1
|
Meloni G, Morgan L, Cappelletti D, Bevilacqua M, Graiff C, Pinter P, Biffis A, Tubaro C, Baron M. Exploring the reductive CO 2 fixation with amines and hydrosilanes using readily available Cu(II) NHC-phenolate catalyst precursors. Dalton Trans 2024; 53:18128-18140. [PMID: 39474859 DOI: 10.1039/d4dt02936d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
N-Methylation of amines is of great interest in the synthesis of pharmaceuticals and valuable compounds, and the possibility to perform this reaction with an inexpensive and non-toxic substrate like CO2 and its derivatives is quite appealing. Herein, the synthesis of four novel homoleptic Cu(II) complexes with hybrid NHC-phenolate (NHC = N-Heterocyclic Carbene) ligands is reported, and their use in the catalytic N-methylation of amines with CO2 in the presence of hydrosilanes is explored. Both bidentate or tetradentate ligands can be used in the preparation of the complexes provided that the structural requirement that the two NHC and the two phenolate donors in the metal coordination sphere are mutually in trans is fulfilled. A new reaction protocol to perform the N-methylation of secondary aromatic amines and dibenzylamine in high yield under mild reaction conditions is developed, using the ionic liquid [BMMIM][NTf2] (1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide) as solvent and the catalyst precursor [Cu(L2)2]. Reactivity studies indicate that the reaction follows two different pathways with different hydrosilanes, and that the starting Cu(II) complexes are reduced under the catalytic conditions.
Collapse
Affiliation(s)
- Giammarco Meloni
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Luca Morgan
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - David Cappelletti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Matteo Bevilacqua
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | | | - Andrea Biffis
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Baron
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Baguli S, Nath S, Kundu A, Menon H, Adhikari D, Mukherjee D. (CAAC)CuCl: A Competent Precatalyst for Carbonyl and Ester Hydrosilylation. Inorg Chem 2024; 63:18552-18562. [PMID: 39319868 DOI: 10.1021/acs.inorgchem.4c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Cu-catalyzed carbonyl hydrosilylation involves a ligated "[(L)CuH]" as the active catalyst, where the ligand L has a crucial role toward the stability, stereoselectivity, and enhancement of the hydridicity. Strongly σ-donating N-heterocyclic carbenes (NHCs), their ring-expanded form, and an abnormal NHC as ligands have yielded robust and efficient Cu catalysts. However, cyclic(alkyl)(amino)carbenes (CAACs), despite being stronger σ-donors than NHCs and already having a salient Cu(I) chemistry, are yet to be reported as a similar ligand platform for this purpose. We establish here the familiar [(Me2CAAC)CuCl] as a powerful precatalyst in this regard. Additionally, it also catalyzes the more challenging ester hydrosilylation, which is a rare feat for a Cu catalyst. Apart from the stronger σ-donating ability, the more steric "openness" of CAACs than bulky NHCs also seems to be advantageous. To corroborate, three new (CAAC)CuCl complexes [(ArCH2,MeCAAC)CuCl] (Ar = Ph, 1-naphthyl, and 1-prenyl) are devised, where the effective steric around the copper is practically unaltered from the case of [(Me2CAAC)CuCl]. All three are equally active in carbonyl and ester hydrosilylation as [(Me2CAAC)CuCl]. Computation suggests the carbonyl insertion into a "(CAAC)Cu-H" as the rate-limiting step. To elucidate the involvement of a "(CAAC)CuH", "(PhCH2,MeCAAC)CuH" is generated in situ and is trapped as its BH3 adduct (PhCH2,MeCAAC)CuBH4.
