1
|
Mattinen M, Chen W, Dawley RA, Verheijen MA, Hensen EJM, Kessels WMM, Bol AA. Structural Aspects of MoS x Prepared by Atomic Layer Deposition for Hydrogen Evolution Reaction. ACS Catal 2024; 14:10089-10101. [PMID: 38988655 PMCID: PMC11232007 DOI: 10.1021/acscatal.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Molybdenum sulfides (MoS x ) in both crystalline and amorphous forms are promising earth-abundant electrocatalysts for hydrogen evolution reaction (HER) in acid. Plasma-enhanced atomic layer deposition was used to prepare thin films of both amorphous MoS x with adjustable S/Mo ratio (2.8-4.7) and crystalline MoS2 with tailored crystallinity, morphology, and electrical properties. All the amorphous MoS x films transform into highly HER-active amorphous MoS2 (overpotential 210-250 mV at 10 mA/cm2 in 0.5 M H2SO4) after electrochemical activation at approximately -0.3 V vs reversible hydrogen electrode. However, the initial film stoichiometry affects the structure and consequently the HER activity and stability. The material changes occurring during activation are studied using ex situ and quasi in situ X-ray photoelectron spectroscopy. Possible structures of as-deposited and activated catalysts are proposed. In contrast to amorphous MoS x , no changes in the structure of crystalline MoS2 catalysts are observed. The overpotentials of the crystalline films range from 300 to 520 mV at 10 mA/cm2, being the lowest for the most defective catalysts. This work provides a practical method for deposition of tailored MoS x HER electrocatalysts as well as new insights into their activity and structure.
Collapse
Affiliation(s)
- Miika Mattinen
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Wei Chen
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rebecca A. Dawley
- Department
of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Marcel A. Verheijen
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Eurofins
Materials Science Netherlands, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - W. M. M. Kessels
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ageeth A. Bol
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department
of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
2
|
Harris-Lee TR, Turvey T, Jayamaha G, Kang M, Marken F, Johnson AL, Zhang J, Bentley CL. Optimizing Amorphous Molybdenum Sulfide Thin Film Electrocatalysts: Trade-Off between Specific Activity and Microscopic Porosity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33620-33632. [PMID: 38888466 DOI: 10.1021/acsami.4c06308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Amorphous molybdenum sulfide (a-MoSx) is a promising candidate to replace noble metals as electrocatalysts for the hydrogen evolution reaction (HER) in electrochemical water splitting. So far, understanding of the activity of a-MoSx in relation to its physical (e.g., porosity) and chemical (e.g., Mo/S bonding environments) properties has mostly been derived from bulk electrochemical measurements, which provide limited information about electrode materials that possess microscopic structural heterogeneities. To overcome this limitation, herein, scanning electrochemical cell microscopy (SECCM) has been deployed to characterize the microscopic electrochemical activity of a-MoSx thin films (ca. 200 nm thickness), which possess a significant three-dimensional structure (i.e., intrinsic porosity) when produced by electrodeposition. A novel two-step SECCM protocol is designed to quantitatively determine spatially resolved electrochemical activity and electrochemical surface area (ECSA) within a single, high-throughput measurement. It is shown for the first time that although the highest surface area (e.g., most porous) regions of the a-MoSx film possess the highest total activity (measured by the electrochemical current), they do not possess the highest specific activity (measured by the ECSA-normalized current density). Instead, the areas of highest specific activity are localized at/around circular structures, coined "pockmarks", which are tens to hundreds of micrometers in size and ubiquitous to a-MoSx films produced by electrodeposition. By coupling this technique with structural and elemental composition analysis techniques (scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy) and correlating ECSA with activity and specific activity across SECCM scans, this work furthers the understanding of structure-activity relations in a-MoSx and highlights the importance of local measurements for the systematic and rational design of thin film catalyst materials.
Collapse
Affiliation(s)
- Thom R Harris-Lee
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Tom Turvey
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Gunani Jayamaha
- School of Chemistry, University of Sydney, Sydney NSW 2006, Australia
| | - Minkyung Kang
- School of Chemistry, University of Sydney, Sydney NSW 2006, Australia
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Andrew L Johnson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | | |
Collapse
|
3
|
Lipovka A, Fatkullin M, Averkiev A, Pavlova M, Adiraju A, Weheabby S, Al-Hamry A, Kanoun O, Pašti I, Lazarevic-Pasti T, Rodriguez RD, Sheremet E. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Crit Rev Anal Chem 2024; 54:110-134. [PMID: 35435777 DOI: 10.1080/10408347.2022.2063683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olfa Kanoun
- Technische Universität Chemnitz, Chemnitz, Germany
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarevic-Pasti
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Vinca, Serbia
| | | | | |
Collapse
|
4
|
Kety K, Namsrai T, Nawaz H, Rostami S, Seriani N. Amorphous MoS2 from a machine learning inter-atomic potential. J Chem Phys 2024; 160:204709. [PMID: 38804492 DOI: 10.1063/5.0211841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Amorphous molybdenum disulfide has shown potential as a hydrogen evolution catalyst, but the origin of its high activity is unclear, as is its atomic structure. Here, we have developed a classical inter-atomic potential using the charge equilibration neural network method, and we have employed it to generate atomic models of amorphous MoS2 by melting and quenching processes. The amorphous phase contains an abundance of molybdenum and sulfur atoms in low coordination. Besides the 6-coordinated molybdenum typical of the crystalline phases, a substantial fraction displays coordinations 4 and 5. The amorphous phase is also characterized by the appearance of direct S-S bonds. Density functional theory shows that the amorphous phase is metallic, with a considerable contribution of the 4-coordinated molybdenum to the density of states at the Fermi level. S-S bonds are related to the reduction of sulfur, with the excess electrons spread over several molybdenum atoms. Moreover, S-S bond formation is associated with a distinctive broadening of the 3s states, which could be exploited for experimental characterization of the amorphous phases. The large variety of local environments and the high density of electronic states at the Fermi level may play a positive role in increasing the electrocatalytic activity of this compound.
Collapse
Affiliation(s)
- Kossi Kety
- ICTP-East African Institute for Fundamental Research (EAIFR), University of Rwanda, Kigali, Rwanda
| | - Tsogbadrakh Namsrai
- Department of Physics, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Huma Nawaz
- The Abdus Salam ICTP, I-34151 Trieste, Italy
- Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - Samare Rostami
- The Abdus Salam ICTP, I-34151 Trieste, Italy
- European Theoretical Spectroscopy Facility, Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
5
|
Escalera-López D, Iffelsberger C, Zlatar M, Novčić K, Maselj N, Van Pham C, Jovanovič P, Hodnik N, Thiele S, Pumera M, Cherevko S. Allotrope-dependent activity-stability relationships of molybdenum sulfide hydrogen evolution electrocatalysts. Nat Commun 2024; 15:3601. [PMID: 38684654 PMCID: PMC11058198 DOI: 10.1038/s41467-024-47524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Molybdenum disulfide (MoS2) is widely regarded as a competitive hydrogen evolution reaction (HER) catalyst to replace platinum in proton exchange membrane water electrolysers (PEMWEs). Despite the extensive knowledge of its HER activity, stability insights under HER operation are scarce. This is paramount to ensure long-term operation of Pt-free PEMWEs, and gain full understanding on the electrocatalytically-induced processes responsible for HER active site generation. The latter are highly dependent on the MoS2 allotropic phase, and still under debate. We rigorously assess these by simultaneously monitoring Mo and S dissolution products using a dedicated scanning flow cell coupled with downstream analytics (ICP-MS), besides an electrochemical mass spectrometry setup for volatile species analysis. We observe that MoS2 stability is allotrope-dependent: lamellar-like MoS2 is highly unstable under open circuit conditions, whereas cluster-like amorphous MoS3-x instability is induced by a severe S loss during the HER and undercoordinated Mo site generation. Guidelines to operate non-noble PEMWEs are therefore provided based on the stability number metrics, and an HER mechanism which accounts for Mo and S dissolution pathways is proposed.
