1
|
Ma X, Zhang Y, Zhou A, Jia Y, Xie Z, Ding L, Li JR. Modulation of interface structure on titanium-based metal-organic frameworks heterojunctions for boosting photocatalytic carbon dioxide reduction. J Colloid Interface Sci 2025; 685:696-705. [PMID: 39862848 DOI: 10.1016/j.jcis.2025.01.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO2) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions. A series of core-shell UiO-66 (Zr-MOF)-loaded MIL-125 (Ti-MOF) heterojunctions with exposed specific facets were prepared to enhance the separation efficiency of photogenerated electrons-holes in CO2 photoreduction. Impressively, MIL-125to@UiO-66 with exposed {1 1 1} facet exhibits an excellent CO production rate (56.4 μmol g-1 h-1) and selectivity (99 %) under visible light irradiation without any photosensitizers/sacrificial agents, being 1.4 and 11.3 times higher than individual MIL-125to and UiO-66, respectively. The type-II heterojunction significantly enhances the separation of photogenerated electrons-holes in physical space. The photogenerated electrons migrate from Zr in UiO-66 to Ti in MIL-125to, promoting a spatial synergy between CO2 reduction on MIL-125to and H2O oxidation on UiO-66. Compared with MIL-125rd@UiO-66 with exposed {1 1 0} facet and MIL-125ds@UiO-66 with exposed {0 0 1} facet, MIL-125to@UiO-66 with exposed {1 1 1} facet improves the exposure of surface-active Ti sites, thereby enhancing the adsorption/activation of CO2 to generate the *COOH intermediate. This work provides an effective strategy for designing MOF-based heterojunction photocatalysts to improve photocatalytic performance.
Collapse
Affiliation(s)
- Xiaoyu Ma
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan Zhang
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Awu Zhou
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yutong Jia
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhenghe Xie
- Beijing Energy Holding Co., Ltd., Beijing 100124, China
| | - Lifeng Ding
- Beijing Energy Holding Co., Ltd., Beijing 100124, China
| | - Jian-Rong Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Zaera F. Role of Metal Cocatalysts in the Photocatalytic Production of Hydrogen from Water Revisited. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2025; 39:2422-2434. [PMID: 39936115 PMCID: PMC11808650 DOI: 10.1021/acs.energyfuels.4c06100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
The use of photocatalysts to promote the production of molecular hydrogen from water, following the so-called water splitting reaction, continues to be a promising route for the green production of fuels. The molecular basis of this photocatalysis is the photoexcitation of electrons from the valence band of semiconductors to their conduction band, from which they can be transferred to chemical reactants, protons in the case of water, to promote a reduction reaction. The mechanism by which such a process takes place has been studied extensively using titanium oxide, a simple material that fulfills most requirements for water splitting. However, photocatalysis with TiO2 tends to be highly inefficient; a cocatalyst, commonly a late transition metal (Au, Pt) in nanoparticle form, needs to be added to facilitate the production of H2. The metal is widely believed to help with the scavenging of the excited electrons from the conduction band of the semiconductor in order to prevent their recombination with the accompanying hole formed in the valence band, a step that cancels the initial photon absorption and competes with the photolytic chemical reduction. Here we review and analyze the molecular basis for that mechanism and argue for an alternative explanation, that the role of the metal is to help with the recombination of the atomic hydrogen atoms produced by proton reduction on the semiconductor surface instead. First, we summarize what is known about the electronic structure of these photocatalysts and how the electronic levels need to line up for the reduction of protons in water to be feasible. Next, we review the current understanding of the dynamics of the steps associated with the absorption of photons, the de-excitation via electron-hole pair recombination and fluorescence decay, and the electronic transitions that lead to proton reduction, and contrast those with the rates of the chemical steps required to produce molecular hydrogen. The following section addresses the changes introduced by the addition of the metal cocatalyst, comparatively evaluating its role as either an electron scavenger or a promoter of the recombination of hydrogen atoms. A discussion of the viable chemical mechanisms for the latter pathway is included. Finally, we briefly mention other associated aspects of this photocatalysis, including the possible promotion of H2 production with visible light via resonant excitation of the surface plasmon of Au nanoparticles, the use of single-metal (Au, Pt) atom catalysts and of yolk-shell nanostructures, and the reduction of organic molecules. We end with a brief personal perspective on the possible generality of the concepts introduced in this Critical Review.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center
for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Shen M, Guo W, Tong L, Wang L, Chu PK, Kawi S, Ding Y. Behavior, mechanisms, and applications of low-concentration CO 2 in energy media. Chem Soc Rev 2025. [PMID: 39866134 DOI: 10.1039/d4cs00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This review explores the behavior of low-concentration CO2 (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO2 catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO2 capture, storage, and conversion technologies, as well as guidance for the development and application of new materials. By summarizing recent advancements in LCC separation techniques (e.g., cryogenic air separation and direct air carbon capture) and catalytic conversion technologies (including thermal catalysis, electrochemical catalysis, photocatalysis, plasma catalysis, and biocatalysis), this review highlights their importance in achieving carbon neutrality. It also discusses the challenges and future directions of these technologies. The findings emphasize that advancing the efficient utilization of LCC not only enhances CO2 reduction and resource utilization efficiency, promoting the development of clean energy technologies, but also provides an economically and environmentally viable solution for addressing global climate change.
Collapse
Affiliation(s)
- Minghai Shen
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Wei Guo
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Lige Tong
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Li Wang
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Yulong Ding
- Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
| |
Collapse
|
4
|
Ur Rehman M, Yin R, Yang ZD, Zhang G, Liu Y, Zhang FM, Yu C, Muhammad S. Fabrication and Modification of Hydrotalcite-Based Photocatalysts and Their Composites for CO 2 Reduction: A Critical Review. CHEMSUSCHEM 2025:e202402333. [PMID: 39838940 DOI: 10.1002/cssc.202402333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/23/2025]
Abstract
Layered double hydroxides (LDHs), which resemble hydrotalcite, are a type of materials with cationic layers and exchangeable interlayer anions. They have drawn lots of curiosity as a high-temperature CO2 adsorbent because of its quick desorption/sorption kinetics and renewability. Due to its extensive divalent or trivalent cationic metals, high anion exchange property, memory effect, adjustable behavior, bio-friendliness, easy to prepare and relatively low cost, the LDHs-based materials are becoming increasingly popular for photocatalytic CO2 reduction reaction (CO2RR). Fabrication and modification are good ways to move forward the advancement of LDHs-based catalysts, which will help chemistry and materials science make great progress. In this review we discussed structural characteristics and the methods for preparation and modification of LDHs-based photocatalysts. We also highlighted and discussed the major developments and applications in photocatalytic CO2RR as well as the photocatalytic mechanism. The goal of the present review is to give a broad summary of the various LDHs-based photocatalysts and the corresponding design strategies, which could motivate more excellent research works to explore this kind of CO2RR photocatalysts to further increase CO2 conversion yield and selectivity.
Collapse
Affiliation(s)
- Munir Ur Rehman
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Rong Yin
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Zhao-Di Yang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Guiling Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Yang Liu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Cancan Yu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Sheraz Muhammad
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P.R. China
| |
Collapse
|
5
|
Li P, Liu Y, Yan D. Facts and Fictions About Photocatalytic CO 2 Reduction to C 2+ Products. CHEMSUSCHEM 2025; 18:e202401174. [PMID: 39183181 DOI: 10.1002/cssc.202401174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
In response to carbon neutrality, photocatalytic reduction of CO2 has been the subject of growing interest for researchers over the past few years. Multi-carbon products (C2+) with higher energy density and larger market value produced from photocatalytic reduction of CO2 are still very limited owing to the low photocatalytic productivity and poor selectivity of products. This review focuses on the recent progress on photocatalytic reduction of CO2 towards C2+ products from the perspective of performance evaluation and mechanistic understanding. We first provide a systematic description of the entire fundamental procedures of photocatalytic reduction of CO2. An in-depth strategy analysis for improving the selectivity of photocatalytic reduction of CO2 to C2+ products is then addressed. Then the focus was on summarizing the ways to improve C2+ selectivity. The intrinsic mechanisms of photocatalytic reduction of CO2 to C2+ products are summarized in the final. Combining the foundation of photocatalysis with promising catalyst strategies, this review will offer valuable guidance for the development of efficient photocatalytic systems for the synthesis of C2+ products.
Collapse
Affiliation(s)
- Pengyan Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yumin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Lv JR, Guo RT, Zhu HW, Shi XD, Liu MY, Pan WG. Recent Advances in Metal Halide Perovskites for CO 2 Photocatalytic Reduction: An Overview and Future Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408921. [PMID: 39614738 DOI: 10.1002/smll.202408921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Indexed: 01/23/2025]
Abstract
The photocatalytic reduction of CO2 into valuable chemicals and fuels has become a significant research focus in recent years due to its environmental sustainability and energy efficiency. Metal halide perovskites (MHPs), renowned for their remarkable optoelectronic properties and tunable structures, are regarded as promising photocatalysts. Yet, their practical uses are constrained by inherent instability, severe electron-hole recombination, and a scarcity of active sites, prompting substantial research efforts to optimize MHP-based photocatalysts. This review summarizes the latest advancements in MHP-based photocatalysis. First the fundamental principles of photocatalysis are outlined and the structural and optical characteristics of MHPs are evaluated. Then key strategies for enhancing MHP photocatalysts, including morphology and surface modification, encapsulation, metal cation doping, heterojunction engineering, and molecular immobilization are highlighted. Finally, considering recent research progress and the needs for industrial application, challenges and future prospects are explored. This review aims to support researchers in the development of more efficient and stable MHP-based photocatalysts.
Collapse
Affiliation(s)
- Jiong-Ran Lv
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| | - Hao-Wen Zhu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Xu-Dong Shi
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Ming-Yang Liu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| |
Collapse
|
7
|
Tong Q, Tang Y, Zou W, Ye YX, Dong L, Ouyang G. Simultaneous Photocatalytic CO 2 Reduction and H 2O Oxidation Under Non-Sacrificial Ambient Conditions. Chemistry 2024; 30:e202402629. [PMID: 39353881 DOI: 10.1002/chem.202402629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
The utilization of CO2, H2O, and solar energy is regarded as a sustainable route for converting CO2 into chemical feedstocks, paving the way for carbon neutrality and reclamation. However, the simultaneous photocatalytic CO2 reduction and H2O oxidation under non-sacrificial ambient conditions is still a significant challenge. Researchers have carried out extensive exploration and achieved dramatic developments in this area. In this review, we first primarily elucidate the principles of two half-reactions in the photocatalytic conversion of CO2 with H2O, i. e., CO2 reduction by the photo-generated electrons and protons, and H2O oxidation by the photo-generated holes without sacrificial agents. Subsequently, the strategies to promote two half-reactions are summarized, including the vacancy/facet/morphology design, adjacent redox site construction, and Z-scheme heterojunction development. Finally, we present the advanced in situ characterizations and future perspectives in this field. This review aims to provide fresh insights into effectively simultaneous photocatalytic CO2 reduction and H2O oxidation under non-sacrificial ambient conditions.