Collapse
Affiliation(s)
- Sudip Baguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Soumajit Nath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli 140306, Punjab, India
| | - Harikrishna Menon
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli 140306, Punjab, India
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
3
|
Kaplanai E, Tzouras NV, Tsoureas N, Bracho Pozsoni N, Bhandary S, Van Hecke K, Nolan SP, Vougioukalakis GC. Synthesis of N-heterocyclic carbene (NHC)-Au/Ag/Cu benzotriazolyl complexes and their catalytic activity in propargylamide cycloisomerization and carbonyl hydrosilylation reactions. Dalton Trans 2024; 53:11001-11008. [PMID: 38874579 DOI: 10.1039/d4dt01414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Carbene-metal-amide (CMA) complexes of gold, silver, and copper have been studied extensively for their photochemical/photocatalytic properties and as potential (pre-)catalysts in organic synthesis. Herein, the design, synthesis, and characterization of five bench-stable Au-, Ag-, and Cu-NHC complexes bearing the benzotriazolyl anion as an amide donor, are reported. All complexes are synthesized in a facile and straightforward manner, using mild conditions. The catalytic activity of the Ag and Cu complexes was studied in propargylamide cycloisomerization and carbonyl hydrosilylation reactions. Both CMA-catalyzed transformations proceed under mild conditions and are highly efficient for a range of propargylamides and carbonyl compounds, respectively, affording the desired corresponding products in good to excellent yields.
Collapse
Affiliation(s)
- Entzy Kaplanai
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
| | - Nikolaos V Tzouras
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Nikolaos Tsoureas
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
| | - Nestor Bracho Pozsoni
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Subhrajyoti Bhandary
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Kristof Van Hecke
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
| | - Steven P Nolan
- Department of Chemistry and Centre of Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Georgios C Vougioukalakis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
| |
Collapse
|
4
|
Zhao Q, Rahman MM, Zhou T, Yang S, Lalancette R, Szostak R, Szostak M. Wingtip-Flexible N-Heterocyclic Carbenes: Unsymmetrical Connection between IMes and IPr. Angew Chem Int Ed Engl 2024; 63:e202318703. [PMID: 38135660 PMCID: PMC10922840 DOI: 10.1002/anie.202318703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
IMes (IMes=1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) and IPr (IPr=1,3- bis(2,6-diisopropylphenyl)imidazol-2-ylidene) represent by far the most frequently used N-heterocyclic carbene ligands in homogeneous catalysis, however, despite numerous advantages, these ligands are limited by the lack of steric flexibility of catalytic pockets. We report a new class of unique unsymmetrical N-heterocyclic carbene ligands that are characterized by freely-rotatable N-aromatic wingtips in the imidazol-2-ylidene architecture. The combination of rotatable N-CH2 Ar bond with conformationally-fixed N-Ar linkage results in a highly modular ligand topology, entering the range of geometries inaccessible to IMes and IPr. These ligands are highly reactive in Cu(I)-catalyzed β-hydroboration, an archetypal borylcupration process that has had a transformative impact on the synthesis of boron-containing compounds. The most reactive Cu(I)-NHC in this class has been commercialized in collaboration with MilliporeSigma to enable broad access of the synthetic chemistry community. The ligands gradually cover %Vbur geometries ranging from 37.3 % to 52.7 %, with the latter representing the largest %Vbur described for an IPr analogue, while retaining full flexibility of N-wingtip. Considering the modular access to novel geometrical space in N-heterocyclic carbene catalysis, we anticipate that this concept will enable new opportunities in organic synthesis, drug discovery and stabilization of reactive metal centers.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Md. Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383 (Poland)
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| |
Collapse
|
5
|
Neshat A, Mahdavi A, Yousefshahi MR, Cheraghi M, Eigner V, Kucerakova M, Dusek M, Rezaie F, Kaboudin B. Heteroleptic Silver(I) and Gold(I) N-Heterocyclic Carbene Complexes: Structural Characterization, Computational Analysis, Tyrosinase Inhibitory, and Biological Effects. Inorg Chem 2023; 62:16710-16724. [PMID: 37788161 DOI: 10.1021/acs.inorgchem.3c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Derivatization of (NHC)M-Cl (M = Ag, Au) with selected sulfur donors from the family of dialkyldithiophosphates and bis(2-mercapto-1-methylimidazolyl)borate ligands gave a series of heteroleptic mononuclear complexes. In single-crystal X-ray diffraction analysis, Ag(I) complexes adopted a trigonal planar geometry, while Au(I) complexes are near-linear. TD-DFT and hole-electron analyses of the selected complexes gave insight into the electronic features of the metal complexes. In vitro cellular tests were conducted on the human cancerous breast cell line MCF-7 using 2 and 8. The antibacterial activities of complexes 1, 2, 3, 7, 8, and IPr-Ag-Cl were also screened against Gram-positive (Staphylococcus aureus PTCC 1112) and Gram-negative (Escherichia coli PTCC 1330) bacteria. Antityrosinase and hemolytic effects of the selected compounds were also determined.