Collapse
Affiliation(s)
- Daniel Escalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany.
| | - Christian Iffelsberger
- Future Energy and Innovation Technology, Central European Institute of Technology, Brno University of Technology, Purkiňova 656/123, 61200, Brno, Czech Republic
| | - Matej Zlatar
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Katarina Novčić
- Future Energy and Innovation Technology, Central European Institute of Technology, Brno University of Technology, Purkiňova 656/123, 61200, Brno, Czech Republic
| | - Nik Maselj
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Chuyen Van Pham
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
| | - Primož Jovanovič
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Simon Thiele
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Martin Pumera
- Future Energy and Innovation Technology, Central European Institute of Technology, Brno University of Technology, Purkiňova 656/123, 61200, Brno, Czech Republic
- Energy Research Institute @ NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore, Singapore
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany.
| |
Collapse
|
6
|
Ma Y, Yang Q, Qi J, Zhang Y, Gao Y, Zeng Y, Jiang N, Sun Y, Qu K, Fang W, Li Y, Lu X, Zhi C, Qiu J. Surface atom knockout for the active site exposure of alloy catalyst. Proc Natl Acad Sci U S A 2024; 121:e2319525121. [PMID: 38564637 PMCID: PMC11009663 DOI: 10.1073/pnas.2319525121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.
Collapse
Affiliation(s)
- Yi Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jun Qi
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yong Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yuliang Gao
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - You Zeng
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Na Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang110036, China
| | - Keqi Qu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Wenhui Fang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ying Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Xuejun Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong999077, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
7
|
Batool S, Langer M, Myakala SN, Heiland M, Eder D, Streb C, Cherevan A. Thiomolybdate Clusters: From Homogeneous Catalysis to Heterogenization and Active Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305730. [PMID: 37899494 PMCID: PMC11475511 DOI: 10.1002/adma.202305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/09/2023] [Indexed: 10/31/2023]
Abstract
Thiomolybdates are molecular molybdenum-sulfide clusters formed from Mo centers and sulfur-based ligands. For decades, they have attracted the interest of synthetic chemists due to their unique structures and their relevance in biological systems, e.g., as reactive sites in enzymes. More recently, thiomolybdates are explored from the catalytic point of view and applied as homogeneous and molecular mimics of heterogeneous molybdenum sulfide catalysts. This review summarizes prominent examples of thiomolybdate-based electro- and photocatalysis and provides a comprehensive analysis of their reactivities under homogeneous and heterogenized conditions. Active sites of thiomolybdates relevant for the hydrogen evolution reaction are examined, aiming to shed light on the link between cluster structure and performance. The shift from solution-phase to surface-supported thiomolybdates is discussed with a focus on applications in electrocatalysis and photocatalysis. The outlook highlights current trends and emerging areas of thiomolybdate research, ending with a summary of challenges and key takeaway messages based on the state-of-the-art research.
Collapse
Affiliation(s)
- Samar Batool
- Institute of Materials ChemistryTU WienGetreidemarkt 9/BC/02Vienna1060Austria
| | - Marcel Langer
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐1455128MainzGermany
| | | | - Magdalena Heiland
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐1455128MainzGermany
| | - Dominik Eder
- Institute of Materials ChemistryTU WienGetreidemarkt 9/BC/02Vienna1060Austria
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐1455128MainzGermany
| | - Alexey Cherevan
- Institute of Materials ChemistryTU WienGetreidemarkt 9/BC/02Vienna1060Austria
| |
Collapse
|
8
|
Wang Y, Xu Y, Cheng C, Zhang B, Zhang B, Yu Y. Phase-Regulated Active Hydrogen Behavior on Molybdenum Disulfide for Electrochemical Nitrate-to-Ammonia Conversion. Angew Chem Int Ed Engl 2024; 63:e202315109. [PMID: 38059554 DOI: 10.1002/anie.202315109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Electrochemical reduction of nitrate waste is promising for environmental remediation and ammonia preparation. This process includes multiple hydrogenation steps, and thus the active hydrogen behavior on the surface of the catalyst is crucial. The crystal phase referred to the atomic arrangements in crystals has a great effect on active hydrogen, but the influence of the crystal phase on nitrate reduction is still unclear. Herein, enzyme-mimicking MoS2 in different crystal phases (1T and 2H) are used as models. The Faradaic efficiency of ammonia reaches ≈90 % over 1T-MoS2 , obviously outperforming that of 2H-MoS2 (27.31 %). In situ Raman spectra and theoretical calculations reveal that 1T-MoS2 produces more active hydrogen on edge S sites at a more positive potential and conducts an effortless pathway from nitrate to ammonia instead of multiple energetically demanding hydrogenation steps (such as *HNO to *HNOH) performed on 2H-MoS2 .
Collapse
Affiliation(s)
- Yuting Wang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Yue Xu
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Chuanqi Cheng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University Tianjin, 300072 (China)
| | - Baoshun Zhang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
- Tianjin University-Asia Silicon Joint Research Center of Ammonia-Hydrogen New Energy, Qinghai, 810007, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Yifu Yu
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
- Tianjin University-Asia Silicon Joint Research Center of Ammonia-Hydrogen New Energy, Qinghai, 810007, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
9
|
Zhao JW, Wang HY, Feng L, Zhu JZ, Liu JX, Li WX. Crystal-Phase Engineering in Heterogeneous Catalysis. Chem Rev 2024; 124:164-209. [PMID: 38044580 DOI: 10.1021/acs.chemrev.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.
Collapse
Affiliation(s)
- Jian-Wen Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Yue Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Ze Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xun Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Wei-Xue Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
10
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Zhao Y, Zheng X, Gao P, Li H. Recent advances in defect-engineered molybdenum sulfides for catalytic applications. MATERIALS HORIZONS 2023; 10:3948-3999. [PMID: 37466487 DOI: 10.1039/d3mh00462g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemical energy conversion and storage driven by renewable energy sources is drawing ever-increasing interest owing to the needs of sustainable development. Progress in the related electrochemical reactions relies on highly active and cost-effective catalysts to accelerate the sluggish kinetics. A substantial number of catalysts have been exploited recently, thanks to the advances in materials science and engineering. In particular, molybdenum sulfide (MoSx) furnishes a classic platform for studying catalytic mechanisms, improving catalytic performance and developing novel catalytic reactions. Herein, the recent theoretical and experimental progress of defective MoSx for catalytic applications is reviewed. This article begins with a brief description of the structure and basic catalytic applications of MoS2. The employment of defective two-dimensional and non-two-dimensional MoSx catalysts in the hydrogen evolution reaction (HER) is then reviewed, with a focus on the combination of theoretical and experimental tools for the rational design of defects and understanding of the reaction mechanisms. Afterward, the applications of defective MoSx as catalysts for the N2 reduction reaction, the CO2 reduction reaction, metal-sulfur batteries, metal-oxygen/air batteries, and the industrial hydrodesulfurization reaction are discussed, with a special emphasis on the synergy of multiple defects in achieving performance breakthroughs. Finally, the perspectives on the challenges and opportunities of defective MoSx for catalysis are presented.
Collapse
Affiliation(s)
- Yunxing Zhao
- School of Materials, Sun Yat-sen University, Guangzhou 510275, China.
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, California 94305, USA.
| | - Pingqi Gao
- School of Materials, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 637553, Singapore
- Centre for Micro-/Nano-electronics (NOVITAS), School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
12
|
Zhou J, Leung TK, Peng Z, Li X, Chen K, Yuan J, Leung MKH. Balancing Volmer Step by Superhydrophilic Dual-Active Domains for Enhanced Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300441. [PMID: 37118851 DOI: 10.1002/smll.202300441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The reaction kinetics of hydrogen evolution reaction (HER) is largely determined by balancing the Volmer step in alkaline media. Bifunctionality as a proposed strategy can divide the work of water dissociation and intermediates (OH* and H*) adsorption/desorption. However, sluggish OH* desorption plagues water re-adsorption, which leads to poisoning effects of active sites. Some active sites may even directly act as spectators and do not participate in the reaction. Furthermore, the activity comparison under approximate nanostructure between bifunctional effect and single-exposed active sites is not fully understood. Here, a facile three-step strategy is adopted to successfully grow molybdenum disulfide (MoS2 ) on cobalt-containing nitrogen-doped carbon nanotubes (Co-NCNTs), forming obvious dual active domains. The active sites on domains of Co-NCNTs and MoS2 and the tuned electronic structure at the heterointerface trigger the bifunctional effect to balance the Volmer step and improve the catalytic activity. The HER driven by the bifunctional effect can significantly optimize the Gibbs free energy of water dissociation and hydrogen adsorption, resulting in fast reaction kinetics and superior catalytic performance. As a result, the Co-NCNTs/MoS2 catalyst outperforms other HER electrocatalysts with low overpotential (58 and 84 mV at 10 mA cm-2 in alkaline and neutral conditions, respectively), exceptional stability, and negligible degradation.
