and amikacin was used to prepare a set of 3'-modified aminoglycoside derivatives of which two showed promising activity against antibiotic-resistant E. coli strains.
Collapse
Affiliation(s)
- Nittert Marinus
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Niels R M Reintjens
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, Zürich, Switzerland
| | - Marc L M C Mouthaan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, Zürich, Switzerland
| | - Martin D Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| |
Collapse
|
3
|
Wang G, Ho CC, Zhou Z, Hao YJ, Lv J, Jin J, Jin Z, Chi YR. Site-Selective C-O Bond Editing of Unprotected Saccharides. J Am Chem Soc 2024; 146:824-832. [PMID: 38123470 DOI: 10.1021/jacs.3c10963] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Glucose and its polyhydroxy saccharide analogs are complex molecules that serve as essential structural components in biomacromolecules, natural products, medicines, and agrochemicals. Within the expansive realm of saccharides, a significant area of research revolves around chemically transforming naturally abundant saccharide units to intricate or uncommon molecules such as oligosaccharides or rare sugars. However, partly due to the presence of multiple hydroxyl groups with similar reactivities and the structural complexities arising from stereochemistry, the transformation of unprotected sugars to the desired target molecules remains challenging. One such formidable challenge lies in the efficient and selective activation and modification of the C-O bonds in saccharides. In this study, we disclose a modular 2-fold "tagging-editing" strategy that allows for direct and selective editing of C-O bonds of saccharides, enabling rapid preparation of valuable molecules such as rare sugars and drug derivatives. The first step, referred to as "tagging", involves catalytic site-selective installation of a photoredox active carboxylic ester group to a specific hydroxyl unit of an unprotected sugar. The second step, namely, "editing", features a C-O bond cleavage to form a carbon radical intermediate that undergoes further transformations such as C-H and C-C bond formations. Our strategy constitutes the most effective and shortest route in direct transformation and modification of medicines and other molecules bearing unprotected sugars.
Collapse
Affiliation(s)
- Guanjie Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Chang Chin Ho
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhixu Zhou
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yong-Jia Hao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jie Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
4
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Jdanova S, Taylor MS. Mechanistic Study of the Copper(II)-Mediated Site-Selective O-Arylation of Glycosides with Arylboronic Acids. J Org Chem 2023; 88:3487-3498. [PMID: 36888595 DOI: 10.1021/acs.joc.2c02693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Glycosides having multiple free OH groups have been shown to undergo site-selective O-arylations in the presence of arylboronic acids and copper(II) acetate. Herein, a mechanistic analysis of these Chan-Evans-Lam-type couplings is presented based on reaction kinetics, mass spectrometric analysis of reaction mixtures, and substituent effect studies. The results establish that the formation of a substrate-derived boronic ester accelerates the rate-determining transmetalation step. Intramolecular transfer of the aryl group from the boronic ester is ruled out in favor of a pathway in which the key pre-transmetalation assembly is generated from a boronic ester, a copper complex, and a second equivalent of arylboronic acid.
Collapse
Affiliation(s)
- Sofia Jdanova
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 Canada
| |
Collapse
|
6
|
Ramsay-Burrough S, Marron DP, Armstrong KC, Del Castillo TJ, Zare RN, Waymouth RM. Mechanism-Guided Design of Robust Palladium Catalysts for Selective Aerobic Oxidation of Polyols. J Am Chem Soc 2023; 145:2282-2293. [PMID: 36657018 DOI: 10.1021/jacs.2c10667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The palladium complex [(L1)Pd(μ-OAc)]2[OTf]2 (L1 = neocuproine) is a selective catalyst for the aerobic oxidation of vicinal polyols to α-hydroxyketones, but competitive oxidation of the ligand methyl groups limits the turnover number and necessitates high Pd loadings. Replacement of the neocuproine ligand with 2,2'-biquinoline ligands was investigated as a strategy to improve catalyst performance and explore the relationship between ligand structure and reactivity. Evaluation of [(L2)Pd(μ-OAc)]2[OTf]2 (L2 = 2,2'-biquinoline) as a catalyst for aerobic alcohol oxidation revealed a threefold enhancement in turnover number relative to the neocuproine congener, but a much slower rate. Mechanistic studies indicated that the slow rates observed with L2 were a consequence of precipitation of an insoluble trinuclear palladium species─(L2Pd)3(μ-O)22+─formed during catalysis and characterized by high-resolution electrospray ionization mass spectrometry. Density functional theory was used to predict that a sterically modified biquinoline ligand, L3 = 7,7'-di-tert-butyl-2,2'-biquinoline, would disfavor the formation of the trinuclear (LPd)3(μ-O)22+ species. This design strategy was validated as catalytic aerobic oxidation with [(L3)Pd(μ-OAc)]2[OTf]2 is both robust and rapid, marrying the kinetics of the parent L1-supported system with the high aerobic turnover numbers of the L2-supported system. Changes in ligand structure were also found to modulate regioselectivity in the oxidation of complex glycoside substrates, providing new insights into structure-selectivity relationships with this class of catalysts.