Collapse
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Atiyeh Mahdavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mohammad Reza Yousefshahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mahdi Cheraghi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Vaclav Eigner
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Monika Kucerakova
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 18221, The Czech Republic
| | - Forough Rezaie
- Department of Chemistry, Shahid Chamran University of Ahvaz, Ahwaz 6135783151, Iran
| | - Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| |
Collapse
|
6
|
Remy-Speckmann I, Zimmermann BM, Gorai M, Lerch M, Teichert JF. Mechanochemical solid state synthesis of copper(I)/NHC complexes with K 3PO 4. Beilstein J Org Chem 2023; 19:440-447. [PMID: 37091734 PMCID: PMC10113518 DOI: 10.3762/bjoc.19.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
A protocol for the mechanochemical synthesis of copper(I)/N-heterocyclic carbene complexes using cheap and readily available K3PO4 as base has been developed. This method employing a ball mill is amenable to typical simple copper(I)/NHC complexes but also to a sophisticated copper(I)/N-heterocyclic carbene complex bearing a guanidine moiety. In this way, the present approach circumvents commonly employed silver(I) complexes which are associated with significant and undesired waste formation and the excessive use of solvents. The resulting bifunctional catalyst has been shown to be active in a variety of reduction/hydrogenation transformations employing dihydrogen as terminal reducing agent.
Collapse
Affiliation(s)
- Ina Remy-Speckmann
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Birte M Zimmermann
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Mahadeb Gorai
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Martin Lerch
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Johannes F Teichert
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
7
|
Zhang J, Li X, Li T, Zhang G, Wan K, Ma Y, Fang R, Szostak R, Szostak M. Copper(I)–Thiazol-2-ylidenes: Highly Reactive N-Heterocyclic Carbenes for the Hydroboration of Terminal and Internal Alkynes. Ligand Development, Synthetic Utility, and Mechanistic Studies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Xue Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Tao Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Gaopeng Zhang
- Kaili Catalyst & New Materials Co., Limited, Xi’an710299, China
| | - Kerou Wan
- Kaili Catalyst & New Materials Co., Limited, Xi’an710299, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Ran Fang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey07102, United States
| |
Collapse
|
8
|
Harmon NM, Gehrke NR, Wiemer DF. Conjugate reduction of vinyl bisphosphonates. Tetrahedron Lett 2022; 106:154078. [PMID: 37521200 PMCID: PMC10373991 DOI: 10.1016/j.tetlet.2022.154078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vinyl bisphosphonates can be readily prepared by condensation of an aromatic aldehyde with the tetraester of a methylenebisphosphonate, and reduction of the resulting olefin is an attractive strategy for the preparation of monoalkyl geminal bisphosphonates. Conjugate reduction through use of variations on the Stryker approach has proven to be an efficient method for that reduction, even in the presence of aromatic substituents that also could be reduced. Furthermore, remote olefins in an isoprenoid chain survive this conjugate reduction unaffected, allowing access to isoprenoid-substituted triazole bisphosphonates of interest as potential inhibitors of terpenoid biosynthesis.