Collapse
Affiliation(s)
- Jinsong Zhou
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Tsz Kei Leung
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zehua Peng
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xin Li
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Keda Chen
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiaxin Yuan
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Michael K H Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
13
|
Labidi RJ, Faivre B, Carpentier P, Veronesi G, Solé-Daura A, Bjornsson R, Léger C, Gotico P, Li Y, Atta M, Fontecave M. Light-Driven Hydrogen Evolution Reaction Catalyzed by a Molybdenum-Copper Artificial Hydrogenase. J Am Chem Soc 2023. [PMID: 37307141 DOI: 10.1021/jacs.3c01350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Orange protein (Orp) is a small bacterial metalloprotein of unknown function that harbors a unique molybdenum/copper (Mo/Cu) heterometallic cluster, [S2MoS2CuS2MoS2]3-. In this paper, the performance of Orp as a catalyst for the photocatalytic reduction of protons into H2 has been investigated under visible light irradiation. We report the complete biochemical and spectroscopic characterization of holo-Orp containing the [S2MoS2CuS2MoS2]3- cluster, with docking and molecular dynamics simulations suggesting a positively charged Arg, Lys-containing pocket as the binding site. Holo-Orp exhibits excellent photocatalytic activity, in the presence of ascorbate as the sacrificial electron donor and [Ru(bpy)3]Cl2 as the photosensitizer, for hydrogen evolution with a maximum turnover number of 890 after 4 h irradiation. Density functional theory (DFT) calculations were used to propose a consistent reaction mechanism in which the terminal sulfur atoms are playing a key role in promoting H2 formation. A series of dinuclear [S2MS2M'S2MS2](4n)- clusters, with M = MoVI, WVI and M'(n+) = CuI, FeI, NiI, CoI, ZnII, CdII were assembled in Orp, leading to different M/M'-Orp versions which are shown to display catalytic activity, with the Mo/Fe-Orp catalyst giving a remarkable turnover number (TON) of 1150 after 2.5 h reaction and an initial turnover frequency (TOF°) of 800 h-1 establishing a record among previously reported artificial hydrogenases.
Collapse
Affiliation(s)
- Raphaël J Labidi
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Philippe Carpentier
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Giulia Veronesi
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Albert Solé-Daura
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Ragnar Bjornsson
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, 13009 Marseille, France
| | - Philipp Gotico
- Laboratoire des Mécanismes Fondamentaux de la Bioénergétique, DRF/JOLIOT/SB2SM, UMR 9198 CEA/CNRS/I2BC, 91191 Gif Sur Yvette, France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Mohamed Atta
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| |
Collapse
|
14
|
Liu Y, Zhou B, Zhang Y, Xiao W, Li B, Wu Z, Wang L. In situ synthesis of two-dimensional graphene-like nickel-molybdenum nitride as efficient electrocatalyst towards water-splitting under large-current density. J Colloid Interface Sci 2023; 637:104-111. [PMID: 36689796 DOI: 10.1016/j.jcis.2023.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Transition metal nitride (TMNs) electrocatalysts have attracted tremendous attentions for their unique electron structure, high activity, and excellent stability. Herein, a two-dimensional (2D) graphene-like structured nickel-molybdenum nitride (Ni-MoN) on nickel foam (NF), is prepared via facile hydrothermal and following nitridation process. The as-prepared Ni-MoN-450 (pyrolysis at 450 °C) displays good hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances in alkaline media. Only 22 mV and 117 mV are needed to achieve current densities of 10 mA cm-2 and 500 mA cm-2 in 1.0 M KOH, respectively, toward HER. The assembled two-electrode system, with the synthesized Ni-MoN-450 as the anode and cathode, exhibits good performance to achieve 1000 mA cm-2 in 1.0 M KOH + 25 °C and 6.0 M KOH + 80 °C. Moreover, it also presents long-term stability under large-current density, which verified its robust property.
Collapse
Affiliation(s)
- Yibing Liu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Bowen Zhou
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, PR China
| | - Yubing Zhang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Bin Li
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
15
|
Huang XX, Wang HJ, Yang JL, Yue MF, Wang YH, Zhang H, Li JF. Direct S-H Evidence Revealing the Photo-electrocatalytic Hydrogen Evolution Reaction Mechanism on CdS Using Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett 2023; 14:4026-4032. [PMID: 37093583 DOI: 10.1021/acs.jpclett.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photoelectrocatalytic water splitting using metal sulfides is a promising method for green hydrogen production. However, in situ probing of the hydrogen evolution reaction (HER) on sulfides with excellent performance remains a challenge. Here, we construct Au@CdS core-shell nanoparticles to study the HER on CdS, a typical HER catalyst, by surface-enhanced Raman spectroscopy (SERS) using a "borrowing" strategy. We directly capture the spectroscopic evidence of S-H intermediate under HER condition, further verified by isotopic experiments. Moreover, the population of S-H intermediates is improved by injecting charge carriers through light illumination and the S-H bond is weakened by introducing Pt to form a Au@Pt@CdS structure to change the interfacial electronic structure, both of them resulting in significant HER performance improvement. These findings can deepen the understanding of the HER mechanism and offer strategies for designing of cost-effective HER catalyst with high performance.
Collapse
Affiliation(s)
- Xiao-Xuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
| | - Hong-Jia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
| | - Jing-Liang Yang
- College of Physics, Guizhou University, Guizhou 550025, China
| | - Mu-Fei Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
16
|
Tian Z, Wang W, Dong C, Deng X, Wang GH. A General and Scalable Approach to Sulfur-Doped Mono-/Bi-/Trimetallic Nanoparticles Confined in Mesoporous Carbon. ACS NANO 2023; 17:3889-3900. [PMID: 36790029 DOI: 10.1021/acsnano.2c12168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal nanoparticles confined in porous carbon materials have been widely used in various heterogeneous catalytic processes due to their enhanced activity and stability. However, fabrication of such catalysts in a facile and scalable way remains challenging. Herein, we report a general and scalable thiol-assisted strategy to synthesize sulfur-doped mono-/bi-/trimetallic nanoparticles confined in mesoporous carbon (S-M@MC, M = Pt, Pd, Rh, Co, Zn, etc.), involving only two synthetic steps, i.e., a hydrothermal process and pyrolysis. The strategy is based on coordination chemistry and hydro-phobic interaction that the metal precursors coordinated with the hydrophobic thiol ligands are located at the hydrophobic core of micelles, in situ confined in the hydrothermally prepared mesostructured polymer, and then converted into sulfur-doped metal nanoparticles confined in MC after pyrolysis. It is demonstrated that the S-PtCo@MC exhibits enhanced catalytic activity and improved durability toward acidic hydrogen evolution reaction due to the confinement effect and S-doping.
Collapse
Affiliation(s)
- Zhengbin Tian
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wenquan Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Dong
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaohui Deng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Guang-Hui Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Chae SY, Yoon N, Joo OS, Park ED. Monitoring Transformations of Catalytic Active States in Photocathodes Based on MoS x Layers on CuInS 2 Using In Operando Raman Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202215227. [PMID: 36542061 DOI: 10.1002/anie.202215227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The electrochemical activation of CuInS2 /MoSx for photoelectrochemical (PEC) H2 production was revealed for the first time through in operando Raman spectroscopy. During the activation process, the initial metallic MoSx phase was transformed to semiconducting MoSx , which facilitates charge carrier transfer between CuInS2 and MoSx . Ex situ X-ray photoelectron spectroscopy and Raman spectroscopy suggest the existence of MoO3 after the activation process. However, apart from contradicting these results, in operando Raman spectroscopy revealed some of the intermediate steps of the activation process.