Collapse
Affiliation(s)
| | - Daniel P Marron
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Keith C Armstrong
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Trevor J Del Castillo
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Kidonakis M, Villotet A, Witte MD, Beil SB, Minnaard AJ. Site-Selective Electrochemical Oxidation of Glycosides. ACS Catal 2023; 13:2335-2340. [PMID: 36846820 PMCID: PMC9942207 DOI: 10.1021/acscatal.2c06318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Indexed: 02/01/2023]
Abstract
Quinuclidine-mediated electrochemical oxidation of glycopyranosides provides C3-ketosaccharides with high selectivity and good yields. The method is a versatile alternative to Pd-catalyzed or photochemical oxidation and is complementary to the 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated C6-selective oxidation. Contrary to the electrochemical oxidation of methylene and methine groups, the reaction proceeds without oxygen.
Collapse
|
8
|
Hunter C, Gao Z, Chen HM, Thompson N, Wakarchuk W, Nitz M, Withers SG, Willis LM. Attenuation of Polysialic Acid Biosynthesis in Cells by the Small Molecule Inhibitor 8-Keto-sialic acid. ACS Chem Biol 2023; 18:41-48. [PMID: 36577399 DOI: 10.1021/acschembio.2c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sialic acids are key mediators of cell function, particularly with regard to cellular interactions with the surrounding environment. Reagents that modulate the display of specific sialyl glycoforms at the cell surface would be useful biochemical tools and potentially allow for therapeutic intervention in numerous challenging chronic diseases. While multiple strategies are being explored for the control of cell surface sialosides, none that shows high selectivity between sialyltransferases or that targets a specific sialyl glycoform has yet to emerge. Here, we describe a strategy to block the formation of α2,8-linked sialic acid chains (oligo- and polysialic acid) through the use of 8-keto-sialic acid as a chain-terminating metabolic inhibitor that, if incorporated, cannot be elongated. 8-Keto-sialic acid is nontoxic at effective concentrations and serves to block polysialic acid synthesis in cancer cell lines and primary immune cells, with minimal effects on other sialyl glycoforms.
Collapse
Affiliation(s)
- Carmanah Hunter
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Zhizeng Gao
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Hong-Ming Chen
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Nicole Thompson
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Warren Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| |
Collapse
|
9
|
Zhang J, Reintjens NRM, Dhineshkumar J, Witte MD, Minnaard AJ. Site-Selective Dehydroxy-Chlorination of Secondary Alcohols in Unprotected Glycosides. Org Lett 2022; 24:5339-5344. [PMID: 35848103 PMCID: PMC9490796 DOI: 10.1021/acs.orglett.2c01992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
To circumvent protecting groups, the site-selective modification
of unprotected glycosides is intensively studied. We show that site-selective
oxidation, followed by treatment of the corresponding trityl hydrazone
with tert-butyl hypochlorite and a H atom donor provides
an effective way to introduce a chloride substituent in a variety
of mono- and disaccharides. The stereoselectivity can be steered,
and a new geminal dichlorination reaction is described as well. This
strategy challenges existing methods that lead to overchlorination.
Collapse
Affiliation(s)
- Ji Zhang
- Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Niels R. M. Reintjens
- Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jayaraman Dhineshkumar
- Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Martin D. Witte
- Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
10
|
Bastian AA, Bastian M, Jäger M, Loznik M, Warszawik EM, Yang X, Tahiri N, Fodran P, Witte MD, Thoma A, Köhler J, Minnaard AJ, Herrmann A. Late-Stage Modification of Aminoglycoside Antibiotics Overcomes Bacterial Resistance Mediated by APH(3') Kinases. Chemistry 2022; 28:e202200883. [PMID: 35388562 PMCID: PMC9321007 DOI: 10.1002/chem.202200883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 12/25/2022]
Abstract
The continuous emergence of antimicrobial resistance is causing a threat to patients infected by multidrug-resistant pathogens. In particular, the clinical use of aminoglycoside antibiotics, broad-spectrum antibacterials of last resort, is limited due to rising bacterial resistance. One of the major resistance mechanisms in Gram-positive and Gram-negative bacteria is phosphorylation of these amino sugars at the 3'-position by O-phosphotransferases [APH(3')s]. Structural alteration of these antibiotics at the 3'-position would be an obvious strategy to tackle this resistance mechanism. However, the access to such derivatives requires cumbersome multi-step synthesis, which is not appealing for pharma industry in this low-return-on-investment market. To overcome this obstacle and combat bacterial resistance mediated by APH(3')s, we introduce a novel regioselective modification of aminoglycosides in the 3'-position via palladium-catalyzed oxidation. To underline the effectiveness of our method for structural modification of aminoglycosides, we have developed two novel antibiotic candidates overcoming APH(3')s-mediated resistance employing only four synthetic steps.