Collapse
Affiliation(s)
- Nyema M. Harmon
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1294, USA
| | - Nathaniel R. Gehrke
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1294, USA
| | - David F. Wiemer
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1294, USA
| |
Collapse
|
9
|
Ibni Hashim I, Tzouras NV, Janssens W, Scattolin T, Bourda L, Bhandary S, Van Hecke K, Nolan SP, Cazin CSJ. Synthesis of Carbene‐Metal‐Amido (CMA) Complexes and Their Use as Precatalysts for the Activator‐Free, Gold‐Catalyzed Addition of Carboxylic Acids to Alkynes. Chemistry 2022; 28:e202201224. [DOI: 10.1002/chem.202201224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ishfaq Ibni Hashim
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| | - Wim Janssens
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Laurens Bourda
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| | - Subhrajyoti Bhandary
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281,S-3 9000 Ghent Belgium
| |
Collapse
|
10
|
Li ZW, An DL, Wei ZB, Li YY, Gao JX. Hydrosilylation of ketones catalyzed by novel four-coordinate copper(I) complexes under mild conditions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Tzouras NV, Scattolin T, Gobbo A, Bhandary S, Rizzolio F, Cavarzerani E, Canzonieri V, Van Hecke K, Vougioukalakis GC, Cazin CSJ, Nolan SP. A Green Synthesis of Carbene-Metal-Amides (CMAs) and Carboline-Derived CMAs with Potent in vitro and ex vivo Anticancer Activity. ChemMedChem 2022; 17:e202200135. [PMID: 35312174 DOI: 10.1002/cmdc.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/06/2022]
Abstract
The modularity and ease of synthesis of carbene-metal-amide (CMA) complexes based on the coinage metals (Au, Ag, Cu) and N-heterocyclic carbenes (NHCs) as ancillary ligands pave the way for the expansion of their applications beyond photochemistry and catalysis. Herein, we further improve the synthesis of such compounds by circumventing the use of toxic organic solvents which were previously required for their purification, and we expand their scope to include complexes incorporating carbolines as the amido fragments. The novel complexes are screened both in vitro and ex vivo, against several cancer cell lines and high-grade serous ovarian cancer (HGSOC) tumoroids, respectively. Excellent cytotoxicity values are obtained for most complexes, while the structural variety of the CMA library screened thus far, provides promising leads for future developments. Variations of all three components (NHC, metal, amido ligand), enable the establishment of trends regarding cytotoxicity and selectivity towards cancerous over normal cells.
Collapse
Affiliation(s)
- Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium.,Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Thomas Scattolin
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy.,Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Alberto Gobbo
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Subhrajyoti Bhandary
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy.,Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Enrico Cavarzerani
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy.,Department of Medical, Surgical and Health Sciences, Università degli Studi di Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Georgios C Vougioukalakis
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| |
Collapse
|
12
|
Ma X, Guillet SG, Liu Y, Cazin CSJ, Nolan SP. Simple synthesis of [Ru(CO 3)(NHC)( p-cymene)] complexes and their use in transfer hydrogenation catalysis. Dalton Trans 2021; 50:13012-13019. [PMID: 34581364 DOI: 10.1039/d1dt02098f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel, efficient and facile protocol for the synthesis of a series of [Ru(NHC)(CO3)(p-cymene)] complexes is reported. This family of Ru-NHC complexes was obtained from imidazol(in)ium tetrafluoroborate or imidazolium hydrogen carbonate salts in moderate to excellent yields, employing sustainable weak base. The ruthenium complexes were successfully utilized in the transfer hydrogenation of ketones as highly active multifunctional catalysts.
Collapse
Affiliation(s)
- Xinyuan Ma
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Sébastien G Guillet
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Yaxu Liu
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| |
Collapse
|
13
|
Tzouras NV, Martynova EA, Ma X, Scattolin T, Hupp B, Busen H, Saab M, Zhang Z, Falivene L, Pisanò G, Van Hecke K, Cavallo L, Cazin CSJ, Steffen A, Nolan SP. Simple Synthetic Routes to Carbene-M-Amido (M=Cu, Ag, Au) Complexes for Luminescence and Photocatalysis Applications. Chemistry 2021; 27:11904-11911. [PMID: 34038002 PMCID: PMC8456869 DOI: 10.1002/chem.202101476] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/20/2022]
Abstract
The development of novel and operationally simple synthetic routes to carbene‐metal‐amido (CMA) complexes of copper, silver and gold relevant for photonic applications are reported. A mild base and sustainable solvents allow all reactions to be conducted in air and at room temperature, leading to high yields of the targeted compounds even on multigram scales. The effect of various mild bases on the N−H metallation was studied in silico and experimentally, while a mechanochemical, solvent‐free synthetic approach was also developed. Our photophysical studies on [M(NHC)(Cbz)] (Cbz=carbazolyl) indicate that the occurrence of fluorescent or phosphorescent states is determined primarily by the metal, providing control over the excited state properties. Consequently, we demonstrate the potential of the new CMAs beyond luminescence applications by employing a selected CMA as a photocatalyst. The exemplified synthetic ease is expected to accelerate the applications of CMAs in photocatalysis and materials chemistry.