Collapse
Affiliation(s)
- Sang Youn Chae
- Department of Energy Systems Research, Ajou University, 16499, Suwon, Republic of Korea.,Institute of NT-IT Fusion Technology, Ajou University, 16499, Suwon, Republic of Korea
| | - Noyoung Yoon
- Clean Energy Research Center, Korea Institute of Science and Technology, 02792, Seoul, Republic of Korea.,Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
| | - Oh Shim Joo
- Clean Energy Research Center, Korea Institute of Science and Technology, 02792, Seoul, Republic of Korea
| | - Eun Duck Park
- Department of Energy Systems Research, Ajou University, 16499, Suwon, Republic of Korea.,Department of Chemical Engineering, Ajou University, 16499, Suwon, Republic of Korea
| |
Collapse
|
18
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
19
|
Solati N, Karakaya C, Kaya S. Advancing the Understanding of the Structure–Activity–Durability Relation of 2D MoS 2 for the Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Navid Solati
- Materials Science and Engineering, Koç University, 34450 Istanbul, Turkey
- Koç University Tüpraş Energy Center (KUTEM), 34450 Istanbul, Turkey
| | - Cüneyt Karakaya
- Materials Science and Engineering, Koç University, 34450 Istanbul, Turkey
- Koç University Tüpraş Energy Center (KUTEM), 34450 Istanbul, Turkey
- Turkish Petroleum Refineries Co. (Tüpraş) R&D, Kocaeli 41790, Turkey
| | - Sarp Kaya
- Koç University Tüpraş Energy Center (KUTEM), 34450 Istanbul, Turkey
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
20
|
Xie M, Zhang B, Jin Z, Li P, Yu G. Atomically Reconstructed Palladium Metallene by Intercalation-Induced Lattice Expansion and Amorphization for Highly Efficient Electrocatalysis. ACS NANO 2022; 16:13715-13727. [PMID: 35947035 DOI: 10.1021/acsnano.2c05190] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As an emerging class of materials with distinctive physicochemical properties, metallenes are deemed as efficient catalysts for energy-related electrocatalytic reactions. Engineering the lattice strain, electronic structure, crystallinity, and even surface porosity of metallene provides a great opportunity to further enhance its catalytic performance. Herein, we rationally developed a reconstruction strategy of Pd metallenes at atomic scale to generate a series of nonmetallic atom-intercalated Pd metallenes (M-Pdene, M = H, N, C) with lattice expansion and S-doped Pd metallene (S-Pdene) with an amorphous structure. Catalytic performance evaluation demonstrated that N-Pdene exhibited the highest mass activities of 7.96 A mg-1, which was 10.6 and 8.5 time greater than those of commercial Pd/C and Pt/C, respectively, for methanol oxidation reaction (MOR). Density functional theory calculations suggested that the well-controlled lattice tensile strain as well as the strong p-d hybridization interaction between N and Pd resulted in enhanced OH adsorption and weakened CO adsorption for efficient MOR catalysis on N-Pdene. When tested as hydrogen evolution reaction (HER) catalysts, the amorphous S-Pdene delivered superior activity and durability relative to the crystalline counterparts because of the disordered Pd surface with a further elongated bond length and a downshifted d-band center. This work provides an effective strategy for atomic engineering of metallene nanomaterials with high performance as electrocatalysts.
Collapse
Affiliation(s)
- Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Guo D, Wan Z, Fang G, Zhu M, Xi B. A Tandem Interfaced (Ni 3 S 2 -MoS 2 )@TiO 2 Composite Fabricated by Atomic Layer Deposition as Efficient HER Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201896. [PMID: 35560706 DOI: 10.1002/smll.202201896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Reported herein is a highly active and durable hydrogen evolution reaction (HER) electrocatalyst, which is constructed following a tandem interface strategy and functional in alkaline and even neutral medium (pH ≈ 7). The ternary composite material, consisting of conductive nickel foam (NF) substrate, Ni3 S2 -MoS2 heterostructure, and TiO2 coating, is synthesized by the hydrothermal method and atomic layer deposition (ALD) technique. Representative results include: (1) versatile characterizations confirm the proposed composite structure and strong electronic interactions among comprised sulfide and oxide species; (2) the material outperforms commercial Pt/C by recording an overpotential of 115 mV and a Tafel slope of 67 mV dec-1 under neutral conditions. A long-term stability in alkaline electrolytes up to 200 h and impressive overall water splitting behavior (1.56 V @ 10 mA cm-2 ) are documented; (3) implementation of ALD oxide tandem layer is crucial to realize the design concept with superior HER performance by modulating a variety of heterointerface and intermediates electronic structure.
Collapse
Affiliation(s)
- Daying Guo
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhixin Wan
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guoyong Fang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Mengqi Zhu
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Xi
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
22
|
Mo3+ hydride as the common origin of H2 evolution and selective NADH regeneration in molybdenum sulfide electrocatalysts. Nat Catal 2022. [DOI: 10.1038/s41929-022-00781-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Bozheyev F, Fengler S, Kollmann J, Klassen T, Schieda M. Transient Surface Photovoltage Spectroscopy of (NH 4) 2Mo 3S 13/WSe 2 Thin-Film Photocathodes for Photoelectrochemical Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22071-22081. [PMID: 35512324 DOI: 10.1021/acsami.2c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen produced from solar energy has the potential to replace petroleum in the future. To this respect, there is a need in the abandoned and efficient materials that can continuously split water molecules using solar energy. In this report, an ammonium thiomolybdate (ATM: (NH4)2Mo3S13) is evaluated as a p-type semiconductor film photocathode for hydrogen evolution reaction. The ATM thin films are prepared by spin-coating on fluorine-doped tin oxide substrates, and their structural, morphological, optical, photoelectrical, and photoelectrochemical (PEC) properties are studied. Transient surface photovoltage (TSPV) spectroscopy and spectroscopic ellipsometry indicate the band gap Eg = 1.9 eV for the ATM thin films. Furthermore, the photovoltage of the ATM thin films measured by TSPV is correlated to the photocurrents measured by the PEC characterization that can be used to evaluate the material potential for hydrogen generation. The films exhibit a low photocurrent density of 46 μA cm-2 at 0 VRHE. However, its combination with WSe2 thin-film photocathodes results in a significant increase in photocurrent density up to 4.6 mA cm-2 at 0 VRHE (100 times). The reason for such a strong charge carrier transfer effect for ATM/WSe2 heterojunction photocathodes is studied by TSPV spectroscopy that allows a comprehensive evaluation of potential photovoltaic materials toward PEC hydrogen production. Furthermore, the photovoltage generated by a WSe2 thin film is 30 times lower than that of its single crystal, which indicates that the quality of WSe2 thin films should be improved for faster PEC hydrogen evolution.
Collapse
Affiliation(s)
- Farabi Bozheyev
- Institute of Photoelectrochemistry, Helmholtz-Zentrum Hereon GmbH, Max-Planck-Street 1, Geesthacht D-21502, Germany
- National Nanolaboratory, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050000, Kazakhstan
| | - Steffen Fengler
- Institute of Photoelectrochemistry, Helmholtz-Zentrum Hereon GmbH, Max-Planck-Street 1, Geesthacht D-21502, Germany
| | - Jiri Kollmann
- Institute of Photoelectrochemistry, Helmholtz-Zentrum Hereon GmbH, Max-Planck-Street 1, Geesthacht D-21502, Germany
| | - Thomas Klassen
- Institute of Photoelectrochemistry, Helmholtz-Zentrum Hereon GmbH, Max-Planck-Street 1, Geesthacht D-21502, Germany
| | - Mauricio Schieda
- Institute of Photoelectrochemistry, Helmholtz-Zentrum Hereon GmbH, Max-Planck-Street 1, Geesthacht D-21502, Germany
| |
Collapse
|
24
|
Rodenes M, Gonell F, Martín S, Corma A, Sorribes I. Molecularly Engineering Defective Basal Planes in Molybdenum Sulfide for the Direct Synthesis of Benzimidazoles by Reductive Coupling of Dinitroarenes with Aldehydes. JACS AU 2022; 2:601-612. [PMID: 35373204 PMCID: PMC8965831 DOI: 10.1021/jacsau.1c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Developing more sustainable catalytic processes for preparing N-heterocyclic compounds in a less costly, compact, and greener manner from cheap and readily available reagents is highly desirable in modern synthetic chemistry. Herein, we report a straightforward synthesis of benzimidazoles by reductive coupling of o-dinitroarenes with aldehydes in the presence of molecular hydrogen. An innovative molecular cluster-based synthetic strategy that employs Mo3S4 complexes as precursors have been used to engineer a sulfur-deficient molybdenum disulfide (MoS2)-type material displaying structural defects on both the naturally occurring edge positions and along the typically inactive basal planes. By applying this catalyst, a broad range of functionalized 2-substituted benzimidazoles, including bioactive compounds, can be selectively synthesized by such a direct hydrogenative coupling protocol even in the presence of hydrogenation-sensitive functional groups, such as double and triple carbon-carbon bonds, nitrile and ester groups, and halogens as well as diverse types of heteroarenes.