Collapse
Affiliation(s)
- Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Weixin Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu-Xin Ye
- School, of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210023, P. R. China
| | - Gangfeng Ouyang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, Scho, ol of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
8
|
Hou Y, Ma H, Zhu D, Li R, Zhao Z, Li CX, Cui CX, Wang JC. Noble metal-free porphyrin covalent organic framework layer for CO 2 photoreduction to CO. Dalton Trans 2024; 54:405-413. [PMID: 39555958 DOI: 10.1039/d4dt02658f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The presence of greenhouse CO2 gas in the atmosphere causes serious environmental issues. Consequently, the development of photocatalysts for reducing CO2 is essential for mimicking artificial photosynthesis. In this study, we prepared a 5,15-di(4-aminophenty)-10,20-diphentyporphyrin copper (CuDAPP)-1,3,5-triformylphloroglucinol (TP)-covalent organic framework (COF) layer on a glass sheet via a layer-by-layer (LBL) method. The 2D CuDAPP-TP-COF layer was used as a photocatalyst for CO2 reduction, and it demonstrated excellent photocatalytic activity under gas-solid conditions without sacrificial reagents, noble metals, or photosensitisers. The CO production yield was 282.6 μmol g-1 under visible-light irradiation for 6 h, outperforming the raw material CuDAPP and a mixture of CuDAPP and TP, indicating a high application potential of the 2D porphyrin COF layer material in photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yuxia Hou
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Haizeng Ma
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Dan Zhu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Renlong Li
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Ziyan Zhao
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Chun-Xiang Li
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Cheng-Xing Cui
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Ji-Chao Wang
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
9
|
Zhang SR, Zou YH, Wang HN, Xu GJ, Xie W, Xu N, Xu YH, Lan YQ. Varied CO 2 photoreduction activities of UiO-66-NH 2 MOFs with different aggregation morphologies. Chem Commun (Camb) 2024; 60:14641-14644. [PMID: 39569594 DOI: 10.1039/d4cc04919e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Several kinds of UiO-66-NH2 with different aggregation morphologies were prepared to verify that the morphology of the photocatalyst could influence charge transfer. That showing poor aggregation exhibits superior CO2 photoreduction performance, attributed to the small particle size related to the poor aggregation and to the resulting high efficiency of separation of photogenerated electrons and holes.
Collapse
Affiliation(s)
- Shu-Ran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, Jilin, People's Republic of China.
- The Joint Laboratory of Intelligent Manufacturing of Energy and Environmental Materials, Changchun, 130103, Jilin, People's Republic of China
| | - Yan-Hong Zou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China.
| | - Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China.
| | - Guang-Juan Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, Jilin, People's Republic of China.
| | - Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, Jilin, People's Republic of China.
| | - Na Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, Jilin, People's Republic of China.
| | - Yan-Hong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, Jilin, People's Republic of China.
| | - Ya-Qian Lan
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI), South China Normal University Guangzhou, 510006, P. R. China.
| |
Collapse
|
10
|
Kołodziej M, Ojha N, Budziałowski M, Załęski K, Fina I, Mishra YK, Pant KK, Coy E. Fundamentals of Flexoelectricity, Materials and Emerging Opportunities Toward Strain-Driven Nanocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406726. [PMID: 39501989 DOI: 10.1002/smll.202406726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Indexed: 12/28/2024]
Abstract
Flexoelectricity, an intrinsic property observed in materials under nonuniform deformation, entails a coupling between polarization and strain gradients. Recent catalyst advancements have reignited interest in flexoelectricity, particularly at the nanoscale, where pronounced strain gradients promote robust flexoelectric effects. This paper comprehensively examines flexoelectricity, encompassing methodologies for precise measurement, elucidating its distinctions from related phenomena, and exploring its potential applications in augmenting catalytic properties. So far, the greatest potentials are based on lead strontium titanate (PST) and other metallic titanates such as titania (TiO2), strontium titanate (STO), barium strontium titanate (BST) sulfates (MoS2, ZnS) and halide perovskites (with archetype XPbI3). This review explores the promise of flexoelectric properties in addressing material and photocatalytic challenges, such as charge carrier recombination and ineffective surface charge separation. Additionally, it sheds light on the synergy with emerging paradigms like photo-flexo catalysis and synergistic flexo-piezo catalysis, specifically focusing on selective chemical transformations like green hydrogen production. Current limitations related to the usage of photoflexoelectricity for photocatalysis are mostly the stability of the used substance (susceptibility to photodegradation) or the voltage values, which represent the inferior potential for specific practical applications. This work underscores the indispensable role of flexoelectricity in catalysis and its capacity to steer future research and technological advancement.
Collapse
Affiliation(s)
- Mieszko Kołodziej
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - Niwesh Ojha
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Michał Budziałowski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - Ignasi Fina
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, 6400, Denmark
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Center for Sustainable Energy, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Catalytic Reaction Engineering Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
- University of Saskatchewan, Saskatoon, SK, S7N 5A2, Canada
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| |
Collapse
|
11
|
Arif M, Mahsud A, Xing H, Hannan Zahid A, Liang Q, Amjad Majeed M, Ali A, Li X, Lu Z, Leonard Deepak F, Muhmood T, Chen Y. Modulating the local electron density at built-in interface iron single sites in Fe-CN/MoO 3 heterostructure for enhanced CO 2 reduction to CH 4 and photo-Fenton reaction. J Colloid Interface Sci 2024; 680:1053-1066. [PMID: 39549349 DOI: 10.1016/j.jcis.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
The catalytic efficiency of heterogeneous photocatalytic CO2 reduction and photo-Fenton H2O2 activationisclosely related to the local electron density of reaction center atoms. However, electron-hole recombination from random charge transfer significantly restricts the targeted electron delivery to the active center. Herein, Fe-C3N4/MoO3 heterojunction with interfacial coordination of atomically dispersed Fe-N4 sites with the O interface of MoO3 was synthesized by simple hydrothermal method. Based on the experimental results and density functional theory calculation (DFT), the heterojunction structure fosters accelerated interfacial electron transfer due to directional interfacial electric field (IEF) between Fe-CN and MoO heterogeneous interfaces, and the interfacial bond between Fe-N4 sites and O at the built-in interface regulates the local electron density of Fe-N4 active center. DFT further reveals that the interfacial electron flow and concentrated electron density at Fe-N4 sites result from the coordination between Fe-N4 and MoO3 interfaces. This directs electron flow towards the Fe center, significantly enhancing CO2 adsorption and H2O2 conversion efficiency. PDOS analysis shows that the dyz and dz2 orbitals of the isolated Fe atom in Fe-CN overlap with the pz orbital of the O atom in MoO3, playing a pivotal role in CO2 adsorption. Consequently, the Fe-CN/MoO3 heterojunction demonstrated highly efficient photocatalytic CO2 reduction to CH4, coupled with benzyl alcohol oxidation and photo-Fenton tetracycline degradation. These findings offer a promising multifunctional catalyst strategy for the development of energy conversion and environmental remediation.
Collapse
Affiliation(s)
- Muhammad Arif
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Ayaz Mahsud
- School of Physics, Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Normal University, Xinxiang 453007, China
| | - Haoran Xing
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Street, Nanjing 210023, China
| | - Abdul Hannan Zahid
- Department of Chemical Engineering, University of Gujrat, Gujrat 50700, Pakistan
| | - Qian Liang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Muhammad Amjad Majeed
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Amjad Ali
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Xiazhang Li
- National-local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China
| | - Zhansheng Lu
- School of Physics, Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Normal University, Xinxiang 453007, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Francis Leonard Deepak
- International Iberian Nanotechnology Laboratory, avenida mestre josé veiga, Braga 4715-310, Portugal
| | - Tahir Muhmood
- International Iberian Nanotechnology Laboratory, avenida mestre josé veiga, Braga 4715-310, Portugal.
| | - Yinjuan Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
12
|
Pu SH, Huang T, Si DH, Sun MJ, Wang WW, Zhang T, Cao R. Electrolyte Composition-Dependent Product Selectivity in CO 2 Reduction with a Porphyrinic Metal-Organic Framework Catalyst. Angew Chem Int Ed Engl 2024; 63:e202411766. [PMID: 39058420 DOI: 10.1002/anie.202411766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
A copper porphyrin-derived metal-organic framework electrocatalyst, FICN-8, was synthesized and its catalytic activity for CO2 reduction reaction (CO2RR) was investigated. FICN-8 selectively catalyzed electrochemical reduction of CO2 to CO in anhydrous acetonitrile electrolyte. However, formic acid became the dominant CO2RR product with the addition of a proton source to the system. Mechanistic studies revealed the change of major reduction pathway upon proton source addition, while catalyst-bound hydride (*H) species was proposed as the key intermediate for formic acid production. This work highlights the importance of electrolyte composition on CO2RR product selectivity.
Collapse
Affiliation(s)
- Si-Hua Pu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Meng-Jiao Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Wen Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Teng Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
13
|
Yu W, Wang K, Li H, Ma T, Wu Y, Shang Y, Zhang C, Fan F, Lv S. An updated review of few-layer black phosphorus serving as a promising photocatalyst: synthesis, modification and applications. NANOSCALE 2024; 16:19131-19173. [PMID: 39320464 DOI: 10.1039/d4nr02567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Semiconductor photocatalysts represent a potential strategy to simultaneously solve the global energy shortage and environmental pollution, and black phosphorus (BP) has gained widespread applications in photocatalysis due to its high hole mobility, strong light trapping capabilities, and adjustable band gap. Nevertheless, the original material exhibits unsatisfactory photocatalytic activity in terms of low carrier separation efficiency, weak environmental stability, and difficult to control layer thickness. The following review briefly presents the fundamental characteristics and extensively discusses the synthesis methods and modification strategies for few-layer black phosphorus (FL-BP). Furthermore, various applications of composite photocatalysts derived from FL-BP such as water splitting, pollutant degradation, the carbon dioxide reduction reaction (CO2RR), phototherapy, bacterial disinfection, N2 fixation, and hydrogenation reactions are reviewed. Finally, the opportunities and challenges for the development and further investigation of advanced FL-BP-based photocatalysts are also presented.