Collapse
Affiliation(s)
- Andreas A. Bastian
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
- AGILeBiotics B.V.De Mudden 149747 AVGroningen (TheNetherlands
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Maria Bastian
- AGILeBiotics B.V.De Mudden 149747 AVGroningen (TheNetherlands
| | - Manuel Jäger
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
| | - Mark Loznik
- Department of Polymer ChemistryZernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningen (TheNetherlands
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Eliza M. Warszawik
- Department of Polymer ChemistryZernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningen (TheNetherlands
- Department of Biomedical Engineering-FB40W. J. Kolff Institute-FB41Antonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Xintong Yang
- Department of Polymer ChemistryZernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningen (TheNetherlands
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Nabil Tahiri
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
| | - Peter Fodran
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
| | - Martin D. Witte
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
| | - Anne Thoma
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Jens Köhler
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Adriaan J. Minnaard
- Department of Chemical BiologyStratingh Institute for ChemistryNijenborgh 79747 AGGroningen (TheNetherlands
| | - Andreas Herrmann
- Department of Polymer ChemistryZernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningen (TheNetherlands
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
11
|
Carder HM, Wang Y, Wendlandt AE. Selective Axial-to-Equatorial Epimerization of Carbohydrates. J Am Chem Soc 2022; 144:11870-11877. [PMID: 35731921 DOI: 10.1021/jacs.2c04743] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radical-mediated transformations have emerged as powerful methods for the synthesis of rare and unnatural branched, deoxygenated, and isomeric sugars. Here, we describe a radical-mediated axial-to-equatorial alcohol epimerization method to transform abundant glycans into rare isomers. The method delivers highly predictable and selective reaction outcomes that are complementary to other sugar isomerization methods. The synthetic utility of isomer interconversion is showcased through expedient glycan synthesis, including one-step glycodiversification. Mechanistic studies reveal that both site- and diastereoselectivities are achieved by highly selective H atom abstraction of equatorially disposed α-hydroxy C-H bonds.
Collapse
Affiliation(s)
- Hayden M Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Reintjens NR, Yakovlieva L, Marinus N, Hekelaar J, Nuti F, Papini AM, Witte MD, Minnaard AJ, Walvoort M. Palladium‐Catalyzed Oxidation of Glucose in Glycopeptides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Niels R.M. Reintjens
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Liubov Yakovlieva
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Nittert Marinus
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Johan Hekelaar
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Francesca Nuti
- University of Florence: Universita degli Studi di Firenze Department of Chemistry “Ugo Schiff” ITALY
| | - Anna Maria Papini
- University of Florence: Universita degli Studi di Firenze Department of Chemistry “Ugo Schiff” ITALY
| | - Martin D. Witte
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Adriaan J. Minnaard
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Marthe Walvoort
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry Nijenborgh 7 9747 AG Groningen NETHERLANDS
| |
Collapse
|
13
|
Li X, Wu J, Tang W. General Strategy for the Synthesis of Rare Sugars via Ru(II)-Catalyzed and Boron-Mediated Selective Epimerization of 1,2- trans-Diols to 1,2- cis-Diols. J Am Chem Soc 2022; 144:3727-3736. [PMID: 35168319 DOI: 10.1021/jacs.1c13399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human glycans are primarily composed of nine common sugar building blocks. On the other hand, several hundred monosaccharides have been discovered in bacteria and most of them are not readily available. The ability to access these rare sugars and the corresponding glycoconjugates can facilitate the studies of various fundamentally important biological processes in bacteria, including interactions between microbiota and the human host. Many rare sugars also exist in a variety of natural products and pharmaceutical reagents with significant biological activities. Although several methods have been developed for the synthesis of rare monosaccharides, most of them involve lengthy steps. Herein, we report an efficient and general strategy that can provide access to rare sugars from commercially available common monosaccharides via a one-step Ru(II)-catalyzed and boron-mediated selective epimerization of 1,2-trans-diols to 1,2-cis-diols. The formation of boronate esters drives the equilibrium toward 1,2-cis-diol products, which can be immediately used for further selective functionalization and glycosylation. The utility of this strategy was demonstrated by the efficient construction of glycoside skeletons in natural products or bioactive compounds.