Collapse
Affiliation(s)
- Miriam Rodenes
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Francisco Gonell
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Santiago Martín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Avelino Corma
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Iván Sorribes
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| |
Collapse
|
25
|
Xu Y, Li N, Wang R, Bian P, Wang J, Jiao T, Liu Z. Synergetic design of N-doped defect-enriched porous carbon matrix with Co-Co0.85Se loading for water splitting. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Sahu A, Steinmann SN, Raybaud P. Genesis of MoS2 from model-Mo-oxide precursors supported on γ-alumina. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Qu J, Li Y, Li F, Li T, Wang X, Yin Y, Ma L, Schmidt OG, Zhu F. Direct Thermal Enhancement of Hydrogen Evolution Reaction of On-Chip Monolayer MoS 2. ACS NANO 2022; 16:2921-2927. [PMID: 35157444 DOI: 10.1021/acsnano.1c10030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MoS2 has drawn great attention as a promising alternative to Pt-based catalysts for the hydrogen evolution reaction (HER). However, it suffers from sluggish kinetics to drive the HER process because of inert basal planes. Here, an on-chip MoS2 monolayer (MoS2 ML) HER reactor was designed and fabricated to reveal direct thermal enhancement of MoS2 ML for the HER. The thermal effects generated efficient electron transfer in the atomic MoS2 ML and at the interface between the electrolyte and the catalyst, leading to enhanced HER activity. The MoS2 ML measured at a higher temperature (60 °C) possesses a significantly enhanced HER activity with a lower overpotential (90 mV at current densities of 10 mA cm-2), lower Tafel slope (94 mV dec-1), and higher turnover frequency (73 s-1 at an overpotential of 125 mV) compared to the results obtained at room temperature. More importantly, the findings are attractive toward understanding the thermal effect on 2D monolayers as well as the development of next-generation electrocatalysts.
Collapse
Affiliation(s)
- Jiang Qu
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Yang Li
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Fei Li
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Tianming Li
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Xiaoyu Wang
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Yin Yin
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Libo Ma
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Feng Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| |
Collapse
|
28
|
Asiri AM, Ren D, Zhang H, Bahadar Khan S, Alamry KA, Marwani HM, Sherjeel Javed Khan M, Adeosun WA, Zakeeruddin SM, Grätzel M. Solar Water Splitting Using Earth-Abundant Electrocatalysts Driven by High-Efficiency Perovskite Solar Cells. CHEMSUSCHEM 2022; 15:e202102471. [PMID: 34962096 DOI: 10.1002/cssc.202102471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Hydrogen is considered as the "holy grail" for the energy community. One of the most promising strategies to produce hydrogen is to split water using renewable energy such as solar radiation. The abundance of water and solar energy enables the potential of scaling-up of this new technology, if suitable electrocatalysts and solar cells are developed. In this work, a series of materials made of earth-abundant elements was investigated for hydrogen evolution or oxygen evolution reaction. Among the developed catalysts, MoS2 and NiFe showed the best activities for proton reduction and water oxidation, respectively. These catalysts were further integrated into an alkaline electrolyzer, which delivered a current density of 10 mA cm-2 at a cell voltage of 1.9 V for water splitting. Using two in-series-connected perovskite solar cells (PSCs) as a power source, a remarkable solar-to-hydrogen conversion efficiency of 12.67 % was achieved in an alkaline electrolyzer with a partial current density of 10.3 mA cm-2 for hydrogen production. The usage of earth-abundant catalysts in this study, together with the employment of low-cost perovskite light absorber, shows the potential of scaling up this type of photovoltaic electrolyzer for sustainable hydrogen production.
Collapse
Affiliation(s)
- Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Dan Ren
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne, Switzerland
| | - Hong Zhang
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne, Switzerland
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Khalid A Alamry
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | | | - Waheed A Adeosun
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
29
|
Ge L, Lai W, Deng Y, Bao J, Ouyang B, Li H. Spontaneous Dissolution of Oxometalates Boosting the Surface Reconstruction of CoMOx (M = Mo, V) to Achieve Efficient Overall Water Splitting in Alkaline Media. Inorg Chem 2022; 61:2619-2627. [DOI: 10.1021/acs.inorgchem.1c03677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lihong Ge
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Wei Lai
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jian Bao
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Bo Ouyang
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
30
|
Han X, Wu G, Du J, Pi J, Yan M, Hong X. Metal and metal oxide amorphous nanomaterials towards electrochemical applications. Chem Commun (Camb) 2021; 58:223-237. [PMID: 34878467 DOI: 10.1039/d1cc04141j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amorphous nanomaterials have aroused extensive interest due to their unique properties. Their performance is highly related with their distinct atomic arrangements, which have no long-range order but possess short- to medium-range order. Herein, an overview of state-of-the-art synthesis methods of amorphous nanomaterials, structural characteristics and their electrochemical properties is presented. Advanced characterization methods for analyzing and proving the local order of amorphous structures, such as X-ray absorption fine structure spectroscopy, atomic electron tomography and nanobeam electron diffraction, are introduced. Various synthesis strategies for amorphous nanomaterials are covered, especially the salt-assisted metal organic decomposition method to prepare ultrathin amorphous nanosheets. Furthermore, the design and structure-activity relationship of amorphous nanomaterials towards electrochemical applications, including electrocatalysts and battery anode/cathode materials, is discussed.
Collapse
Affiliation(s)
- Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Junyi Du
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Jinglin Pi
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Muyu Yan
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
31
|
Aslan E, Yanalak G, Patir IH. In Situ
Generated Amorphous Molybdenum Sulfide on Reduced Graphene Oxide Nanocomposite Catalyst for Hydrogen Evolution in a Biphasic Liquid System. ChemCatChem 2021. [DOI: 10.1002/cctc.202100871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emre Aslan
- Department of Biochemistry Selcuk University 42250 Konya Turkey
| | - Gizem Yanalak
- Department of Biochemistry Selcuk University 42250 Konya Turkey
| | | |
Collapse
|
32
|
Chae SY, Kim Y, Park ED, Im SH, Joo OS. CuInS 2 Photocathodes with Atomic Gradation-Controlled (Ta,Mo) x(O,S) y Passivation Layers for Efficient Photoelectrochemical H 2 Production. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58447-58457. [PMID: 34450006 DOI: 10.1021/acsami.1c09560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An atomic gradient passivation layer, (Ta,Mo)x(O,S)y, is designed to improve the charge transportation and photoelectrochemical activity of CuInS2-based photoelectrodes. We found that Mo spontaneously diffused to the a-TaOx layer during e-beam evaporation. This result indicates that the gradient profile of MoOx/TaOx is formed in the sublayer of (Ta,Mo)x(O,S)y. To understand the atomic-gradation effects of the (Ta,Mo)x(O,S)y passive layer, the composition and (photo)electrochemical properties have been characterized in detail. When this atomic gradient-passive layer is applied to CuInS2-based photocathodes, promising photocurrent and onset potential are seen without using Pt cocatalysts. This is one of the highest activities among reported CuInS2 photocathodes, which are not combined with noble metal cocatalysts. Excellent photoelectrochemical activity of the photoelectrode can be mainly achieved by (1) the electron transient time improved due to the conductive Mo-incorporated TaOx layer and (2) the boosted electrocatalytic activity by Mox(O,S)y formation.