Collapse
Affiliation(s)
- Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Ekaterina A Martynova
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Xinyuan Ma
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Benjamin Hupp
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Hendrik Busen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Ziyun Zhang
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Laura Falivene
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Gianmarco Pisanò
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Luigi Cavallo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| |
Collapse
|
14
|
Huang Y, Jiang W, Xi X, Li Y, Wang X, Yang M, Zhang Z, Su M, Zhu H. Versatile Reaction Patterns of Phosphanylhydrosilylalkyne with B(C
6
F
5
)
3
: A Remarkable Group Substitution Effect. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanting Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Wenjun Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Xin Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Yan Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University 311121 Hangzhou China
| | - Xiaoping Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Ming‐Chung Yang
- Department of Applied Chemistry National Chiayi University 60004 Chiayi Taiwan
| | - Zheng‐Feng Zhang
- Department of Applied Chemistry National Chiayi University 60004 Chiayi Taiwan
| | - Ming‐Der Su
- Department of Applied Chemistry National Chiayi University 60004 Chiayi Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 80708 Kaohsiung Taiwan
| | - Hongping Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| |
Collapse
|
15
|
Kannan R, Balasubramaniam S, Kumar S, Chambenahalli R, Jemmis ED, Venugopal A. Electrophilic Organobismuth Dication Catalyzes Carbonyl Hydrosilylation. Chemistry 2020; 26:12717-12721. [DOI: 10.1002/chem.202002006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Ramkumar Kannan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Selvakumar Balasubramaniam
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Sandeep Kumar
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Raju Chambenahalli
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Eluvathingal D. Jemmis
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Ajay Venugopal
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| |
Collapse
|
16
|
Cervantes‐Reyes A, Rominger F, Hashmi ASK. Sterically Demanding Ag I and Cu I N-Heterocyclic Carbene Complexes: Synthesis, Structures, Steric Parameters, and Catalytic Activity. Chemistry 2020; 26:5530-5540. [PMID: 32104933 PMCID: PMC7216994 DOI: 10.1002/chem.202000600] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/27/2020] [Indexed: 12/13/2022]
Abstract
The synthesis and full characterization of new air-stable AgI and CuI complexes bearing structurally bulky expanded-ring N-heterocyclic carbene (erNHC) ligands is presented. The condensation of protonated NHC salts with Ag2 O afforded a collection of AgI complexes, and their first use as ligand transfer reagents led to novel isostructural CuI or AuI complexes. In situ deprotonation of the NHC salts in the presence of a copper(I) source, provides a library of new CuI complexes. The solid-state structures feature large N-CNHC -N angles (118-128°) and almost identical angles between the aryl groups on the nitrogen atoms and the plane of the N-C-N unit of the carbene (i.e. torsion angles close to 0°). Among the steric parameters, the percent buried volume (%Vbur ) values span easily in the 50-57 % range, and that one of (9-Dipp)CuBr complex (%Vbur =57.5) overcomes to other known erNHC-metal complexes reported to date. Preliminary catalytic experiments in the copper-catalyzed coupling between N-tosylhydrazone and phenylacetylene, afforded 76-93 % product at the 0.5-2.5 mol % catalyst loading, proving the stability of CuI erNHC complexes at elevated temperatures (100 °C).
Collapse
Affiliation(s)
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
17
|
|
18
|
Kobayashi K, Izumori Y, Taguchi D, Nakazawa H. Hydrosilylation of Ketones Catalyzed by Iron Iminobipyridine Complexes and Accelerated by Lewis Bases. Chempluschem 2019; 84:1094-1102. [DOI: 10.1002/cplu.201900366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Katsuaki Kobayashi
- Department of Chemistry Graduate School of ScienceOsaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Yosuke Izumori
- Department of Chemistry Graduate School of ScienceOsaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Daisuke Taguchi
- Department of Chemistry Graduate School of ScienceOsaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Hiroshi Nakazawa
- Department of Chemistry Graduate School of ScienceOsaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| |
Collapse
|
19
|
Danopoulos AA, Simler T, Braunstein P. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. Chem Rev 2019; 119:3730-3961. [PMID: 30843688 DOI: 10.1021/acs.chemrev.8b00505] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emergence of N-heterocyclic carbenes as ligands across the Periodic Table had an impact on various aspects of the coordination, organometallic, and catalytic chemistry of the 3d metals, including Cu, Ni, and Co, both from the fundamental viewpoint but also in applications, including catalysis, photophysics, bioorganometallic chemistry, materials, etc. In this review, the emergence, development, and state of the art in these three areas are described in detail.