Collapse
Affiliation(s)
- Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jicheng Wu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Xiao G, Su G, Slawin AMZ, Westwood N. From Biomass to the Karrikins
via
Selective Catalytic Oxidation of Hemicellulose‐Derived Butyl Xylosides and Glucosides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ganyuan Xiao
- School of Chemistry and Biomedical Sciences Research Complex University of St Andrews and EaStCHEM North Haugh St Andrews Fife KY16 9ST UK
| | - Gerard Su
- School of Chemistry and Biomedical Sciences Research Complex University of St Andrews and EaStCHEM North Haugh St Andrews Fife KY16 9ST UK
| | - Alexandra M. Z. Slawin
- School of Chemistry and Biomedical Sciences Research Complex University of St Andrews and EaStCHEM North Haugh St Andrews Fife KY16 9ST UK
| | - Nicholas Westwood
- School of Chemistry and Biomedical Sciences Research Complex University of St Andrews and EaStCHEM North Haugh St Andrews Fife KY16 9ST UK
| |
Collapse
|
15
|
Yang S, Chen C, Chen J, Li C. Total Synthesis of the Potent and Broad-Spectrum Antibiotics Amycolamicin and Kibdelomycin. J Am Chem Soc 2021; 143:21258-21263. [PMID: 34879199 DOI: 10.1021/jacs.1c11477] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The complex and intriguing structures of the antibiotics amycolamicin and kibdelomycin are herein confirmed through total synthesis. Careful titration of the synthetic products reveals that kibdelomycin is the salt form of amycolamicin. This synthesis employs a highly convergent strategy, which provides a modular approach for further SAR studies of this class of antibiotics.
Collapse
Affiliation(s)
- Shaoqiang Yang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Chenglong Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Jie Chen
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Chao Li
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Gorelik DJ, Dimakos V, Adrianov T, Taylor MS. Photocatalytic, site-selective oxidations of carbohydrates. Chem Commun (Camb) 2021; 57:12135-12138. [PMID: 34723300 DOI: 10.1039/d1cc05124e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Site-selective oxidations of carbohydrates, employing acridinium photocatalysis and quinuclidine hydrogen atom transfer catalysis, are presented. Protocols have been developed for oxidations of all-equatorial carbohydrates as well as those containing cis-1,2-diols. Site-selectivity reflects the relative rates of hydrogen atom transfer from the carbohydrate C-H bonds, and can be enhanced using a phosphate hydrogen-bonding or boronic acid catalyst.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S 3H6, Canada.
| | - Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S 3H6, Canada.
| | - Timur Adrianov
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S 3H6, Canada.
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
17
|
Suh CE, Carder HM, Wendlandt AE. Selective Transformations of Carbohydrates Inspired by Radical-Based Enzymatic Mechanisms. ACS Chem Biol 2021; 16:1814-1828. [PMID: 33988380 DOI: 10.1021/acschembio.1c00190] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enzymes are a longstanding source of inspiration for synthetic reaction development. However, enzymatic reactivity and selectivity are frequently untenable in a synthetic context, as the principles that govern control in an enzymatic setting often do not translate to small molecule catalysis. Recent synthetic methods have revealed the viability of using small molecule catalysts to promote highly selective radical-mediated transformations of minimally protected sugar substrates. These transformations share conceptual similarities with radical SAM enzymes found in microbial carbohydrate biosynthesis and present opportunities for synthetic chemists to access microbial and unnatural carbohydrate building blocks without the need for protecting groups or lengthy synthetic sequences. Here, we highlight strategies through which radical reaction pathways can enable the site-, regio-, and diastereoselective transformation of minimally protected carbohydrates in both synthetic and enzymatic systems.
Collapse
Affiliation(s)
- Carolyn E. Suh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hayden M. Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E. Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Carder HM, Suh CE, Wendlandt AE. A Unified Strategy to Access 2- and 4-Deoxygenated Sugars Enabled by Manganese-Promoted 1,2-Radical Migration. J Am Chem Soc 2021; 143:13798-13805. [PMID: 34406756 DOI: 10.1021/jacs.1c05993] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The selective manipulation of carbohydrate scaffolds is challenging due to the presence of multiple, nearly chemically indistinguishable O-H and C-H bonds. As a result, protecting-group-based synthetic strategies are typically necessary for carbohydrate modification. Here we report a concise semisynthetic strategy to access diverse 2- and 4-deoxygenated carbohydrates without relying on the exhaustive use of protecting groups to achieve site-selective reaction outcomes. Our approach leverages a Mn2+-promoted redox isomerization step, which proceeds via sugar radical intermediates accessed by neutral hydrogen atom abstraction under visible light-mediated photoredox conditions. The resulting deoxyketopyranosides feature chemically distinguishable functional groups and are readily transformed into diverse carbohydrate structures. To showcase the versatility of this method, we report expedient syntheses of the rare sugars l-ristosamine, l-olivose, l-mycarose, and l-digitoxose from commercial l-rhamnose. The findings presented here validate the potential for radical intermediates to facilitate the selective transformation of carbohydrates and showcase the step and efficiency advantages attendant to synthetic strategies that minimize a reliance upon protecting groups.