Collapse
Affiliation(s)
- Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yingying Wu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yongchang Shang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Fuhao Fan
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Shifei Lv
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
14
|
Zou JF, Li S, Liu P, Zhao Y, Wang T, Pan YX, Yan X. Strategy in Promoting Visible Light Absorption, Charge Separation, CO 2 Adsorption and Proton Production for Efficient Photocatalytic CO 2 Reduction with H 2O. Chem Asian J 2024:e202400781. [PMID: 39418204 DOI: 10.1002/asia.202400781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Solar-energy-driven photocatalytic CO2 reduction by H2O to high-valuable carbon-containing chemicals has become one of the greatest concerns in both scientific and industrial communities, due to its potential in solving energy and environmental problems. However, efficiency of photocatalytic CO2 reduction by H2O is still far below the needs of large-scale applications. The reduction efficiency is closely related to ability of photocatalysts in absorbing visible light which is the main part of sunlight (44 %), separating photogenerated electron-hole pairs, adsorbing CO2 and producing protons for reducing CO2. Thus, photocatalysts with enhanced visible light absorption, electron-hole separation, CO2 adsorption and proton production are highly desired. Herein, we aim to provide a picture of recent progresses in improving ability of photocatalysts in visible light absorption, electron-hole separation, CO2 adsorption and proton production, and give an outlook for future researches associated with photocatalytic CO2 reduction by H2O.
Collapse
Affiliation(s)
- Jia-Fu Zou
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Sha Li
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yiyi Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tingwei Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yun-Xiang Pan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaoliang Yan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| |
Collapse
|
15
|
Wang Z, Fei H, Wu YN. Unveiling Advancements: Trends and Hotspots of Metal-Organic Frameworks in Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2024; 17:e202400504. [PMID: 38666390 DOI: 10.1002/cssc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Metal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO2 adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO2 reduction reaction (PCO2RR). This study presents a comprehensive examination of the advancements in MOFs-based PCO2RR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field. The findings highlight a period of rapid expansion and increasing interdisciplinary integration, with extensive international and institutional collaboration. A notable emphasis on significant research clusters and key terminologies identified through co-occurrence network analysis, highlighting predominant research on MOFs such as UiO, MIL, ZIF, porphyrin-based MOFs, their composites, and the hybridization with photosensitizers and molecular catalysts. Furthermore, prospective design approaches for catalysts are explored, encompassing single-atom catalysts (SACs), interfacial interaction enhancement, novel MOF constructions, biocatalysis, etc. It also delves into potential avenues for scaling these materials from the laboratory to industrial applications, underlining the primary technical challenges that need to be overcome to facilitate the broader application and development of MOFs-based PCO2RR technologies.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
16
|
Yu J, Muhetaer A, Li Q, Xu D. Solar Energy-Driven Reverse Water Gas Shift Reaction: Photothermal Effect, Photoelectric Activation and Selectivity Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402952. [PMID: 38924254 DOI: 10.1002/smll.202402952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Excessive carbon dioxide (CO2) emissions are one of the main causes of the greenhouse effect. Thermal catalytic reverse water gas shift (RWGS) reaction, which is a pre reaction for Fischer-Tropsch synthesis, is considered an effective way to convert CO2 and synthesize high value-added chemicals in industry. However, traditional thermal catalysis requires a large amount of fossil fuels to drive reactions, which cannot achieve the true goal of carbon neutrality. Photothermal catalysis, as a novel conversion pathway, can achieve efficient CO2 conversion while significantly improving solar energy utilization. This review provides a detailed introduction of CO2 and H2 adsorption/activation and reaction pathways in thermal catalysis, as well as the catalytic mechanisms of thermal and chemical effects in photothermal catalytic RWGS to supply readers valuable insights on the mechanism of photothermal catalytic RWGS reaction and provide a reference for better catalyst design.
Collapse
Affiliation(s)
- Jianbo Yu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstableand Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Aidaer Muhetaer
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstableand Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qi Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstableand Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Dongsheng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstableand Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
17
|
Zhang P, Li N, Li L, Yu Y, Tuerhong R, Su X, Zhang B, Han L, Han Y. g-C 3N 4-Based Photocatalytic Materials for Converting CO 2 Into Energy: A Review. Chemphyschem 2024; 25:e202400075. [PMID: 38822681 DOI: 10.1002/cphc.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Environmental pollution management and renewable energy development are humanity's biggest issues in the 21st century. The rise in atmospheric CO2, which has surpassed 400 parts per million, has stimulated research on CO2 reduction and conversion methods. Presently, photocatalytic conversion of CO2 to valuable hydrocarbons enables the transformation of solar energy into chemical energy and offers a novel avenue for energy conversion while regulating the greenhouse effect. This is an ideal strategy for simultaneously addressing environmental issues and the energy crisis. Photocatalysts are essential to photocatalytic processes. Photocatalyst is the core of photocatalytic technology, and graphite carbon nitride (g-C3N4) has attracted much attention because of its nonmetallic characteristics, and it has the characteristics of low cost, tunable electronic structure, easy manufacture and strong reducibility. However, its activity is not only affected by external reaction conditions, but also by the band gap structure, physical and chemical stability, surface morphology and specific surface area of the photocatalyst it. In this paper, the application progress of g-C3N4-based photocatalytic materials in CO2 reduction is reviewed, and the modification strategies of g-C3N4-based catalysts to obtain better catalytic efficiency and selectivity in CO2 photocatalytic reduction are summarized, and the future development of this material is prospected.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Ning Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Longjian Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Yongchong Yu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Reyila Tuerhong
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Xiaoping Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Bin Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Lijuan Han
- Gansu Natural Energy Institute, Gansu Academy of Science, Lanzhou, 730046, P.R.China
| | - Yuqi Han
- College of Chemistry and Chemical Engineering, He Xi University, No.846 North Circle Road, Zhangye, 734000, P.R.China
| |
Collapse
|
18
|
Yang Q, Liu H, Lin Y, Su D, Tang Y, Chen L. Atomically Dispersed Metal Catalysts for the Conversion of CO 2 into High-Value C 2+ Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310912. [PMID: 38762777 DOI: 10.1002/adma.202310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The conversion of carbon dioxide (CO2) into value-added chemicals with two or more carbons (C2+) is a promising strategy that cannot only mitigate anthropogenic CO2 emissions but also reduce the excessive dependence on fossil feedstocks. In recent years, atomically dispersed metal catalysts (ADCs), including single-atom catalysts (SACs), dual-atom catalysts (DACs), and single-cluster catalysts (SCCs), emerged as attractive candidates for CO2 fixation reactions due to their unique properties, such as the maximum utilization of active sites, tunable electronic structure, the efficient elucidation of catalytic mechanism, etc. This review provides an overview of significant progress in the synthesis and characterization of ADCs utilized in photocatalytic, electrocatalytic, and thermocatalytic conversion of CO2 toward high-value C2+ compounds. To provide insights for designing efficient ADCs toward the C2+ chemical synthesis originating from CO2, the key factors that influence the catalytic activity and selectivity are highlighted. Finally, the relevant challenges and opportunities are discussed to inspire new ideas for the generation of CO2-based C2+ products over ADCs.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Desheng Su
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yulong Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Haroon H, Xiang Q. Single-Atom based Metal-Organic Framework Photocatalysts for Solar-Fuel Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401389. [PMID: 38733221 DOI: 10.1002/smll.202401389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Indexed: 05/13/2024]
Abstract
The growing demand for fossil fuels and subsequent CO2 emissions prompted a search for alternate sources of energy and a reduction in CO2. Photocatalysis driven by solar light has been found as a potential research area to tackle both these problems. In this direction, SAC@MOF (Single-atom loaded MOFs) photocatalysis is an emerging field and a promising technology. The unique properties of single-atom catalysts (SACs), such as high catalytic activity and selectivity, are leveraged in these systems. Photocatalysis, focusing on the utilization of Metal-Organic Frameworks (MOFs) as platforms for creating single-atom catalysts (SACs) characterized by metal single-atoms (SAs) as their active sites, are noted for their unparalleled atomic efficiency, precisely defined active sites, and superior photocatalytic performance. The synergy between MOFs and SAs in photocatalytic systems is meticulously examined, highlighting how they collectively enhance photocatalytic efficiency. This review examines SAC@MOF development and applications in environmental and energy sectors, focusing on synthesis and stabilization methods for SACs on MOFs and also characterization techniques vital for understanding these catalysts. The potential of SAC@MOF in CO2 Photoreduction and Photocatalytic H2 evolution is highlighted, emphasizing its role in green energy technologies and advances in materials science and Photocatalysis.