Collapse
Affiliation(s)
- Andreas A Danopoulos
- Laboratory of Inorganic Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis Zografou , Athens GR 15771 , Greece.,Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Thomas Simler
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| |
Collapse
|
20
|
Trose M, Nahra F, Cordes DB, Slawin AMZ, Cazin CSJ. Cu–NHC azide complex: synthesis and reactivity. Chem Commun (Camb) 2019; 55:12068-12071. [DOI: 10.1039/c9cc04844h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of a NHC-based copper azide complex is reported. Its reactivity was investigated with various reagents affording 8 new complexes.
Collapse
Affiliation(s)
- Michael Trose
- School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | - Fady Nahra
- Centre for Sustainable Chemistry
- Department of Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | | | | | - Catherine S. J. Cazin
- Centre for Sustainable Chemistry
- Department of Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
21
|
Ghavami ZS, Anneser MR, Kaiser F, Altmann PJ, Hofmann BJ, Schlagintweit JF, Grivani G, Kühn FE. A bench stable formal Cu(iii) N-heterocyclic carbene accessible from simple copper(ii) acetate. Chem Sci 2018; 9:8307-8314. [PMID: 30542579 PMCID: PMC6240905 DOI: 10.1039/c8sc01834k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/23/2018] [Indexed: 11/25/2022] Open
Abstract
The first stable formal Cu(iii) NHC and its unusual reactivity with acetate are reported. Several products of this reaction are identified and fully characterised. It reactivity is extensively investigated and additionally explored by means of theoretical, electrochemical and isotope labelling experiments.
For years, Cu(iii)NHCs have been proposed as active intermediates in Cu(i)NHC catalyzed reactions, yielding the desired products by reductive elimination, but until today, no one has ever reported the characterisation of such a compound. When working on the synthesis of biomimetic transition metal (NHC) complexes and their application in homogeneous catalysis, we recently found a highly unusual reactivity for Cu(ii) acetate in the presence of a particular cyclic tetra(NHC) ligand. Therein, the formation of the first stable CuNHC compound, displaying Cu in the formal oxidation state +III, by simple disproportionation of Cu(ii) acetate in dimethyl sulfoxide (DMSO) was observed. At elevated temperatures selective mono-oxidation of the NHC ligand occurs, even under anaerobic conditions. Acetate was identified as the origin of the oxygen atom by 18O-labelling experiments. The remarkably high stability of the title compound was furthermore proven electrochemically by cyclic voltammetry. An in-depth investigation of its reactivity revealed the involvement of four additional compounds. Three of them could be isolated and characterised by 1H/13C-NMR, single crystal XRD, mass spectrometry and elemental analysis. The fourth, a Cu(i)NHC intermediate, formed by formal reductive elimination from the Cu(NHC)3+ compound, was characterised in situ by 1H/13C-NMR and computational methods.