Collapse
Affiliation(s)
- Hayden M Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carolyn E Suh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Turner JA, Rosano N, Gorelik DJ, Taylor MS. Synthesis of Ketodeoxysugars from Acylated Pyranosides Using Photoredox Catalysis and Hydrogen Atom Transfer. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03050] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Julia A. Turner
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Nicholas Rosano
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Daniel J. Gorelik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
20
|
Expanding the Enzyme Repertoire for Sugar Nucleotide Epimerization: The CDP-Tyvelose 2-Epimerase from Thermodesulfatator atlanticus for Glucose/Mannose Interconversion. Appl Environ Microbiol 2021; 87:AEM.02131-20. [PMID: 33277270 PMCID: PMC7851689 DOI: 10.1128/aem.02131-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Epimerization of sugar nucleotides is central to the structural diversification of monosaccharide building blocks for cellular biosynthesis. Epimerase applicability to carbohydrate synthesis can be limited, however, by the high degree of substrate specificity exhibited by most sugar nucleotide epimerases. Here, we discovered a promiscuous type of CDP-tyvelose 2-epimerase (TyvE)-like enzyme that promotes C2-epimerization in all nucleotide (CDP, UDP, GDP, ADP, TDP)-activated forms of d-glucose. This new epimerase, originating from Thermodesulfatator atlanticus, is a functional homodimer that contains one tightly bound NAD+/subunit and shows optimum activity at 70°C and pH 9.5. The enzyme exhibits a k cat with CDP-dglucose of ∼1.0 min-1 (pH 7.5, 60°C). To characterize the epimerase kinetically and probe its substrate specificity, we developed chemo-enzymatic syntheses for CDP-dmannose, CDP-6-deoxy-dglucose, CDP-3-deoxy-dglucose and CDP-6-deoxy-dxylo-hexopyranos-4-ulose. Attempts to obtain CDP-dparatose and CDP-dtyvelose were not successful. Using high-resolution carbohydrate analytics and in situ NMR to monitor the enzymatic conversions (60°C, pH 7.5), we show that the CDP-dmannose/CDP-dglucose ratio at equilibrium is 0.67 (± 0.1), determined from the kinetic Haldane relationship and directly from the reaction. We further show that deoxygenation at sugar C6 enhances the enzyme activity 5-fold compared to CDP-dglucose whereas deoxygenation at C3 renders the substrate inactive. Phylogenetic analysis places the T. atlanticus epimerase into a distinct subgroup within the sugar nucleotide epimerase family of SDR (short-chain dehydrogenases/reductases), for which the current study now provides the functional context. Collectively, our results expand an emerging toolbox of epimerase-catalyzed reactions for sugar nucleotide synthesis.IMPORTANCE Epimerases of the sugar nucleotide-modifying class of enzymes have attracted considerable interest in carbohydrate (bio)chemistry, for the mechanistic challenges and the opportunities for synthesis involved in the reactions catalyzed. Discovery of new epimerases with expanded scope of sugar nucleotide substrates used is important to promote the mechanistic inquiry and can facilitate the development of new enzyme applications. Here, a CDP-tyvelose 2-epimerase-like enzyme from Thermodesulfatator atlanticus is shown to catalyze sugar C2 epimerization in CDP-glucose and other nucleotide-activated forms of dglucose. The reactions are new to nature in the context of enzymatic sugar nucleotide modification. The current study explores the substrate scope of the discovered C2-epimerase and, based on modeling, suggests structure-function relationships that may be important for specificity and catalysis.