Collapse
Affiliation(s)
- Haamid Haroon
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Quanjun Xiang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
20
|
Jia G, Zhang Y, Yu JC, Guo Z. Asymmetric Atomic Dual-Sites for Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403153. [PMID: 39039977 DOI: 10.1002/adma.202403153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
Collapse
Affiliation(s)
- Guangri Jia
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yingchuan Zhang
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Zhengxiao Guo
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
21
|
Fang X, Choi JY, Stodolka M, Pham HTB, Park J. Advancing Electrically Conductive Metal-Organic Frameworks for Photocatalytic Energy Conversion. Acc Chem Res 2024; 57:2316-2325. [PMID: 39110102 DOI: 10.1021/acs.accounts.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
ConspectusPhotocatalytic energy conversion is a pivotal process for harnessing solar energy to produce chemicals and presents a sustainable alternative to fossil fuels. Key strategies to enhance photocatalytic efficiency include facilitating mass transport and reactant adsorption, improving light absorption, and promoting electron and hole separation to suppress electron-hole recombination. This Account delves into the potential advantages of electrically conductive metal-organic frameworks (EC-MOFs) in photocatalytic energy conversion and examines how manipulating electronic structures and controlling morphology and defects affect their unique properties, potentially impacting photocatalytic efficiency and selectivity. Moreover, with a proof-of-concept study of photocatalytic hydrogen peroxide production by manipulating the EC-MOF's electronic structure, we highlight the potential of the strategies outlined in this Account.EC-MOFs not only possess porosity and surface areas like conventional MOFs, but exhibit electronic conductivity through d-p conjugation between ligands and metal nodes, enabling effective charge transport. Their narrow band gaps also allow for visible light absorption, making them promising candidates for efficient photocatalysts. In EC-MOFs, the modular design of metal nodes and ligands allows fine-tuning of both the electronic structure and physical properties, including controlling the particle morphology, which is essential for optimizing band positions and improving charge transport to achieve efficient and selective photocatalytic energy conversion.Despite their potential as photocatalysts, modulating the electronic structure or controlling the morphology of EC-MOFs is nontrivial, as their fast growth kinetics make them prone to defect formation, impacting mass and charge transport. To fully leverage the photocatalytic potential of EC-MOFs, we discuss our group's efforts to manipulate their electronic structures and develop effective synthetic strategies for morphology control and defect healing. For tuning electronic structures, diversifying the combinations of metals and linkers available for EC-MOF synthesis has been explored. Next, we suggest that synthesizing ligand-based solid solutions will enable continuous tuning of the band positions, demonstrating the potential to distinguish between photocatalytic reactions with similar redox potentials. Lastly, we present incorporating a donor-acceptor system in an EC-MOF to spatially separate photogenerated carriers, which could suppress electron-hole recombination. As a synthetic strategy for morphology control, we demonstrated that electrosynthesis can modify particle morphology, enhancing electrochemical surface area, which will be beneficial for reactant adsorption. Finally, we suggest a defect healing strategy that will enhance charge transport by reducing charge traps on defects, potentially improving the photocatalytic efficiency.Our vision in this Account is to introduce EC-MOFs as an efficient platform for photocatalytic energy conversion. Although EC-MOFs are a new class of semiconductor materials and have not been extensively studied for photocatalytic energy conversion, their inherent light absorption and electron transport properties indicate significant photocatalytic potential. We envision that employing modular molecular design to control electronic structures and applying effective synthetic strategies to customize morphology and defect repair can promote charge separation, electron transfer to potential reactants, and mass transport to realize high selectivity and efficiency in EC-MOF-based photocatalysts. This effort not only lays the foundation for the rational design and synthesis of EC-MOFs, but has the potential to advance their use in photocatalytic energy conversion.
Collapse
Affiliation(s)
- Xiaoyu Fang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael Stodolka
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hoai T B Pham
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Hou Y, Ma H, Li J, Li S, Wang JC, Qu LB, Lou T, Cui CX. Visible-Light-Driven Reduction of CO 2 to CO with Highly Active and Selective Earth-Abundant Metal Porphyrin-Conjugated Organic Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16113-16120. [PMID: 39051840 DOI: 10.1021/acs.langmuir.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The field of artificial photosynthesis, which focuses on harnessing solar light for the conversion of CO2 to economically valuable chemical products, remains a captivating area of research. In this study, we developed a series of photocatalysts based on Earth abundant elements (Fe, Co, Ni, Cu, and Zn) incorporated into 2D metalloporphyrin-conjugated organic polymers known as MTBPP-BEPA-COPs. These photocatalysts were utilized for the photoreduction of CO2 employing only H2O as the electron donor, without the need for any sacrificial agents or precious-metal cocatalysts. Remarkably, all of the synthesized MTBPP-BEPA-COPs exhibited an exceptional CO2 photoreduction performance only irradiated by visible light. Particularly, upon optimizing the metal ion coordinated with porphyrin units, ZnTBPP-BEPA-COP outperformed the other MTBPP-BEPA-COPs in terms of photocatalytic activity, achieving an impressive CO reduction yield of 152.18 μmol g-1 after just 4 h of irradiation. The electrostatic potential surfaces calculated by density functional theory suggest the potential involvement of metal centers as binding and catalytic sites for the binding of CO2. The calculated adsorption energy of CO2 with ZnTBPP-BEPA-COP exhibited one of the two smallest values. This may be the reason for the excellent catalytic effect of ZnTBPP-BEPA-COP. Thus, the present study not only demonstrates the potential of porphyrin-based conjugated polymers as highly efficient photocatalysts for CO2 reduction but also offers valuable insights into the rational design of such materials in the future.
Collapse
Affiliation(s)
- Yuxia Hou
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Haizeng Ma
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Jinyu Li
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, PR China
| | - Suhong Li
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Ji-Chao Wang
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Tianjun Lou
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Cheng-Xing Cui
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou 451162, PR China
| |
Collapse
|
23
|
Chen H, Mo P, Zhu J, Xu X, Cheng Z, Yang F, Xu Z, Liu J, Wang L. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400661. [PMID: 38597688 DOI: 10.1002/smll.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
Collapse
Affiliation(s)
- Hanxia Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Pengpeng Mo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Junpeng Zhu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiaoxue Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhixiang Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Feng Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Juzhe Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
24
|
Guo W, Cao X, Tan D, Wulan B, Ma J, Zhang J. Thermal-Driven Dispersion of Bismuth Nanoparticles among Carbon Matrix for Efficient Carbon Dioxide Reduction. Angew Chem Int Ed Engl 2024; 63:e202401333. [PMID: 38670936 DOI: 10.1002/anie.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
The poor electrocatalytic stability and rapid deactivation of metal electrocatalysts are always present in the electrocatalytic conversion of carbon dioxide (CO2) due to the harsh reduction condition. Herein, we demonstrate the controllable dispersion of ultrafine bismuth nanoparticles among the hollow carbon shell (Bi@C-700-4) simply by a thermal-driven diffusion process. The confinement effect of nitrogen-doped carbon matrix is able to low the surface energy of bismuth nanoparticles against the easy aggregation commonly observed for the thermal treatment. On the basis of the synergistic effect and confinement effect between bismuth nanoparticles and carbon matrix, the highly dispersed active sites render the obviously improved electrocatalytic activity and stability for CO2 reduction into formate. The in situ experimental observations on the reduction process and theoretical calculations reveal that the incorporation of bismuth nanoparticles with nitrogen-doped carbon matrix would promote the activation of CO2 and the easy formation of key intermediate (*OCHO), thus leading the enhanced electrocatalytic activity, with a Faradaic Efficiency (FE) of formate about 94.8 % and the long-time stability. Furthermore, the coupling of an anode for 5-hydroxymethylfurfural oxidation reaction (HMFOR) in solar-driven system renders the high 2,5-furandicarboxylic acid (FDCA) yield of 81.2 %, presenting the impressive solar-to-fuel conversion.
Collapse
Affiliation(s)
- Weijian Guo
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xueying Cao
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Dongxing Tan
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Bari Wulan
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jizhen Ma
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jintao Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
25
|
Shen Z, Yang Y, Li Y, Cheng X, Zhang H, Zou X, Qiu M, Huang H, Pan H, Xia Q, Ge Z, Cao Y, Gao J, Wang Y. Titanium carbide sealed cadmium sulfide quantum dots on carbon, oxygen-doped boron nitride for enhanced and durable photochemical carbon dioxide reduction. J Colloid Interface Sci 2024; 665:443-451. [PMID: 38537590 DOI: 10.1016/j.jcis.2024.03.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Despite great efforts that have been made, photocatalytic carbon dioxide (CO2) reduction still faces enormous challenges due to the sluggish kinetics or disadvantageous thermodynamics. Herein, cadmium sulfide quantum dots (CdS QDs) were loaded onto carbon, oxygen-doped boron nitride (BN) and encapsulated by titanium carbide (Ti3C2, MXene) layers to construct a ternary composite. The uniform distribution of CdS QDs and the tight interfacial interaction among the three components could be achieved by adjusting the loading amounts of CdS QDs and MXene. The ternary 100MX/CQ/BN sample gave a productive rate of 2.45 and 0.44 μmol g-1 h-1 for carbon monoxide (CO) and methane (CH4), respectively. This CO yield is 1.93 and 6.13 times higher than that of CdS QDs/BN and BN counterparts. The photocatalytic durability of the ternary composite is significantly improved compared with CdS QDs/BN because MXene can protect CdS from photocorrosion. The characterization results demonstrate that the excellent CO2 adsorption and activation capabilities of BN, the visible light absorption of CdS QDs, the good conductivity of MXene and the well-matched energy band alignment jointly promote the photocatalytic performance of the ternary catalyst.
Collapse
Affiliation(s)
- Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yang Yang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuji Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xiaohua Cheng
- Hangzhou Perfect Purity Installation Company Limited, Hangzhou 311404, China.
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| | - Xuhui Zou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Ming Qiu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Hu Pan
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhigang Ge
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yongyong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
26
|
Li S, Mao Y, Yang J, Li Y, Dong J, Wang Z, Jiang L, He S. Efficient integration of covalent triazine frameworks (CTFs) for augmented photocatalytic efficacy: A review of synthesis, strategies, and applications. Heliyon 2024; 10:e32202. [PMID: 38947430 PMCID: PMC11214378 DOI: 10.1016/j.heliyon.2024.e32202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Heterogeneous photocatalysis emerges as an exceptionally appealing technological avenue for the direct capture, conversion, and storage of renewable solar energy, facilitating the generation of sustainable and ecologically benign solar fuels and a spectrum of other pertinent applications. Heterogeneous nanocomposites, incorporating Covalent Triazine Frameworks (CTFs), exhibit a wide-ranging spectrum of light absorption, well-suited electronic band structures, rapid charge carrier mobility, ample resource availability, commendable chemical robustness, and straightforward synthetic routes. These attributes collectively position them as highly promising photocatalysts with applicability in diverse fields, including but not limited to the production of photocatalytic solar fuels and the decomposition of environmental contaminants. As the field of photocatalysis through the hybridization of CTFs undergoes rapid expansion, there is a pressing and substantive need for a systematic retrospective analysis and forward-looking evaluation to elucidate pathways for enhancing performance. This comprehensive review commences by directing attention to diverse synthetic methodologies for the creation of composite materials. And then it delves into a thorough exploration of strategies geared towards augmenting performance, encompassing the introduction of electron donor-acceptor (D-A) units, heteroatom doping, defect Engineering, architecture of Heterojunction and optimization of morphology. Following this, it systematically elucidates applications primarily centered around the efficient generation of photocatalytic hydrogen, reduction of carbon dioxide through photocatalysis, and the degradation of organic pollutants. Ultimately, the discourse turns towards unresolved challenges and the prospects for further advancement, offering valuable guidance for the potent harnessing of CTFs in high-efficiency photocatalytic processes.