Collapse
Affiliation(s)
- Sang Youn Chae
- Institute of NT-IT Fusion Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Yoolim Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Eun Duck Park
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Sang Hyuk Im
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Oh-Shim Joo
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
33
|
Matveev AT, Konopatsky AS, Leybo DV, Volkov IN, Kovalskii AM, Varlamova LA, Sorokin PB, Fang X, Kulinich SA, Shtansky DV. Amorphous MoS xO y/ h-BN xO y Nanohybrids: Synthesis and Dye Photodegradation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3232. [PMID: 34947581 PMCID: PMC8703645 DOI: 10.3390/nano11123232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Molybdenum sulfide is a very promising catalyst for the photodegradation of organic pollutants in water. Its photocatalytic activity arises from unsaturated sulfur bonds, and it increases with the introduction of structural defects and/or oxygen substitutions. Amorphous molybdenum sulfide (a-MoSxOy) with oxygen substitutions has many active sites, which create favorable conditions for enhanced catalytic activity. Here we present a new approach to the synthesis of a-MoSxOy and demonstrate its high activity in the photodegradation of the dye methylene blue (MB). The MoSxOy was deposited on hexagonal boron oxynitride (h-BNO) nanoflakes by reacting h-BNO, MoCl5, and H2S in dimethylformamide (DMF) at 250 °C. Both X-ray diffraction analysis and high-resolution TEM show the absence of crystalline order in a-MoSxOy. Based on the results of Raman and X-ray photoelectron spectroscopy, as well as analysis by the density functional theory (DFT) method, a chain structure of a-MoSxOy was proposed, consisting of MoS3 clusters with partial substitution of sulfur by oxygen. When a third of the sulfur atoms are replaced with oxygen, the band gap of a-MoSxOy is approximately 1.36 eV, and the valence and conduction bands are 0.74 eV and -0.62 eV, respectively (relative to a standard hydrogen electrode), which satisfies the conditions of photoinduced splitting of water. When illuminated with a mercury lamp, a-MoSxOy/h-BNxOy nanohybrids have a specific mass activity in MB photodegradation of approximately 5.51 mmol g-1 h-1, which is at least four times higher than so far reported values for nonmetal catalysts. The photocatalyst has been shown to be very stable and can be reused.
Collapse
Affiliation(s)
- Andrei T. Matveev
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Anton S. Konopatsky
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Denis V. Leybo
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Ilia N. Volkov
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Andrey M. Kovalskii
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Liubov A. Varlamova
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Pavel B. Sorokin
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai 200433, China;
| | - Sergei A. Kulinich
- Research Institute of Science and Technology, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan
- School of Engineering, Far Eastern Federal University, 690041 Vladivostok, Russia
| | - Dmitry V. Shtansky
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| |
Collapse
|
34
|
Wang X, Zhang Y, Wu J, Zhang Z, Liao Q, Kang Z, Zhang Y. Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chem Rev 2021; 122:1273-1348. [PMID: 34788542 DOI: 10.1021/acs.chemrev.1c00505] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single-atom catalysis has been recognized as a pivotal milestone in the development history of heterogeneous catalysis by virtue of its superior catalytic performance, ultrahigh atomic utilization, and well-defined structure. Beyond single-atom protrusions, two more motifs of single-atom substitutions and single-atom vacancies along with synergistic single-atom motif assemblies have been progressively developed to enrich the single-atom family. On the other hand, besides traditional carbon material based substrates, a wide variety of 2D transitional metal dichalcogenides (TMDs) have been emerging as a promising platform for single-atom catalysis owing to their diverse elemental compositions, variable crystal structures, flexible electronic structures, and intrinsic activities toward many catalytic reactions. Such substantial expansion of both single-atom motifs and substrates provides an enriched toolbox to further optimize the geometric and electronic structures for pushing the performance limit. Concomitantly, higher requirements have been put forward for synthetic and characterization techniques with related technical bottlenecks being continuously conquered. Furthermore, this burgeoning single-atom catalyst (SAC) system has triggered serial scientific issues about their changeable single atom-2D substrate interaction, ambiguous synergistic effects of various atomic assemblies, as well as dynamic structure-performance correlations, all of which necessitate further clarification and comprehensive summary. In this context, this Review aims to summarize and critically discuss the single-atom engineering development in the whole field of 2D TMD based catalysis covering their evolution history, synthetic methodologies, characterization techniques, catalytic applications, and dynamic structure-performance correlations. In situ characterization techniques are highlighted regarding their critical roles in real-time detection of SAC reconstruction and reaction pathway evolution, thus shedding light on lifetime dynamic structure-performance correlations which lay a solid theoretical foundation for the whole catalytic field, especially for SACs.
Collapse
Affiliation(s)
- Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuwei Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
35
|
Feng J, Zhao Z, Tang R, Zhao Y, Meng T. Interfacial Structural and Electronic Regulation of MoS 2 for Promoting Its Kinetics and Activity of Alkaline Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53262-53270. [PMID: 34705412 DOI: 10.1021/acsami.1c17031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The alkaline hydrogen evolution reaction (HER) of MoS2 is hampered by its sluggish water dissociation kinetics as well as limited edge sites. Herein, Ni3S2/MoS2 is fabricated as a model catalyst to highlight interfacial structural and electronic modulations of MoS2 for realizing its high performance in the alkaline HER. Experiments and density functional theory results demonstrate that the coupled Ni3S2 species can not only promote the adsorption and dissociation of H2O to boost the alkaline HER kinetics but also tailor the inert plane of MoS2 to create abundant unsaturated edge-like active sites, while the interfacial electron interaction can regulate the band gaps and Gibbs free energy of hydrogen adsorption of MoS2 to improve the electron conductivity as well as HER activity. Moreover, field emission scanning electron microscopy, transmission electron microscopy, Raman, ex situ synchrotron radiation X-ray absorption, and X-ray photoelectron spectroscopy results reveal the excellent structural stability of Ni3S2/MoS2 during the HER. As expected, the target Ni3S2/MoS2 achieves an ultralow overpotential of 68 mV at 10 mA cm-2, a fast alkaline HER kinetics, and remarkable durability. The proposed concept of interfacial structural and electronic reorganization could be extended to develop other functional materials.
Collapse
Affiliation(s)
- Jizheng Feng
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ziqi Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ranxiao Tang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yangyang Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Tao Meng
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
36
|
In situ grown molybdenum sulfide on Laponite D clay: Visible-light-driven hydrogen evolution for high solar-to-hydrogen (STH) efficiencies. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Cao Y. Roadmap and Direction toward High-Performance MoS 2 Hydrogen Evolution Catalysts. ACS NANO 2021; 15:11014-11039. [PMID: 34251805 DOI: 10.1021/acsnano.1c01879] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development.
Collapse
Affiliation(s)
- Yang Cao
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871 P. R. China
| |
Collapse
|
38
|
Bau JA, Rueping M. Low-Temperature Direct Electrochemical Methanol Reforming Enabled by CO-Immune Mo-Based Hydrogen Evolution Catalysts. Chemistry 2021; 27:8960-8965. [PMID: 33913578 DOI: 10.1002/chem.202100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 11/10/2022]
Abstract
Hydrogen storage in the form of intermediate artificial fuels such as methanol is important for future chemical and energy applications, and the electrochemical regeneration of hydrogen from methanol is thermodynamically favorable compared to direct water splitting. However, CO produced from methanol oxidation can adsorb to H2 -evolution catalysts and drastically reduce activity. In this study, we explore the origins of CO immunity in Mo-containing H2 -evolution catalysts. Unlike conventional catalysts such as Pt or Ni, Mo-based catalysts display remarkable immunity to CO poisoning. The origin of this behavior in NiMo appears to arise from the apparent inability of CO to bind Mo under electrocatalytic conditions, with mechanistic consequences for the H2 -evolution reaction (HER) in these systems. This specific property of Mo-based HER catalysts makes them ideal in environments where poisons might be present.
Collapse
Affiliation(s)
- Jeremy A Bau
- KAUST Catalysis Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
39
|
In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213824] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Giuffredi G, Asset T, Liu Y, Atanassov P, Di Fonzo F. Transition Metal Chalcogenides as a Versatile and Tunable Platform for Catalytic CO 2 and N 2 Electroreduction. ACS MATERIALS AU 2021; 1:6-36. [PMID: 36855615 PMCID: PMC9888655 DOI: 10.1021/acsmaterialsau.1c00006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Group VI transition metal chalcogenides are the subject of increasing research interest for various electrochemical applications such as low-temperature water electrolysis, batteries, and supercapacitors due to their high activity, chemical stability, and the strong correlation between structure and electrochemical properties. Particularly appealing is their utilization as electrocatalysts for the synthesis of energy vectors and value-added chemicals such as C-based chemicals from the CO2 reduction reaction (CO2R) or ammonia from the nitrogen fixation reaction (NRR). This review discusses the role of structural and electronic properties of transition metal chalcogenides in enhancing selectivity and activity toward these two key reduction reactions. First, we discuss the morphological and electronic structure of these compounds, outlining design strategies to control and fine-tune them. Then, we discuss the role of the active sites and the strategies developed to enhance the activity of transition metal chalcogenide-based catalysts in the framework of CO2R and NRR against the parasitic hydrogen evolution reaction (HER); leveraging on the design rules applied for HER applications, we discuss their future perspective for the applications in CO2R and NRR. For these two reactions, we comprehensively review recent progress in unveiling reaction mechanisms at different sites and the most effective strategies for fabricating catalysts that, by exploiting the structural and electronic peculiarities of transition metal chalcogenides, can outperform many metallic compounds. Transition metal chalcogenides outperform state-of-the-art catalysts for CO2 to CO reduction in ionic liquids due to the favorable CO2 adsorption on the metal edge sites, whereas the basal sites, due to their conformation, represent an appealing design space for reduction of CO2 to complex carbon products. For the NRR instead, the resemblance of transition metal chalcogenides to the active centers of nitrogenase enzymes represents a powerful nature-mimicking approach for the design of catalysts with enhanced performance, although strategies to hinder the HER must be integrated in the catalytic architecture.