Collapse
|
21
|
Wan IC(S, Hamlin TA, Eisink NNHM, Marinus N, Boer C, Vis CA, Codée JDC, Witte MD, Minnaard AJ, Bickelhaupt FM. On the Origin of Regioselectivity in Palladium‐Catalyzed Oxidation of Glucosides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ieng Chim (Steven) Wan
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Institution Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Institution Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
| | - Niek N. H. M. Eisink
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - Nittert Marinus
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - Casper Boer
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden, The Netherlands
| | - Christopher A. Vis
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden, The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden, The Netherlands
| | - Martin D. Witte
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Institution Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
- Institute for Molecules and Materials (IMM) Radboud University Heyendaalseweg 135 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
22
|
|
23
|
Wang J, Shao P, Lin X, Ma B, Wen J, Zhang X. Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic Resolution Combined. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiang Wang
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School University Town Nanshan District Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Pan‐Lin Shao
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Xin Lin
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Baode Ma
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Jialin Wen
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| |
Collapse
|
24
|
Wang J, Shao P, Lin X, Ma B, Wen J, Zhang X. Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic Resolution Combined. Angew Chem Int Ed Engl 2020; 59:18166-18171. [DOI: 10.1002/anie.202006661] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/17/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Jiang Wang
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School University Town Nanshan District Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Pan‐Lin Shao
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Xin Lin
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Baode Ma
- College of Innovation and Entrepreneurship Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Jialin Wen
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
| |
Collapse
|
25
|
Marinus N, Tahiri N, Duca M, Mouthaan LMCM, Bianca S, van den Noort M, Poolman B, Witte MD, Minnaard AJ. Stereoselective Protection-Free Modification of 3-Keto-saccharides. Org Lett 2020; 22:5622-5626. [PMID: 32635733 PMCID: PMC7372562 DOI: 10.1021/acs.orglett.0c01986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 01/15/2023]
Abstract
Unprotected 3-keto-saccharides have become readily accessible via site-selective oxidation, but their protection-free functionalization is relatively unexplored. Here we show that protecting groups are obsolete in a variety of stereoselective modifications of our model substrate methyl α-glucopyranoside. This allows the preparation of rare sugars and the installation of click handles and reactive groups. To showcase the applicability of the methodology, maltoheptaose has been converted into a chemical probe, and the rare sugar evalose has been synthesized.
Collapse
Affiliation(s)
- Nittert Marinus
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Nabil Tahiri
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Margherita Duca
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - L. M. C. Marc Mouthaan
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Simona Bianca
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Marco van den Noort
- Department
of Biochemistry, Groningen Biochemistry & Biotechnology Institute, University of Groningen, Groningen 9747 AB, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry, Groningen Biochemistry & Biotechnology Institute, University of Groningen, Groningen 9747 AB, The Netherlands
| | - Martin D. Witte
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
26
|
Nakamura K, Zhu S, Komatsu K, Hattori M, Iwashima M. Deglycosylation of the Isoflavone C-Glucoside Puerarin by a Combination of Two Recombinant Bacterial Enzymes and 3-Oxo-Glucose. Appl Environ Microbiol 2020; 86:e00607-20. [PMID: 32385077 PMCID: PMC7357486 DOI: 10.1128/aem.00607-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
A human intestinal bacterium strain related to Dorea species, PUE, can metabolize the isoflavone C-glucoside puerarin (daidzein 8-C-glucoside) to daidzein and glucose. We reported previously that 3″-oxo-puerarin is an essential reaction intermediate in enzymatic puerarin degradation, and we characterized a bacterial enzyme, the DgpB-DgpC complex, that cleaved the C-glycosidic bond in 3″-oxo-puerarin. However, the exact enzyme catalyzing the oxidation of the C-3″ hydroxyl in puerarin has not been identified. In this study, we demonstrated that recombinant DgpA, a Gfo/Idh/MocA family oxidoreductase, catalyzed puerarin oxidation in the presence of 3-oxo-glucose as the hydride acceptor. In the redox reaction, NAD(H) functioned as the cofactor, which bound tightly but noncovalently to DgpA. Kinetics analysis of DgpA revealed that the reaction proceeded via a ping-pong mechanism. Enzymatic C-deglycosylation of puerarin was achieved by a combination of recombinant DgpA, the DgpB-DgpC complex, and 3-oxo-glucose. In addition, the metabolite derived from the sugar moiety in the 3″-oxo-puerarin-cleaving reaction catalyzed by the DgpB-DgpC complex was characterized as 1,5-anhydro-d-erythro-hex-1-en-3-ulose, suggesting that the C-glycosidic linkage is cleaved through a β-elimination-like mechanism.IMPORTANCE One important role of the gut microbiota is to metabolize dietary nutrients and supplements such as flavonoid glycosides. Ingested glycosides are metabolized by intestinal bacteria to more-absorbable aglycones and further degradation products that show beneficial effects in humans. Although numerous glycoside hydrolases that catalyze O-deglycosylation have been reported, enzymes responsible for C-deglycosylation are still limited. In this study, we characterized enzymes involved in the C-deglycosylation of puerarin from a human intestinal bacterium, PUE. Here, we report the purification and characterization of a recombinant oxidoreductase involved in C-glucoside degradation. This study provides new insights for the elucidation of mechanisms of enzymatic C-deglycosylation.