Collapse
Affiliation(s)
- Shuqi Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yintian Mao
- Hangzhou Environmental Group Company, Hangzhou, China
| | - Jian Yang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Yin Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Jun Dong
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Zhen Wang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Lixian Jiang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Shilong He
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
27
|
Tatar D, Ullah H, Yadav M, Kojčinović J, Šarić S, Szenti I, Skalar T, Finšgar M, Tian M, Kukovecz Á, Kónya Z, Sápi A, Djerdj I. High-Entropy Oxides: A New Frontier in Photocatalytic CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29946-29962. [PMID: 38821886 DOI: 10.1021/acsami.4c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Herein, we investigate the potential of nanostructured high-entropy oxides (HEOs) for photocatalytic CO2 hydrogenation, a process with significant implications for environmental sustainability and energy production. Several cerium-oxide-based rare-earth HEOs with fluorite structures were prepared for UV-light driven photocatalytic CO2 hydrogenation toward valuable fuels and petrochemical precursors. The cationic composition profoundly influences the selectivity and activity of the HEOs, where the Ce0.2Zr0.2La0.2Nd0.2Sm0.2O2-δ catalyst showed outstanding CO2 activation (14.4 molCO kgcat-1 h-1 and 1.27 mol CH 3 OH kgcat-1 h-1) and high methanol and CO selectivity (7.84% CH3OH and 89.26% CO) under ambient conditions with 4 times better performance in comparison to pristine CeO2. Systematic tests showed the effect of a high-entropy system compared to midentropy oxides. XPS, in situ DRIFTS, as well as DFT calculation elucidate the synergistic impact of Ce, Zr, La, Nd, and Sm, resulting in an optimal Ce3+/Ce4+ ratio. The observed formate-routed mechanism and a surface with high affinity to CO2 reduction offer insights into the photocatalytic enhancement. While our findings lay a solid foundation, further research is needed to optimize these catalysts and expand their applications.
Collapse
Affiliation(s)
- Dalibor Tatar
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek HR-31000, Croatia
| | - Habib Ullah
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Mohit Yadav
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Sq. 1, Szeged H-6720, Hungary
| | - Jelena Kojčinović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek HR-31000, Croatia
| | - Stjepan Šarić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek HR-31000, Croatia
| | - Imre Szenti
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Sq. 1, Szeged H-6720, Hungary
| | - Tina Skalar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Street 17, Maribor SI-2000, Slovenia
| | - Mi Tian
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Sq. 1, Szeged H-6720, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Sq. 1, Szeged H-6720, Hungary
| | - András Sápi
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Sq. 1, Szeged H-6720, Hungary
| | - Igor Djerdj
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek HR-31000, Croatia
| |
Collapse
|
28
|
He CY, Li Y, Zhou ZH, Liu BH, Gao XH. High-Entropy Photothermal Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400920. [PMID: 38437805 DOI: 10.1002/adma.202400920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Indexed: 03/06/2024]
Abstract
High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300-2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light-absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications.
Collapse
Affiliation(s)
- Cheng-Yu He
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuo-Hao Zhou
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Bao-Hua Liu
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiang-Hu Gao
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Xu L, Yu JC, Wang Y. Recent advances on bismuth oxyhalides for photocatalytic CO 2 reduction. J Environ Sci (China) 2024; 140:183-203. [PMID: 38331499 DOI: 10.1016/j.jes.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 02/10/2024]
Abstract
Photocatalytic conversion of CO2 into fuels such as CO, CH4, and CH3OH, is a promising approach for achieving carbon neutrality. Bismuth oxyhalides (BiOX, where X = Cl, Br, and I) are appropriate photocatalysts for this purpose due to the merits of visible-light-active, efficient charge separation, and easy-to-modify crystal structure and surface properties. For practical applications, multiple strategies have been proposed to develop high-efficiency BiOX-based photocatalysts. This review summarizes the development of different approaches to prepare BiOX-based photocatalysts for efficient CO2 reduction. In the review, the fundamentals of photocatalytic CO2 reduction are introduced. Then, several widely used modification methods for BiOX photocatalysts are systematacially discussed, including heterojunction construction, introducing oxygen vacancies (OVs), Bi-enrichment, heteroatom-doping, and morphology design. Finally, the challenges and prospects in the design of future BiOX-based photocatalysis for efficient CO2 reduction are examined.
Collapse
Affiliation(s)
- Liangpang Xu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China.
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China.
| |
Collapse
|
30
|
Awe OF, Eya HI, Amaral R, Komalla N, Nbelayim P, Dzade NY. Unraveling the origin of the high photocatalytic properties of earth-abundant TiO 2/FeS 2 heterojunctions: insights from first-principles density functional theory. Phys Chem Chem Phys 2024; 26:12869-12879. [PMID: 38625375 DOI: 10.1039/d3cp04453j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Herein, first-principles density functional theory calculations have been employed to unravel the interfacial geometries (composition and stability), electronic properties (density of states and differential charge densities), and charge carrier transfers (work function and energy band alignment) of a TiO2(001)/FeS2(100) heterojunction. Analyses of the structure and electronic properties reveal the formation of strong interfacial Fe-O and Ti-S ionic bonds, which stabilize the interface with an adhesion energy of -0.26 eV Å-2. The work function of the TiO2(001)/FeS2(100) heterojunction is predicted to be much smaller than those of the isolated FeS2(100) and TiO2(001) layers, indicating that less energy will be needed for electrons to transfer from the ground state to the surface to promote photochemical reactions. The difference in the work function between the FeS2(100) and TiO2(001) heterojunction components caused an electron density rearrangement at the heterojunction interface, which induces an electric field that separates the photo-generated electrons and holes. Consistently, a staggered band alignment is predicted at the interface with the conduction band edge and the valence-band edge of FeS2 lying 0.37 and 2.62 eV above those of anatase. These results point to efficient charge carrier separation in the TiO2(001)/FeS2(100) heterojunction, wherein photoinduced electrons would transfer from the FeS2 to the TiO2 layer. The atomistic insights into the mechanism of enhanced charge separation and transfer across the interface rationalize the observed high photocatalytic activity of the mixed TiO2(001)/FeS2(100) heterojunction over the individual components.
Collapse
Affiliation(s)
- Oluwayomi F Awe
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Henry I Eya
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Ricardo Amaral
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Nikhil Komalla
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Pascal Nbelayim
- Department of Materials Science and Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
| | - Nelson Y Dzade
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
31
|
Yan X, Zhang J, Hao G, Jiang W, Di J. 2D Atomic Layers for CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306742. [PMID: 37840450 DOI: 10.1002/smll.202306742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Indexed: 10/17/2023]
Abstract
Artificial photosynthesis can convert carbon dioxide into high value-added chemicals. However, due to the poor charge separation efficiency and CO2 activation ability, the conversion efficiency of photocatalytic CO2 reduction is greatly restricted. Ultrathin 2D photocatalyst emerges as an alternative to realize the higher CO2 reduction performance. In this review, the basic principle of CO2 photoreduction is introduced, and the types, advantages, and advances of 2D photocatalysts are reviewed in detail including metal oxides, metal chalcogenides, bismuth-based materials, MXene, metal-organic framework, and metal-free materials. Subsequently, the tactics for improving the performance of 2D photocatalysts are introduced in detail via the surface atomic configuration and electronic state tuning such as component tuning, crystal facet control, defect engineering, element doping, cocatalyst modification, polarization, and strain engineering. Finally, the concluding remarks and future development of 2D photocatalysts in CO2 reduction are prospected.
Collapse
Affiliation(s)
- Xihang Yan
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiajing Zhang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Gazi Hao
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
32
|
Jin Z, Liu D, Liu X, Chen P, Chen D, Xing H, Liu X. Hydrophobic Porphyrin Titanium-Based MOFs for Visible-Light-Driven CO 2 Reduction to Formate. Inorg Chem 2024; 63:1499-1506. [PMID: 38175964 DOI: 10.1021/acs.inorgchem.3c04241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Three hydrophobic porphyrin titanium-based metal-organic frameworks (MOFs) (HPA/DGIST-1, DPA/DGIST-1, and OPA/DGIST-1) were synthesized through a postsynthetic coordination reaction by using alkylphosphonic acid of different lengths (HPA, hexylphosphonic acid; DPA, dodecylphosphonic acid; OPA, octadecylphosphonic acid). Compared with the hydrophilic DGIST-1, modified DGIST-1 exhibits excellent hydrophobicity and presents good stability in humid atmospheres. Due to the introduction of porphyrin ligands, HPA/DGIST-1, DPA/DGIST-1, and OPA/DGIST-1 showed good visible-light absorption (380-700 nm) and sensitive photogenerated charge responses. When acted as catalysts, these hydrophobic Ti-MOFs can selectively reduce CO2 to HCOO- under visible-light irradiation with average reaction rates of 150.9, 178.5, and 228.3 μmol·h-1·g-1, where these values are 1.3-2.0 times higher than the system mediated by the initial porphyrin Ti-MOF catalyst. 13C NMR spectroscopy demonstrates that the catalytic product HCOO- anion originates from the reactant CO2. The photocatalytic experiments, electron paramagnetic resonance, and photoluminescence spectra tests showed that porphyrin ligands and Ti-O units can act as catalytic activity centers to realize the conversion of CO2 to HCOO-. This work demonstrated that the combination of porphyrin titanium-based MOF and alkyl hydrophobic groups is an effective way to enhance the stability of titanium-based MOFs and maintain their high photocatalytic performance.
Collapse
Affiliation(s)
- Zhi Jin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Dandan Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Xin Liu
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Dashu Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Hongzhu Xing
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China
| | - Xianchun Liu
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
33
|
Sarantou A, Tsipis A. Photocatalytic Reduction of CO 2 into CO with Cyclometalated Pt(II) Complexes of N^C^N Pincer Dipyridylbenzene Ligands: A DFT Study. Molecules 2024; 29:403. [PMID: 38257316 PMCID: PMC10820273 DOI: 10.3390/molecules29020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
In this work, density functional theory (DFT) calculations were employed to study the photocatalytic reduction of CO2 into CO using a series of Pt(II) square planar complexes with the general formula [Pt(5-R-dpb)Cl] (dpb = 1,3-di(2-pyridyl)benzene anion, R = H, N,N-dimethylaniline,T thiophene, diazaborinine). The CO2-into-CO conversion process is thought to proceed via two main steps, namely the photocatalytic/reduction step and the main catalytic step. The simulated absorption spectra exhibit strong bands in the range 280-460 nm of the UV-Vis region. Reductive quenching of the T1 state of the complexes under study is expected to be favorable since the calculated excited state redox potentials for the reaction with sacrificial electron donors are highly positive. The redox potentials reveal that the reductive quenching of the T1 state, important to the overall process, could be modulated by suitable changes in the N^C^N pincer ligands. The CO2 fixation and activation by the three coordinated Pt(II) catalytically active species are predicted to be favorable, with the Pt-CO2 bond dissociation energies D0 in the range of -36.9--10.3 kcal/mol. The nature of the Pt-CO2 bond of the Pt(II) square planar intermediates is complex, with covalent, hyperconjugative and H-bonding interactions prevailing over the repulsive electrostatic interactions. The main catalytic cycle is estimated to be a favorable exergonic process.