Collapse
Affiliation(s)
- Zohreh S Ghavami
- School of Chemistry , Damghan University , Damghan 36715-364 , Iran
| | - Markus R Anneser
- Molecular Catalysis , Catalysis Research Center and Faculty of Chemistry , Technische Universität München , Lichtenbergstrasse 4 , D-85747 Garching bei München , Germany . ; ; Tel: +49 89 289 13096
| | - Felix Kaiser
- Molecular Catalysis , Catalysis Research Center and Faculty of Chemistry , Technische Universität München , Lichtenbergstrasse 4 , D-85747 Garching bei München , Germany . ; ; Tel: +49 89 289 13096
| | - Philipp J Altmann
- Molecular Catalysis , Catalysis Research Center and Faculty of Chemistry , Technische Universität München , Lichtenbergstrasse 4 , D-85747 Garching bei München , Germany . ; ; Tel: +49 89 289 13096
| | - Benjamin J Hofmann
- Molecular Catalysis , Catalysis Research Center and Faculty of Chemistry , Technische Universität München , Lichtenbergstrasse 4 , D-85747 Garching bei München , Germany . ; ; Tel: +49 89 289 13096
| | - Jonas F Schlagintweit
- Molecular Catalysis , Catalysis Research Center and Faculty of Chemistry , Technische Universität München , Lichtenbergstrasse 4 , D-85747 Garching bei München , Germany . ; ; Tel: +49 89 289 13096
| | | | - Fritz E Kühn
- Molecular Catalysis , Catalysis Research Center and Faculty of Chemistry , Technische Universität München , Lichtenbergstrasse 4 , D-85747 Garching bei München , Germany . ; ; Tel: +49 89 289 13096
| |
Collapse
|
22
|
Sha JQ, Yang XY, Chen Y, Zhu PP, Song YF, Jiang J. Fabrication and Electrochemical Performance of Polyoxometalate-Based Three-Dimensional Metal Organic Frameworks Containing Carbene Nanocages. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16660-16665. [PMID: 29697254 DOI: 10.1021/acsami.8b04009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two new polyoxometalate (POM)-based three-dimensional metal organic carbene frameworks, [Ag10(trz)4(H2O)2][HPW12O40] (POMs@MCNCs-1) and [Ag10(trz)4(H2O)6][H2SiW12O40] (POMs@MCNCs-2), were hydrothermally synthesized, in which Keggin-type polyoxoanions as templates induce the formation of two different kinds of metal-carbene nanocages (MCNCs) for the first time. Combination of the reversible multielectron redox behavior and electron storage functions of POMs with the good electrical conductivity of the single-walled carbon nanotubes (SWNTs) renders the POMs@MCNCs-1/SWNT composite excellent electrochemical performance and good stability as anode materials of lithium-ion batteries, with up to 2000 mA h g-1 for the first discharge capacity and ca. 859 mA h g-1 for the second cycle at a current density of 100 mA g-1. The successful fabrication of unprecedented MCNCs into the POM-based three-dimensional metal-organic frameworks in the present work must initiate extensive research interests in diverse fields.
Collapse
Affiliation(s)
- Jing-Quan Sha
- Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering , Jining University , Qufu , Shandong 273155 , China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Xi-Ya Yang
- Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering , Jining University , Qufu , Shandong 273155 , China
| | - Yanyan Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Pei-Pei Zhu
- Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering , Jining University , Qufu , Shandong 273155 , China
| | - Yu-Fei Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| |
Collapse
|
23
|
|
24
|
Liang Q, Liu NJ, Song D. Constructing reactive Fe and Co complexes from isolated picolyl-functionalized N-heterocyclic carbenes. Dalton Trans 2018; 47:9889-9896. [DOI: 10.1039/c8dt02621a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Fe(ii) and Co(ii) complexes prepared from the isolated free carbene form of the picolyl-NHC ligands display excellent catalytic activity towards the hydrosilylation of ketones.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Nina Jiabao Liu
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Datong Song
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
25
|
Nelson DJ, Nolan SP. Hydroxide complexes of the late transition metals: Organometallic chemistry and catalysis. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Trose M, Nahra F, Poater A, Cordes DB, Slawin AMZ, Cavallo L, Cazin CSJ. Investigating the Structure and Reactivity of Azolyl-Based Copper(I)–NHC Complexes: The Role of the Anionic Ligand. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Trose
- EaStCHEM
School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
| | - Fady Nahra
- Centre
for Sustainable Chemistry, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| | - Albert Poater
- King Abdullah University of Science & Technology, KAUST Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona c/Maria Aurèlia Capmany 6, 17003 Girona, Spain
| | - David B. Cordes
- EaStCHEM
School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
| | - Alexandra M. Z. Slawin
- EaStCHEM
School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
| | - Luigi Cavallo
- King Abdullah University of Science & Technology, KAUST Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia
| | - Catherine S. J. Cazin
- EaStCHEM
School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
- Centre
for Sustainable Chemistry, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| |
Collapse
|
27
|
Liu T, Chai H, Wang L, Yu Z. Exceptionally Active Assembled Dinuclear Ruthenium(II)-NNN Complex Catalysts for Transfer Hydrogenation of Ketones. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00356] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tingting Liu
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huining Chai
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liandi Wang
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, China
| | - Zhengkun Yu
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| |
Collapse
|