Collapse
Affiliation(s)
- Kenichi Nakamura
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shu Zhu
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Masao Hattori
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Makoto Iwashima
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|
27
|
Wang Y, Carder HM, Wendlandt AE. Synthesis of rare sugar isomers through site-selective epimerization. Nature 2020; 578:403-408. [DOI: 10.1038/s41586-020-1937-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022]
|
28
|
Shimada N, Nakamura Y, Ochiai T, Makino K. Catalytic Activation of Cis-Vicinal Diols by Boronic Acids: Site-Selective Acylation of Carbohydrates. Org Lett 2019; 21:3789-3794. [DOI: 10.1021/acs.orglett.9b01231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Takayuki Ochiai
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
29
|
Ligand-controlled, transition-metal catalyzed site-selective modification of glycosides. Carbohydr Res 2019; 474:16-33. [DOI: 10.1016/j.carres.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
|
30
|
Zhang J, Eisink NNHM, Witte MD, Minnaard AJ. Regioselective Manipulation of GlcNAc Provides Allosamine, Lividosamine, and Related Compounds. J Org Chem 2019; 84:516-525. [PMID: 30569712 PMCID: PMC6343366 DOI: 10.1021/acs.joc.8b01949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 01/13/2023]
Abstract
Palladium-catalyzed oxidation of isopropyl N-acetyl-α-d-glucosamine (GlcNAc) is used to prepare the rare sugars allosamine, lividosamine, and related compounds with unprecedented selectivity. The Passerini reaction applied on 3-keto-GlcNAc provides an entry into branching of the carbon skeleton in this compound.
Collapse
Affiliation(s)
- Ji Zhang
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Niek N. H. M. Eisink
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Martin D. Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
31
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
32
|
O'Brien P, Lopez‐Tejedor D, Benavente R, Palomo JM. Pd Nanoparticles‐Polyethylenemine‐Lipase Bionanohybrids as Heterogeneous Catalysts for Selective Oxidation of Aromatic Alcohols. ChemCatChem 2018. [DOI: 10.1002/cctc.201801294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Pearse O'Brien
- Department of BiocatalysisInstitute of Catalysis (CSIC) Campus UAM Madrid 28049 Spain
| | - David Lopez‐Tejedor
- Department of BiocatalysisInstitute of Catalysis (CSIC) Campus UAM Madrid 28049 Spain
| | - Rocio Benavente
- Department of BiocatalysisInstitute of Catalysis (CSIC) Campus UAM Madrid 28049 Spain
| | - Jose M. Palomo
- Department of BiocatalysisInstitute of Catalysis (CSIC) Campus UAM Madrid 28049 Spain
| |
Collapse
|
33
|
Shelke YG, Yashmeen A, Gholap AVA, Gharpure SJ, Kapdi AR. Homogeneous Catalysis: A Powerful Technology for the Modification of Important Biomolecules. Chem Asian J 2018; 13:2991-3013. [PMID: 30063286 DOI: 10.1002/asia.201801020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Homogeneous catalysis plays an important and ubiquitous role in the synthesis of simple and complex molecules, including drug compounds, natural products, and agrochemicals. In recent years, the wide-reaching importance of homogeneous catalysis has made it an indispensable tool for the modification of biomolecules, such as carbohydrates (sugars), amino acids, peptides, nucleosides, nucleotides, and steroids. Such a synthetic strategy offers several advantages, which have led to the development of new molecules of biological relevance at a rapid rate relative to the number of available synthetic methods. Given the powerful nature of homogeneous catalysis in effecting these synthetic transformations, this Focus Review has been compiled to highlight these important developments.
Collapse
Affiliation(s)
- Yogesh G Shelke
- Department of Chemistry, Indian Institute of Technology, Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Afsana Yashmeen
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Aniket V A Gholap
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology, Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| |
Collapse
|
34
|
Ho WC, Chung K, Ingram AJ, Waymouth RM. Pd-Catalyzed Aerobic Oxidation Reactions: Strategies To Increase Catalyst Lifetimes. J Am Chem Soc 2018; 140:748-757. [PMID: 29244945 DOI: 10.1021/jacs.7b11372] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The palladium complex [(neocuproine)Pd(μ-OAc)]2[OTf]2 (1, neocuproine = 2,9-dimethyl-1,10-phenanthroline) is an effective catalyst precursor for the selective oxidation of primary and secondary alcohols, vicinal diols, polyols, and carbohydrates. Both air and benzoquinone can be used as terminal oxidants, but aerobic oxidations are accompanied by oxidative degradation of the neocuproine ligand, thus necessitating high Pd loadings. Several strategies to improve aerobic catalyst lifetimes were devised, guided by mechanistic studies of catalyst deactivation. These studies implicate a radical autoxidation mechanism initiated by H atom abstraction from the neocuproine ligand. Ligand modifications designed to retard H atom abstractions as well as the addition of sacrificial H atom donors increase catalyst lifetimes and lead to higher turnover numbers (TON) under aerobic conditions. Additional investigations revealed that the addition of benzylic hydroperoxides or styrene leads to significant increases in TON as well. Mechanistic studies suggest that benzylic hydroperoxides function as H atom donors and that styrene is effective at intercepting Pd hydrides. These strategies enabled the selective aerobic oxidation of polyols on preparative scales using as little as 0.25 mol % of Pd, a major improvement over previous work.