Collapse
Affiliation(s)
| | - Athanassios Tsipis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
34
|
Yu J, Tian H, Lai G, Wang J, Zhao J, Tang G, Gao J, Yu XF, Qu G, Zhang H, Jiang G. Accelerating the environmental applications of black phosphorus: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167829. [PMID: 37852486 DOI: 10.1016/j.scitotenv.2023.167829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Since its rediscovery in 2014, layered black phosphorus (BP) has received extensive attention as a new two-dimensional semiconductor. BP is a promising material with properties of a large surface-to-volume ratio, wide light absorption range, tunable band gap, and high charge carrier mobility. These unique characteristics of BP make it a promising contender for various applications, particularly in the realm of environmental applications. This literature review provides a comprehensive discussion and overview of the latest developments in utilizing BP for environmental purposes. The review starts with the applications of BP in photocatalysis including photodegradation of refractory pollutants, H2 evolution reaction (HER), and reduction of CO2 and N2. In the following section, Environmental electrocatalysis of HER and N2 reduction reaction (NRR) is discussed. In addition, BP-based environmental sensing (detection of heavy metal ions, antibiotics, mycotoxins, NOx) and eco-friendly halogen-free flame retardant are summarized as well. Finally, a thorough comprehension of the current state and potential future trends of BP-based nanomaterials for various environmental applications are presented.
Collapse
Affiliation(s)
- Jiachen Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haiyan Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Lu KQ, Hao JG, Wei Y, Weng B, Ge S, Yang K, Lu S, Yang MQ, Liao Y. Photocatalytic Conversion of Diluted CO 2 into Tunable Syngas via Modulating Transition Metal Hydroxides. Inorg Chem 2024; 63:795-802. [PMID: 38109223 DOI: 10.1021/acs.inorgchem.3c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The conversion of diluted CO2 into tunable syngas via photocatalysis is critical for implementing CO2 reduction practically, although the efficiency remains low. Herein, we report the use of graphene-modified transition metal hydroxides, namely, NiXCo1-X-GR, for the conversion of diluted CO2 into syngas with adjustable CO/H2 ratios, utilizing Ru dyes as photosensitizers. The Ni(OH)2-GR cocatalyst can generate 12526 μmol g-1 h-1 of CO and 844 μmol g-1 h-1 of H2, while the Co(OH)2-GR sample presents a generation rate of 2953 μmol g-1 h-1 for CO and 10027 μmol g-1 h-1 for H2. Notably, by simply altering the addition amounts of nickel and cobalt in the transition metal composite, the CO/H2 ratios in syngas can be easily regulated from 18:1 to 1:4. Experimental characterization of composites and DFT calculations suggest that the differing adsorption affinities of CO2 and H2O over Ni(OH)2-GR and Co(OH)2-GR play a significant role in determining the selectivity of CO and H2 products, ultimately affecting the CO/H2 ratios in syngas. Overall, these findings demonstrate the potential of graphene-modified transition metal hydroxides as efficient photocatalysts for CO2 reduction and syngas production.
Collapse
Affiliation(s)
- Kang-Qiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Jin-Ge Hao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yu Wei
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Shiyi Ge
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Kai Yang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Suwei Lu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, China
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, China
| | - Yuhe Liao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan, Road, Tianhe District, Guangzhou 510640, P. R. China
| |
Collapse
|
36
|
Zhang Y, Shi H, Zhao S, Chen Z, Zheng Y, Tu G, Zhong S, Zhao Y, Bai S. Hollow Plasmonic P-Metal-N S-Scheme Heterojunction Photoreactor with Spatially Separated Dual Cocatalysts toward Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304050. [PMID: 37712104 DOI: 10.1002/smll.202304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Semiconductor-based step-scheme (S-scheme) heterojunctions possess many merits toward mimicking natural photosynthesis. However, their applications for solar-to-chemical energy conversion are hindered by inefficient charge utilization and unsatisfactory surface reactivity. Herein, two synergistic protocols are demonstrated to overcome these limitations based on the construction of a hollow plasmonic p-metal-n S-scheme heterojunction photoreactor with spatially separated dual noble-metal-free cocatalysts. On one side, plasmonic Au, inserted into the heterointerfaces of CuS@ZnIn2 S4 core-shell nanoboxes, not only accelerates the transfer and recombination of useless charges, enabling a more thorough separation of useful ones for CO2 reduction and H2 O oxidation but also generates hot electrons and holes, respectively injects them into ZnIn2 S4 and CuS, further increasing the number of active carriers participating in redox reactions. On the other side, Fe(OH)x and Ti3 C2 cocatalysts, separately located on the CuS and ZnIn2 S4 surface, enrich the redox sites, adjust the reduction potential and pathway for selective CO2 -to-CH4 transformation, and balance the transfer and consumption of photocarriers. As expected, significantly enhanced activity and selectivity in CH4 production are achieved by the smart design along with nearly stoichiometric ratios of reduction and oxidation products. This study paves the way for optimizing artificial photosynthetic systems via rational interfacial channel introduction and surface cocatalyst modification.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Hulin Shi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuyi Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Zhulei Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yiyi Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Gaomei Tu
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yuling Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Song Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
37
|
Nair R, Gokuladoss V. Synergistic adsorption and kinetic studies of heterostructured g-C 3N 4/TiO 2 nano-photocatalyst under visible light for enhanced CO 2 reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2495-2510. [PMID: 38063962 DOI: 10.1007/s11356-023-31163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
Graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) were synthesized using sol-gel and ultrasonic impregnation technique followed by calcination for photocatalytic CO2 reduction. The nano-photocatalysts were analyzed for their morphological, structural, and optical characteristics. Scanning electron microscopy (SEM) revealed the presence of spherical and layered sheet-like nanoparticles, as well as the occurrence of minor aggregations. The ultraviolet-visible spectroscopy (UV-vis) revealed that g-C3N4 has good photocatalytic properties with a medium band gap (2.7 eV), and TiO2 has high charge transfer potentials, robust oxidation properties, and high band gap (3.20 eV). However, the larger band gap makes it unresponsive in the visible light spectrum. In order to circumvent this constraint, a hybrid heterostructured g-C3N4/TiO2 catalyst with different compositions, viz., 1:1, 1:2, and 2:1, were fabricated using the ultrasonic impregnation technique followed by calcination process. The optical band gap of g-C3N4/TiO2 nanocomposite shows a red shift towards 2.85 eV from 3.20 eV for bare TiO2, inferring enhanced absorption in the visible light region. Further, the photocatalytic experiments were performed using visible light sources for all the catalysts. The g-C3N4/TiO2 (2:1) reported higher photocatalytic activity due to its reduced crystallite size of 12.94 nm which were investigated using X-ray diffraction analysis (XRD) and lower band gap of 2.85 eV. The study infers that hybrid photocatalyst enhances the visible light absorption, electron-hole (e - /h +) pair separation rate, and photocatalytic reduction of CO2. In addition, two adsorption models Langmuir and Freundlich were used and adsorption kinetic data were fitted to pseudo-first-order reaction for all the five catalysts. The adsorption isotherm of CO2 by g-C3N4/TiO2 (2:1) well fitted by the Freundlich adsorption equation. On the basis of adsorption magnitude (n) values (1.74), it was found that the interaction between CO2 molecules and g-C3N4/TiO2 occurs according to the chemisorption mechanism. The kinetic study infers that the highest value of apparent rate constant (kapp) was exhibited by g-C3N4/TiO2 (2:1), which indicates that the products predominate at equilibrium.
Collapse
Affiliation(s)
- Rishika Nair
- School of Electrical Engineering, Vellore Institute of Technology (VIT), Vellore, 632 014, India
- CO2 Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Velvizhi Gokuladoss
- CO2 Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, India.
| |
Collapse
|
38
|
Liu T, Tan G, Feng S, Zhang B, Liu Y, Wang Z, Bi Y, Yang Q, Xia A, Liu W, Ren H, Lv L. Dual Localized Surface Plasmon Resonance effect enhances Nb 2AlC/Nb 2C MXene thermally coupled photocatalytic reduction of CO 2 hydrogenation activity. J Colloid Interface Sci 2023; 652:599-611. [PMID: 37611469 DOI: 10.1016/j.jcis.2023.08.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Nb2AlC/Nb2C MXene (NAC/NC) heterojunction photocatalysts with Schottky junctions were obtained by selective etching of the Al layer, resulting in 146.25 μmol·g-1 electrons and 15.28 μmol·g-1 holes stored in the heterojunction. The average conversion of NAC/NC thermally coupled photocatalytic reduction of CO2 under the simulated solar irradiation reached 110.15 μmol⋅g-1⋅h-1, and the CO selectivity reached over 92%, which was 1.49 and 1.74 times higher than that of pure Nb2AlC and Nb2C MXene, respectively. After light excitation, the localized surface plasmon resonance (LSPR) effect of holes distributed on the surface of Nb2C MXene crystals in the heterojunction will form high-energy thermal holes to dissociate H2 to H+ and reduce CO2 to form H2O at the same time. The high-energy electrons formed by the LSPR effect of Nb2C MXene and the conduction band electrons generated by the photoexcitation of Nb2C MXene can be migrated to Nb2AlC under the action of the interfacial Schottky junction to supplement the electrons needed for the LSPR effect of Nb2AlC, which continuously forms high-energy hot electrons to convert the adsorbed CO2 into *CO2-, b-HCO3, and HCOO. Subsequently, HCOO releases ⋅OH in a cyclic reaction to continuously reduce to form CO. The dual LSPR effect of Nb2AlC and Nb2C MXene is used to enhance the hydrogenation activity of thermally coupled photocatalytic reduction of CO2, which provides a new research idea for the application of MXene in thermally coupled photoreduction of CO2.