Collapse
Affiliation(s)
- Giorgio Giuffredi
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia (IIT@Polimi), Via Pascoli 70/3, 20133 Milano, Italy,Department
of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy
| | - Tristan Asset
- Department
of Chemical & Biomolecular Engineering and National Fuel Cell
Research Center, University of California, Irvine, California 92697-2580, United States
| | - Yuanchao Liu
- Department
of Chemical & Biomolecular Engineering and National Fuel Cell
Research Center, University of California, Irvine, California 92697-2580, United States
| | - Plamen Atanassov
- Department
of Chemical & Biomolecular Engineering and National Fuel Cell
Research Center, University of California, Irvine, California 92697-2580, United States
| | - Fabio Di Fonzo
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia (IIT@Polimi), Via Pascoli 70/3, 20133 Milano, Italy,
| |
Collapse
|
41
|
Baloglou A, Plattner M, Ončák M, Grutza M, Kurz P, Beyer MK. [Mo 3 S 13 ] 2- as a Model System for Hydrogen Evolution Catalysis by MoS x : Probing Protonation Sites in the Gas Phase by Infrared Multiple Photon Dissociation Spectroscopy. Angew Chem Int Ed Engl 2021; 60:5074-5077. [PMID: 33332676 PMCID: PMC7986116 DOI: 10.1002/anie.202014449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/04/2020] [Indexed: 11/08/2022]
Abstract
Materials based on molybdenum sulfide are known as efficient hydrogen evolution reaction (HER) catalysts. As the binding site for H atoms on molybdenum sulfides for the catalytic process is under debate, [HMo3 S13 ]- is an interesting molecular model system to address this question. Herein, we probe the [HMo3 S13 ]- cluster in the gas phase by coupling Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS) with infrared multiple photon dissociation (IRMPD) spectroscopy. Our investigations show one distinct S-H stretching vibration at 2450 cm-1 . Thermochemical arguments based on DFT calculations strongly suggest a terminal disulfide unit as the H adsorption site.
Collapse
Affiliation(s)
- Aristeidis Baloglou
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Manuel Plattner
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Marie‐Luise Grutza
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgAlbertstraße 2179104FreiburgGermany
| | - Philipp Kurz
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgAlbertstraße 2179104FreiburgGermany
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
42
|
Zhang X, Liao Q, Kang Z, Liu B, Liu X, Ou Y, Xiao J, Du J, Liu Y, Gao L, Gu L, Hong M, Yu H, Zhang Z, Duan X, Zhang Y. Hidden Vacancy Benefit in Monolayer 2D Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007051. [PMID: 33448081 DOI: 10.1002/adma.202007051] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Monolayer 2D semiconductors (e.g., MoS2 ) are of considerable interest for atomically thin transistors but generally limited by insufficient carrier mobility or driving current. Minimizing the lattice defects in 2D semiconductors represents a common strategy to improve their electronic properties, but has met with limited success to date. Herein, a hidden benefit of the atomic vacancies in monolayer 2D semiconductors to push their performance limit is reported. By purposely tailoring the sulfur vacancies (SVs) to an optimum density of 4.7% in monolayer MoS2 , an unusual mobility enhancement is obtained and a record-high carrier mobility (>115 cm2 V-1 s-1 ) is achieved, realizing monolayer MoS2 transistors with an exceptional current density (>0.60 mA µm-1 ) and a record-high on/off ratio >1010 , and enabling a logic inverter with an ultrahigh voltage gain >100. The systematic transport studies reveal that the counterintuitive vacancy-enhanced transport originates from a nearest-neighbor hopping conduction model, in which an optimum SV density is essential for maximizing the charge hopping probability. Lastly, the vacancy benefit into other monolayer 2D semiconductors is further generalized; thus, a general strategy for tailoring the charge transport properties of monolayer materials is defined.
Collapse
Affiliation(s)
- Xiankun Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingliang Liao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhuo Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Baishan Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100190, China
| | - Yang Ou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiankun Xiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junli Du
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yihe Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Li Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100190, China
| | - Mengyu Hong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huihui Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
43
|
Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L, Song B. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1907818. [PMID: 32578254 PMCID: PMC11468112 DOI: 10.1002/adma.201907818] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 05/11/2023]
Abstract
Hydrogen has been deemed as an ideal substitute fuel to fossil energy because of its renewability and the highest energy density among all chemical fuels. One of the most economical, ecofriendly, and high-performance ways of hydrogen production is electrochemical water splitting. Recently, 2D transition metal dichalcogenides (also known as 2D TMDs) showed their utilization potentiality as cost-effective hydrogen evolution reaction (HER) catalysts in water electrolysis. Herein, recent representative research efforts and systematic progress made in 2D TMDs are reviewed, and future opportunities and challenges are discussed. Furthermore, general methods of synthesizing 2D TMDs materials are introduced in detail and the advantages and disadvantages for some specific methods are provided. This explanation includes several important regulation strategies of creating more active sites, heteroatoms doping, phase engineering, construction of heterostructures, and synergistic modulation which are capable of optimizing the electrical conductivity, exposure to the catalytic active sites, and reaction energy barrier of the electrode material to boost the HER kinetics. In the last section, the current obstacles and future chances for the development of 2D TMDs electrocatalysts are proposed to provide insight into and valuable guidelines for fabricating effective HER electrocatalysts.
Collapse
Affiliation(s)
- Qiang Fu
- School of PhysicsHarbin Institute of TechnologyHarbin150001China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150001China
| | - Xianjie Wang
- School of PhysicsHarbin Institute of TechnologyHarbin150001China
| | - Ping Xu
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Tai Yao
- Interdisciplinary Science Research CenterHarbin Institute of TechnologyHarbin150001China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| | - Wenwu Zhong
- School of Advanced StudyTaizhou UniversityTaizhou317000China
| | - Shengwei Liu
- School of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510006China
| | - Tangling Gao
- Institute of PetrochemistryHeilongjiang Academy of SciencesHarbin150040China
| | - Zhihua Zhang
- School of Materials Science and EngineeringDalian Jiaotong UniversityDalian116028China
| | - Lingling Xu
- Key Laboratory for Photonic and Electronic Bandgap MaterialsMinistry of EducationSchool of Physics and Electronic EngineeringHarbin Normal UniversityHarbin150025China
| | - Bo Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
44
|
Li Z, Peng C, Yin H, Ruan Y, Sun Y, Chen H, Yang S, Cheng G. Effects of structural changes on the enhanced hydrogen evolution reaction for Pd NPs @ 2H-MoS2 studied by in-Situ Raman spectroscopy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Baloglou A, Plattner M, Ončák M, Grutza M, Kurz P, Beyer MK. [Mo
3
S
13
]
2−
als Modellsystem für die katalytische Wasserstoffentwicklung durch MoS
x
: Untersuchung der Protonierungsstellen in der Gasphase durch Infrarot‐Mehrphotonendissoziationsspektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aristeidis Baloglou
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Manuel Plattner
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Marie‐Luise Grutza
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg Deutschland
| | - Philipp Kurz
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg Deutschland
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| |
Collapse
|
46
|
Hess C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem Soc Rev 2021; 50:3519-3564. [PMID: 33501926 DOI: 10.1039/d0cs01059f] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gaining insight into the mode of operation of heterogeneous catalysts is of great scientific and economic interest. Raman spectroscopy has proven its potential as a powerful vibrational spectroscopic technique for a fundamental and molecular-level characterization of catalysts and catalytic reactions. Raman spectra provide important insight into reaction mechanisms by revealing specific information on the catalysts' (defect) structure in the bulk and at the surface, as well as the presence of adsorbates and reaction intermediates. Modern Raman instrumentation based on single-stage spectrometers allows high throughput and versatility in design of in situ/operando cells to study working catalysts. This review highlights major advances in the use of Raman spectroscopy for the characterization of heterogeneous catalysts made during the past decade, including the development of new methods and potential directions of research for applying Raman spectroscopy to working catalysts. The main focus will be on gas-solid catalytic reactions, but (photo)catalytic reactions in the liquid phase will be touched on if it appears appropriate. The discussion begins with the main instrumentation now available for applying vibrational Raman spectroscopy to catalysis research, including in situ/operando cells for studying gas-solid catalytic processes. The focus then moves to the different types of information available from Raman spectra in the bulk and on the surface of solid catalysts, including adsorbates and surface depositions, as well as the use of theoretical calculations to facilitate band assignments and to describe (resonance) Raman effects. This is followed by a presentation of major developments in enhancing the Raman signal of heterogeneous catalysts by use of UV resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and shell-isolated nanoparticle surface-enhanced Raman spectroscopy (SHINERS). The application of time-resolved Raman studies to structural and kinetic characterization is then discussed. Finally, recent developments in spatially resolved Raman analysis of catalysts and catalytic processes are presented, including the use of coherent anti-Stokes Raman spectroscopy (CARS) and tip-enhanced Raman spectroscopy (TERS). The review concludes with an outlook on potential future developments and applications of Raman spectroscopy in heterogeneous catalysis.