Collapse
Affiliation(s)
- Wilson C Ho
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Kevin Chung
- Department of Chemistry, Stanford University , Stanford, California 94305, United States.,Formosa Plastics Corporation , 201 Formosa Drive, Point Comfort, Texas 77978, United States
| | - Andrew J Ingram
- Department of Chemistry, Stanford University , Stanford, California 94305, United States.,James R. Randall Research Center, Archer Daniels Midland Company , Decatur, Illinois 62521, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
35
|
Song W, Cai J, Zou X, Wang X, Hu J, Yin J. Applications of controlled inversion strategies in carbohydrate synthesis. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Wang D, Weinstein AB, White PB, Stahl SS. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chem Rev 2017; 118:2636-2679. [PMID: 28975795 DOI: 10.1021/acs.chemrev.7b00334] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palladium-catalyzed aerobic oxidation reactions have been the focus of industrial application and extensive research efforts for nearly 60 years. A significant transition occurred in this field approximately 20 years ago, with the introduction of catalysts supported by ancillary ligands. The ligands play crucial roles in the reactions, including promotion of direct oxidation of palladium(0) by O2, bypassing the typical requirement for Cu salts or related redox cocatalysts to facilitate oxidation of the reduced Pd catalyst; facilitation of key bond-breaking and bond-forming steps during substrate oxidation; and modulation of chemo-, regio-, or stereoselectivity of a reaction. The use of ligands has contributed to significant expansion of the scope of accessible aerobic oxidation reactions. Increased understanding of the role of ancillary ligands should promote the development of new synthetic transformations, enable improved control over the reaction selectivity, and improve catalyst activity and stability. This review surveys the different ligands that have been used to support palladium-catalyzed aerobic oxidation reactions and, where possible, describes mechanistic insights into the role played by the ancillary ligand.
Collapse
Affiliation(s)
- Dian Wang
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Adam B Weinstein
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Paul B White
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Shannon S Stahl
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
37
|
Eisink NNM, Witte MD, Minnaard AJ. Regioselective Carbohydrate Oxidations: A Nuclear Magnetic Resonance (NMR) Study on Selectivity, Rate, and Side-Product Formation. ACS Catal 2017; 7:1438-1445. [PMID: 28367353 PMCID: PMC5370080 DOI: 10.1021/acscatal.6b03459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/14/2017] [Indexed: 01/14/2023]
Abstract
Palladium/neocuproine catalyzed oxidation of glucosides shows an excellent selectivity for the C3-OH, but in mannosides and galactosides, unselective oxidation was initially observed. For further application in more-complex (oligo)saccharides, a better understanding of the reaction, in terms of selectivity and reactivity, is required. Therefore, a panel of different glycosides was synthesized, subjected to palladium/neocuproine catalyzed oxidation and subsequently analyzed by qNMR. Surprisingly, all studied glucosides, mannosides, galactosides, and xylosides show selective oxidation of the C3-OH. However, subsequent reaction of the resulting ketone moiety is the main culprit for side product formation. Measures are reported to suppress these side reactions. The observed differences in reaction rate, glucosides being the most rapidly oxidized, may be exploited for the selective oxidation of complex oligosaccharides.
Collapse
Affiliation(s)
- Niek N.
H. M. Eisink
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG, Groningen, The Netherlands
| | - Martin D. Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG, Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG, Groningen, The Netherlands
| |
Collapse
|
38
|
Tong ML, Huber F, Taghuo Kaptouom ES, Cellnik T, Kirsch SF. Enhanced site-selectivity in acylation reactions with substrate-optimized catalysts on solid supports. Chem Commun (Camb) 2017; 53:3086-3089. [DOI: 10.1039/c7cc00655a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A concept for site-selective acylation is presented, using substrate-optimized DMAP–peptide conjugates on a solid support.
Collapse
Affiliation(s)
- My Linh Tong
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | - Florian Huber
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | | | - Torsten Cellnik
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | - Stefan F. Kirsch
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| |
Collapse
|
39
|
Jumde VR, Eisink NNHM, Witte MD, Minnaard AJ. C3 Epimerization of Glucose, via Regioselective Oxidation and Reduction. J Org Chem 2016; 81:11439-11443. [DOI: 10.1021/acs.joc.6b02074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Varsha R. Jumde
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Niek N. H. M. Eisink
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Martin D. Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|