Collapse
Affiliation(s)
- Tian Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Guoqiang Tan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Stomatological Medical Equipment and Equipment Engineering Technology Research Center, Xianyang 712000, China.
| | - Shuaijun Feng
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Bixin Zhang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ying Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zeqiong Wang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yu Bi
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qian Yang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ao Xia
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wenlong Liu
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Huijun Ren
- School of Arts and Science, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Long Lv
- College of Cryptography Engineering, Engineering University of PAP, Xi'an 710086, China
| |
Collapse
|
39
|
Zhang N, Li Y, Shang W, Song X, Liu W, Hao C. Role of excited-state hydrogen bonding in CO 2 photoreduction catalyzed by sodium magnesium chlorophyll. Phys Chem Chem Phys 2023; 25:32158-32165. [PMID: 37986583 DOI: 10.1039/d3cp03638c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In this paper, we report a joint experimental and computational study to elaborate the mechanism for the photocatalytic CO2 reduction reaction (CO2RR). Experimental results indicate that the catalyst (sodium magnesium chlorophyll, MgChlNa2), which has a well-defined structure for calculation and understanding, can achieve the photoreduction of CO2 to CO only using water as a dispersant, without adding any photosensitizer or sacrificial agent. Subsequently, a series of structural models of the hydrogen-bonded complexes of the catalyst were constructed and outlined via utilizing density functional theory (DFT) calculations, including photophysical and photochemical processes. The results confirm that the rate-limiting step of the whole CO2RR was the intersystem crossing process. The electron and proton transfers involved in photophysical and photochemical processes are induced by hydrogen bonds in the excited states. The combination of experiments and calculations will provide an important reference for the design of high-efficiency photocatalysts in the photocatalytic CO2RR.
Collapse
Affiliation(s)
- Naitian Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Yuehui Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Wenzhe Shang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Xuedan Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Wei Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China.
| |
Collapse
|
40
|
Liu J, Xie Y, Wang Y, Yang K, Su S, Ling Y, Chen P. Synergistic coupling of interface ohmic contact and LSPR effects over Au/Bi 24O 31Br 10 nanosheets for visible-light-driven photocatalytic CO 2 reduction to CO. Chem Sci 2023; 14:13518-13529. [PMID: 38033891 PMCID: PMC10685320 DOI: 10.1039/d3sc03474g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
The challenge of synergistically optimizing different mechanisms limits the further improvement of plasmon-mediated photocatalytic activities. In this work, an Au/Bi24O31Br10 composite, combining an interface ohmic contact and localized surface plasmon resonance (LSPR), is prepared by a thermal reduction method. The LSPR effect induces the local resonance energy transfer effect and the local electric field enhancement effect, while the interface ohmic contact forms a stronger interface electric field. The novel synergistic interaction between the interface ohmic contact and LSPR drives effective charge separation and provides more active sites for the adsorption and activation of CO2 with improved photocatalytic efficiency. The optimized 0.6 wt% Au (5.7 nm) over Bi24O31Br10 nanosheets showed an apparently improved photocatalytic activity without any sacrificial reagents, specifically CO and O2 yields of 44.92 and 17.83 μmol g-1 h-1, and demonstrated superior stability (only lost 6%) after continuous reaction for 48 h, nearly 5-fold enhanced compared to Bi24O31Br10 and a great advantage compared with other bismuth-based photocatalysts.
Collapse
Affiliation(s)
- Jie Liu
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Yu Xie
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Yiqiao Wang
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Kai Yang
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Shuping Su
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Yun Ling
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Pinghua Chen
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| |
Collapse
|
41
|
Ahmadi M, Alavi SM, Larimi A. Pt-Cu@Bi 2MoO 6/TiO 2 Photocatalyst for CO 2 Reduction. Inorg Chem 2023. [PMID: 37996778 DOI: 10.1021/acs.inorgchem.3c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Bi2MoO6/TiO2 heterojunction photocatalysts were constructed by depositing Bi2MoO6 nanosheets on TiO2 nanobelts' surface using a solvothermal method, and the surface of the optimum Bi2MoO6/TiO2 composite was decorated with copper and/or platinum nanoparticles. The synthesized samples were investigated for the CO2 photocatalytic reduction. The structural and optical properties of synthesized photocatalysts were characterized by XRD, FESEM, EDX, N2-physisorption, Raman, TPD-CO2, DRS, and PL analysis. The Bi2MoO6/TiO2 composite with different molar ratios of Bi2MoO6 to TiO2 (1, 1/2, 1/3, 1/4, 1/5, and 1/6) showed enhanced photocatalytic activity compared to pure Bi2MoO6 and TiO2. In comparison to bulk Bi2MoO6 and TiO2, the formation of a heterojunction between Bi2MoO6 and TiO2 leads to enhanced CO2 adsorption capacity. The enhanced performance of composites can be ascribed to the improved efficiency of light harvesting in the visible light range and suppressing charge recombination. The composite photocatalytic activity indicated that the ratio of Bi2MoO6 to TiO2 in the composite samples influenced the photocatalytic performance. The Bi2MoO6/TiO2 composite with 1/4 molar ratio had the best performance in 8 h (36.4 μmol/gcat), which was about 10 and 3 times higher than TiO2 and Bi2MoO6 photocatalysts, respectively. Under UV-visible light irradiation, the Pt-Cu@BMT4 sample produced the highest amount of methane (83.6 μmol/gcat) during CO2 photoreduction. During four irradiation cycles, the Pt-Cu@BMT4 sample exhibited superior stability with less than 5% decrease in methane production.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Seyed Mehdi Alavi
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Afsanehsadat Larimi
- Department of Chemical and Process Engineering, Niroo Research Institute, Tehran 14686-13113, Iran
| |
Collapse
|
42
|
Zhu L, Qin C, Wang Y, Cao J. WS 2 supported PtO x clusters for efficient photocatalytic CO 2 reduction: a DFT study. Phys Chem Chem Phys 2023; 25:30014-30022. [PMID: 37905440 DOI: 10.1039/d3cp03592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Platinum (Pt) nanoparticles/nanoclusters are some of the most efficient cocatalysts for photocatalytic CO2 reduction. Nevertheless, the produced CO can lead to a poisoning effect due to the strong adsorption strength of the Pt cocatalysts. Using density functional theory, PtOx clusters with variable sizes (Pt4O6, Pt5O8, Pt7O10, and Pt8O13) are selected to load on WS2 (PtOx-WS2) for photocatalytic CO2 conversion. The calculated results demonstrate that PtOx-WS2 are highly stable, and the electron-rich PtOx clusters are beneficial for the photocatalytic CO2 reduction. All the PtOx-WS2 catalysts exhibit efficient photocatalytic performance for CO2 reduction. Especially, Pt4O6-, Pt5O8-, and Pt8O13-WS2 have acceptable or ultra-low ΔGmax (ΔG for the rate-determining step) of 0.57, 0.23, and 0.48 eV to produce CH3OH, HCOOH, and CH4, respectively. The photocatalytic activities of PtOx-WS2 are correlated with the adsorption strength of the key intermediates, and the strong interactions between PtOx-WS2 and *COOH or *HCOO can lower the free energy changes for the first hydrogenation step. More importantly, PtOx-WS2 can also weaken the adsorption strength of *CO and *HCOOH, which are conducive to forming *CHO. This work gives an in-depth insight to design novel catalysts and promote their catalytic activity for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Linghao Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Cong Qin
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo 454000, China.
| |
Collapse
|
43
|
Rana S, Kumar A, Sharma G, Dhiman P, García-Penas A, Stadler FJ. Recent advances in perovskite-based Z-scheme and S-scheme heterojunctions for photocatalytic CO 2 reduction. CHEMOSPHERE 2023; 339:139765. [PMID: 37562504 DOI: 10.1016/j.chemosphere.2023.139765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The dramatic rise in carbon dioxide levels in the atmosphere caused by the continuous use of carbon fuels continues to have a significant impact on environmental degradation and the disappearance of energy reserves. Past few years have seen a significant increase in the interest in photocatalytic carbon dioxide reduction because of its ability to lower CO2 releases from the burning of fossil fuels while also producing fuels and important chemical products. Because of their excellent catalytic efficiency, great uniformity, lengthy charge diffusion layers and texture flexibility that enable accurate band gap and band line optimization, perovskite-based nanomaterials are perhaps the most advantageous among the numerous semiconductors proficient in accelerating CO2 conversion under visible light. Firstly, a brief insight into photocatalytic CO2 conversion mechanism and structural features of perovskites are discussed. Further the classification and selection of perovskites for Z and S-scheme heterojunctions and their role in photocatalytic CO2 reduction analysed. The efficient modification and engineering of heterojunctions via co-catalyst loading, morphology control and vacancy introduction have been comprehensively reviewed. Third, the state-of-the-art achievements of perovskite-based Z-scheme and S-scheme heterojunctions are systematically summarized and discussed. Finally, the challenges, bottlenecks and future perspectives are discussed to provide a pathway for applying perovskite-based heterojunctions for solar-to-chemical energy conversion.
Collapse
Affiliation(s)
- Sahil Rana
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China.
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India
| | - Alberto García-Penas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911, Legan'es, Spain
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China
| |
Collapse
|
44
|
Castro-Ocampo O, Ochoa-Jaimes J, Celaya CA, González-Torres J, González-Reyes L, Hernández-Pérez I, Garibay-Febles V, Jaramillo Quintero OA, Muñiz J, Suárez-Parra R. Exploring the CO2 photocatalytic evolution onto the CuO (1 1 0) surface: A combined theoretical and experimental study. Heliyon 2023; 9:e20134. [PMID: 37767480 PMCID: PMC10520316 DOI: 10.1016/j.heliyon.2023.e20134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
A combined theoretical and experimental study was performed to elucidate the photocatalytic potential of tenorite, CuO (1 1 0) and to assess the evolution pathway of carbon dioxide (CO2) evolution pathway. The calculations were performed with density functional theory (DFT) at a DFT + U + J0 and spin polarized level. The CuO was experimentally synthesized and characterized with structural and optical methodologies. The band structure and density of states revealed the rise of band gaps at 1.24 and 1.03 eV with direct and indirect band gap nature, respectively. These values are in accordance with the experimental evidence at 1.28 and 0.96 eV; respectively, which were obtained by UV-Vis DRS. Such a behavior could be related to enhanced photocatalytic activity among copper oxide materials. Experimental evidence such as SEM images and work function measurements were also performed to evaluate the oxide. The redox potential suggests a catalytic character of tenorite (1 1 0) for the CO2 transformation through aldehydes (methanal) intermediate formation. Furthermore, a route through methylene glycol CH2(OH)2 was also explored with the theoretical methodology. The reaction path exhibits an immediate reduction of Image 1 into a •OH radical and an [OH]- anion, in the first step. This •OH radical attacks a double bond (C = O) of Image 2 to form bicarbonate ([Image 3]-) and subsequently, carbonic acid (Image 4). The carbonic acid reacts with other •OH radical to finally form orthocarbonic acid (Image 5).