Collapse
Affiliation(s)
- Christian Hess
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| |
Collapse
|
47
|
Fominski V, Fominski D, Romanov R, Gritskevich M, Demin M, Shvets P, Maksimova K, Goikhman A. Specific Features of Reactive Pulsed Laser Deposition of Solid Lubricating Nanocomposite Mo-S-C-H Thin-Film Coatings. NANOMATERIALS 2020; 10:nano10122456. [PMID: 33302538 PMCID: PMC7764125 DOI: 10.3390/nano10122456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/24/2023]
Abstract
This work investigates the structure and chemical states of thin-film coatings obtained by pulsed laser codeposition of Mo and C in a reactive gas (H2S). The coatings were analysed for their prospective use as solid lubricating coatings for friction units operating in extreme conditions. Pulsed laser ablation of molybdenum and graphite targets was accompanied by the effective interaction of the deposited Mo and C layers with the reactive gas and the chemical states of Mo- and C-containing nanophases were interdependent. This had a negative effect on the tribological properties of Mo–S–C–H nanocomposite coatings obtained at H2S pressures of 9 and 18 Pa, which were optimal for obtaining MoS2 and MoS3 coatings, respectively. The best tribological properties were found for the Mo–S–C–H_5.5 coating formed at an H2S pressure of 5.5 Pa. At this pressure, the x = S/Mo ratio in the MoSx nanophase was slightly less than 2, and the a-C(S,H) nanophase contained ~8 at.% S and ~16 at.% H. The a-C(S,H) nanophase with this composition provided a low coefficient of friction (~0.03) at low ambient humidity and 22 °C. The nanophase composition in Mo–S–C–H_5.5 coating demonstrated fairly good antifriction properties and increased wear resistance even at −100 °C. For wet friction conditions, Mo–S–C–H nanocomposite coatings did not have significant advantages in reducing friction compared to the MoS2 and MoS3 coatings formed by reactive pulsed laser deposition.
Collapse
Affiliation(s)
- Vyacheslav Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, 115409 Moscow, Russia; (D.F.); (R.R.); (M.G.)
- Correspondence:
| | - Dmitry Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, 115409 Moscow, Russia; (D.F.); (R.R.); (M.G.)
| | - Roman Romanov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, 115409 Moscow, Russia; (D.F.); (R.R.); (M.G.)
| | - Mariya Gritskevich
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, 115409 Moscow, Russia; (D.F.); (R.R.); (M.G.)
| | - Maxim Demin
- Immanuel Kant Baltic Federal University, A. Nevskogo St 14, 236016 Kaliningrad, Russia; (M.D.); (P.S.); (K.M.); (A.G.)
| | - Petr Shvets
- Immanuel Kant Baltic Federal University, A. Nevskogo St 14, 236016 Kaliningrad, Russia; (M.D.); (P.S.); (K.M.); (A.G.)
| | - Ksenia Maksimova
- Immanuel Kant Baltic Federal University, A. Nevskogo St 14, 236016 Kaliningrad, Russia; (M.D.); (P.S.); (K.M.); (A.G.)
| | - Alexander Goikhman
- Immanuel Kant Baltic Federal University, A. Nevskogo St 14, 236016 Kaliningrad, Russia; (M.D.); (P.S.); (K.M.); (A.G.)
| |
Collapse
|
48
|
Krieger A, Wagner M, Haschke S, Kröckel C, Bachmann J, Hauke F, Hirsch A, Gröhn F. Self-assembled hybrid organic-MoS 3-nanoparticle catalyst for light energy conversion. NANOSCALE 2020; 12:22952-22957. [PMID: 33196715 DOI: 10.1039/d0nr04820h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present photocatalytically active, stable polymer-amorphous-MoS3-nanoparticle hybrid structures in aqueous solution. Below 10 nm MoS3 particles in the polymer exhibit an up to 7.5-fold increased photocatalytic activity compared to the neat nanoparticles without any additional photosensitizer. Supramolecular interactions are key in directing the structure formation of the hybrid assembly. The hybrid structures bear potential as novel affordable photocatalysts for solar energy conversion.
Collapse
Affiliation(s)
- A Krieger
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Giuffredi G, Mezzetti A, Perego A, Mazzolini P, Prato M, Fumagalli F, Lin YC, Liu C, Ivanov IN, Belianinov A, Colombo M, Divitini G, Ducati C, Duscher G, Puretzky AA, Geohegan DB, Di Fonzo F. Non-Equilibrium Synthesis of Highly Active Nanostructured, Oxygen-Incorporated Amorphous Molybdenum Sulfide HER Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004047. [PMID: 33090682 DOI: 10.1002/smll.202004047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum sulfide emerged as promising hydrogen evolution reaction (HER) electrocatalyst thanks to its high intrinsic activity, however its limited active sites exposure and low conductivity hamper its performance. To address these drawbacks, the non-equilibrium nature of pulsed laser deposition (PLD) is exploited to synthesize self-supported hierarchical nanoarchitectures by gas phase nucleation and sequential attachment of defective molybdenum sulfide clusters. The physics of the process are studied by in situ diagnostics and correlated to the properties of the resulting electrocatalyst. The as-synthesized architectures have a disordered nanocrystalline structure, with nanodomains of bent, defective S-Mo-S layers embedded in an amorphous matrix, with excess sulfur and segregated molybdenum particles. Oxygen incorporation in this structure fosters the creation of amorphous oxide/oxysulfide nanophases with high electrical conductivity, enabling fast electron transfer to the active sites. The combined effect of the nanocrystalline pristine structure and the surface oxidation enhances the performance leading to small overpotentials, very fast kinetics (35.1 mV dec-1 Tafel slope) and remarkable long-term stability for continuous operation up to -1 A cm-2. This work shows possible new avenues in catalytic design arising from a non-equilibrium technique as PLD and the importance of structural and chemical control to improve the HER performance of MoS-based catalysts.
Collapse
Affiliation(s)
- Giorgio Giuffredi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
- Department of Energy, Politecnico di Milano, Via Lambruschini 4, Milano, 20156, Italy
| | - Alessandro Mezzetti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Andrea Perego
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
- Department of Energy, Politecnico di Milano, Via Lambruschini 4, Milano, 20156, Italy
| | - Piero Mazzolini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Francesco Fumagalli
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Yu-Chuan Lin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Chenze Liu
- Department of Material Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ilia N Ivanov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alex Belianinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Massimo Colombo
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16130, Italy
| | - Giorgio Divitini
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Caterina Ducati
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Gerd Duscher
- Department of Material Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David B Geohegan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Fabio Di Fonzo
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| |
Collapse
|
50
|
Sera Y, Seto S, Isobe K, Hashimoto H. Development of highly active hydrogen evolution reaction (HER) catalysts composed of reduced graphene oxide and amorphous molybdenum sulfides derived from (NH4)2MoOmS4-m (m = 0, 1, and 2). J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|