Collapse
Affiliation(s)
- O. Castro-Ocampo
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - J.C. Ochoa-Jaimes
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Christian A. Celaya
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, B.C., C.P. 22800, Mexico
| | - J. González-Torres
- Universidad Autónoma Metropolitana-A, Departamento de Ciencias Básicas, Av. Sn. Pablo Xalpa No. 180, San Martin Xochinahuac, Azcapotzalco, 02128, CDMX, 02200, Mexico
| | - L. González-Reyes
- Universidad Autónoma Metropolitana-A, Departamento de Ciencias Básicas, Av. Sn. Pablo Xalpa No. 180, San Martin Xochinahuac, Azcapotzalco, 02128, CDMX, 02200, Mexico
| | - I. Hernández-Pérez
- Universidad Autónoma Metropolitana-A, Departamento de Ciencias Básicas, Av. Sn. Pablo Xalpa No. 180, San Martin Xochinahuac, Azcapotzalco, 02128, CDMX, 02200, Mexico
| | - V. Garibay-Febles
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152 Col. San Bartolo Atepehuacan, CDMX, C.P 07730, Mexico
| | - Oscar A. Jaramillo Quintero
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Jesús Muñiz
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - R. Suárez-Parra
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| |
Collapse
|
45
|
Wang Q, Wang H, Ren X, Pang R, Zhao X, Zhang L, Li S. Synergetic Role of Thermal Catalysis and Photocatalysis in CO 2 Reduction on Cu 2/MoS 2. J Phys Chem Lett 2023; 14:8421-8427. [PMID: 37712525 DOI: 10.1021/acs.jpclett.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO-LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2δ- species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.
Collapse
Affiliation(s)
- Qiuyu Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Hening Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ren
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Pang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xingju Zhao
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shunfang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
46
|
Moustakas NG, Klahn M, Mei BT, Pougin A, Dilla M, Peppel T, Ristig S, Strunk J. A high-purity gas-solid photoreactor for reliable and reproducible photocatalytic CO 2 reduction measurements. HARDWAREX 2023; 15:e00448. [PMID: 37795341 PMCID: PMC10545968 DOI: 10.1016/j.ohx.2023.e00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 10/06/2023]
Abstract
Reactions between a gas phase and a solid material are of high importance in the study of alternative ways for energy conversion utilizing otherwise useless carbon dioxide (CO2). The photocatalytic CO2 reduction to hydrocarbon fuels like e.g., methane (CH4) is such a potential candidate process converting solar light into molecular bonds. In this work, the design, construction, and operation of a high-purity gas-solid photoreactor is described. The design aims at eliminating any unwanted carbon-containing impurities and leak points, ensuring the collection of reliable and reproducible data in photocatalytic CO2 reduction measurements. Apart from the hardware design, a detailed experimental procedure including gas analysis is presented, allowing newcomers in the field of gas-solid CO2 reduction to learn the essential basics and valuable tricks. By performing extensive blank measurements (with/without sample and/or light) the true performance of photocatalytic materials can be monitored, leading to the identification of trends and the proposal of possible mechanisms in CO2 photoreduction. The reproducibility of measurements between different versions of the here presented reactor on the ppm level is evidenced.
Collapse
Affiliation(s)
- Nikolaos G. Moustakas
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Marcus Klahn
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Bastian T. Mei
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Anna Pougin
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Martin Dilla
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Tim Peppel
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Simon Ristig
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Jennifer Strunk
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
47
|
Said A, Zhang G, Wang D, Chen G, Liu Y, Gao F, Tung CH, Wang Y. Divalent Heterometal Doped Titanium-Oxide Cluster Polymers: Structures, Photoresponse, and Photocatalysis. Inorg Chem 2023; 62:13476-13484. [PMID: 37552624 DOI: 10.1021/acs.inorgchem.3c01842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Five cluster polymers based on heterometal-doped titanium-oxide cluster (TOC) monomers are reported. The monomers feature Ti10-oxide cluster cores and are connected to the divalent closed-shell heterometal anchors by salicylate ligands. The Sr2+, Ba2+, and Pb2+ dopants cause the monomers to bind head-to-head and generate linear chains, while the Ca2+ and Cd2+ lead to head-to-tail connections and zigzag chains. The cluster polymers are responsive to visible-light up to 565 nm and photo-catalytically active in both H2 evolution and CO2/epoxide cycloaddition reactions. The photo-absorption, photo-charge separation, and photocatalytic properties of the cluster polymers are dependent on the heterometal dopants in order Cd > Pb > Ba > Sr > Ca. Heterometals serve as the catalytic sites in the cluster polymers, which depending on the contribution of the pCB bottom, facilitate photo-charge separation and interfacial charge transfer, further enhancing catalytic activity. The tunable compositions and topologies of the cluster polymers shown herein may inspire the design and synthesis of more multidimensional functional metal-oxide cluster materials for a variety of applications in the future.
Collapse
Affiliation(s)
- Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
48
|
Roostaei T, Rahimpour MR, Zhao H, Eisapour M, Chen Z, Hu J. Recent advances and progress in biotemplate catalysts for electrochemical energy storage and conversion. Adv Colloid Interface Sci 2023; 318:102958. [PMID: 37453344 DOI: 10.1016/j.cis.2023.102958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Complex structures and morphologies in nature endow materials with unexpected properties and extraordinary functions. Biotemplating is an emerging strategy for replicating nature structures to obtain materials with unique morphologies and improved properties. Recently, efforts have been made to use bio-inspired species as a template for producing morphology-controllable catalysts. Fundamental information, along with recent advances in biotemplate metal-based catalysts are presented in this review through discussions of various structures and biotemplates employed for catalyst preparation. This review also outlines the recent progress on preparation routes of biotemplate catalysts and discusses how the properties and structures of these templates play a crucial role in the final performance of metal-based catalysts. Additionally, the application of bio-based metal and metal oxide catalysts is highlighted for various key energy and environmental technologies, including photocatalysis, fuel cells, and lithium batteries. Biotemplate metal-based catalysts display high efficiency in several energy and environmental systems. Note that this review provides guidance for further research in this direction.
Collapse
Affiliation(s)
- Tayebeh Roostaei
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada
| | | | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada
| | - Mehdi Eisapour
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada; Eastern Institute for Advanced Study, Ningbo, Zhengjiang 315200, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada.
| |
Collapse
|
49
|
Zhou JL, Xiang XY, Xu LT, Wang JL, Li SM, Yu YT, Mei H, Xu Y. Two bimetal-doped (Fe/Co, Mn) polyoxometalate-based hybrid compounds for visible-light-driven CO 2 reduction. Dalton Trans 2023. [PMID: 37366139 DOI: 10.1039/d3dt01296d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Two polyoxometalate (POM)-based hybrid compounds have been successfully designed and constructed by the hydrothermal method with molecular formulas [K(H2O)2FeII0.33Co0.67(H2O)2(DAPSC)]2{[FeII0.33Co0.67(H2O)(DAPSC)]2[FeII0.33Co0.67(H2O)4]2[Na2FeIII4P4W32O120]}·21.5H2O (1), and [Na(H2O)2FeII0.33Mn0.67(H2O)2(DAPSC)]2{[FeII0.33Mn0.67(H2O)(DAPSC)]2[FeII0.33Mn0.67(H2O)4]2[Na2FeIII4P4W32O120(H2O)2]}·24H2O (2) (DAPSC = 2,6-diacetylpyridine bis-(semicarbazone)), respectively. Structural analysis revealed that 1 and 2 consisted of metal-organic complexes containing DAPSC ligands with dumbbell-type inorganic clusters, iron-cobalt (iron-manganese) and some other ions. By utilizing a combination of strongly reducing {P2W12} units and bimetal-doped centres the CO2 photoreduction catalytic capacity of 1 and 2 was improved. Notably, the photocatalytic performance of 1 was much better than that of 2. In CO2 photoreduction, 1 exhibited CO selectivity as high as 90.8%. Furthermore, for 1, the CO generation rate reached 6885.1 μmol g-1 h-1 at 8 h with 3 mg, and its better photocatalytic performance was presumably due to the introduction of cobalt and iron elements to give 1 a more appropriate energy band structure. Further recycling experiments indicated that 1 was a highly efficient CO2 photoreduction catalyst, which could still possess catalytic activity after several cycles.
Collapse
Affiliation(s)
- Jiu-Lin Zhou
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Xin-Ying Xiang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ling-Tong Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Si-Man Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ya-Ting Yu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| |
Collapse
|
50
|
Rarotra S, Singh AK, Mandal TK, Bandyopadhyay D. Co-electrolysis of seawater and carbon dioxide inside a microfluidic reactor to synthesize speciality organics. Sci Rep 2023; 13:10298. [PMID: 37365171 DOI: 10.1038/s41598-023-34456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/30/2023] [Indexed: 06/28/2023] Open
Abstract
We report co-electrolysis of seawater and carbon dioxide (CO2) gas in a solar cell-integrated membraneless microfluidic reactor for continuous synthesis of organic products. The microfluidic reactor was fabricated using polydimethylsiloxane substrate comprising of a central microchannel with a pair of inlets for injection of CO2 gas and seawater and an outlet for removal of organic products. A pair of copper electrodes were inserted into microchannel to ensure its direct interaction with incoming CO2 gas and seawater as they pass into the microchannel. The coupling of solar cell panels with electrodes generated a high-intensity electrical field across the electrodes at low voltage, which facilitated the co-electrolysis of CO2 and seawater. The paired electrolysis of CO2 gas and seawater produced a range of industrially important organics under influence of solar cell-mediated external electric field. The, as synthesized, organic compounds were collected downstream and identified using characterization techniques. Furthermore, the probable underlying electrochemical reaction mechanisms near the electrodes were proposed for synthesis of organic products. The inclusion of greenhouse CO2 gas as reactant, seawater as electrolyte, and solar energy as an inexpensive electric source for co-electrolysis initiation makes the microreactor a low-cost and sustainable alternative for CO2 sequestration and synthesis of organic compounds.
Collapse
Affiliation(s)
- Saptak Rarotra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Energy Research Institute, Nanyang Technological University, Singapore, 637553, Singapore
| | - Amit Kumar Singh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
- Department of Mechanical Engineering, George Mason University, Fairfax, VA, 22030, USA.
| | - Tapas Kumar Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|