1
|
Guo D, Wang Z, Wei W, Song W, Wu J, Wen J, Hu G, Li X, Gao C, Chen X, Liu L. Rational design improves both thermostability and activity of a new D-tagatose 3-epimerase from Kroppenstedtia eburnean to produce D-allulose. Enzyme Microb Technol 2024; 178:110448. [PMID: 38657401 DOI: 10.1016/j.enzmictec.2024.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
D-allulose is a naturally occurring rare sugar and beneficial to human health. However, the efficient biosynthesis of D-allulose remains a challenge. Here, we mined a new D-tagatose 3-epimerase from Kroppenstedtia eburnean (KeDt3e) with high catalytic efficiency. Initially, crucial factors contributing to the low conversion of KeDt3e were identified through crystal structure analysis, density functional theory calculations (DFT), and molecular dynamics (MD) simulations. Subsequently, based on the mechanism, combining restructuring the flexible region, proline substitution based onconsensus sequence analysis, introducing disulfide bonds, and grafting properties, and reshaping the active center, the optimal mutant M5 of KeDt3e was obtained with enhanced thermostability and activity. The optimal mutant M5 exhibited an enzyme activity of 130.8 U/mg, representing a 1.2-fold increase; Tm value increased from 52.7 °C to 71.2 °C; and half-life at 55 °C extended to 273.7 min, representing a 58.2-fold improvement, and the detailed mechanism of performance improvement was analyzed. Finally, by screening the ribosome-binding site (RBS) of the optimal mutant M5 recombinant bacterium (G01), the engineered strain G08 with higher expression levels was obtained. The engineered strain G08 catalyzed 500 g/L D-fructose to produce 172.4 g/L D-allulose, with a conversion of 34.4% in 0.5 h and productivity of 344.8 g/L/h on a 1 L scale. This study presents a promising approach for industrial-scale production of D-allulose.
Collapse
Affiliation(s)
- Dingyu Guo
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhengchao Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Su Y, Lai W. Unraveling the Mechanism of the Oxidative C-C Bond Coupling Reaction Catalyzed by Deoxypodophyllotoxin Synthase. Inorg Chem 2024; 63:13948-13958. [PMID: 39008659 DOI: 10.1021/acs.inorgchem.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Deoxypodophyllotoxin synthase (DPS), a nonheme Fe(II)/2-oxoglutarate (2OG)-dependent oxygenase, is a key enzyme that is involved in the construction of the fused-ring system in (-)-podophyllotoxin biosynthesis by catalyzing the C-C coupling reaction. However, the mechanistic details of DPS-catalyzed ring formation remain unclear. Herein, our quantum mechanics/molecular mechanics (QM/MM) calculations reveal a novel mechanism that involves the recycling of CO2 (a product of decarboxylation of 2OG) to prevent the formation of hydroxylated byproducts. Our results show that CO2 can react with the FeIII-OH species to generate an unusual FeIII-bicarbonate species. In this way, hydroxylation is avoided by consuming the OH group. Then, the C-C coupling followed by desaturation yields the final product, deoxypodophyllotoxin. This work highlights the crucial role of the CO2 molecule, generated in the crevice between the iron active site and the substrate, in controlling the reaction selectivity.
Collapse
Affiliation(s)
- Yanzhuang Su
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wenzhen Lai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
3
|
Meng F, Sun L, Liu Y, Li X, Tan H, Yuan C, Li X. Theoretical investigation of the reaction mechanism of THP oxidative rearrangement catalysed by BBOX. Phys Chem Chem Phys 2024. [PMID: 39015023 DOI: 10.1039/d4cp01661k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
γ-Butyrobetaine hydroxylase (BBOX) is a non-heme FeII/2OG dependent enzyme that is able to perform two different kinds of catalytic reactions on 3-(2,2,2-trimethylhydrazinium) propionate (THP) to produce distinct catalytic products. Although the structure of BBOX complexed with THP has been resolved, the details of its catalytic mechanism are still elusive. In this study, by employing molecular dynamics (MD) simulations and density functional theory (DFT) calculations, the mechanism of the THP oxidative rearrangement reactions catalysed by BBOX was investigated. Our calculations revealed how the enzyme undergoes a conformational conversion to initiate the catalytic reactions. In the first catalytic step, BBOX performs hydrogen abstraction from the substrate THP as a common non-heme iron enzyme. Due to the structure of the substrate stabilizing the radical species and polarizing the adjacent N-N bond, in the next step, THP takes the pathway for N-N bond homolysis but not regular hydroxyl rebounding. The cleaved ammonium radical could either react with the hydroxyl group on the iron centre of the enzyme or recombine with the other cleaved fragment of the substrate to generate the rearranged product. This study revealed the catalytic mechanism of BBOX, detailing how the enzyme and the substrate regulated the hydroxyl rebound process to generate various products.
Collapse
Affiliation(s)
- Fanqi Meng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Lu Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yueying Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xiang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Chang Yuan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xichen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Pereira AMG, de Oliveira VM, da Rocha MN, Roberto CHA, Cajazeiras FFM, Guedes JM, Marinho MM, Teixeira AMR, Marinho ES, de Lima-Neto P, Dos Santos HS. Structure and Ligand Based Virtual Screening and MPO Topological Analysis of Triazolo Thiadiazepine-fused Coumarin Derivatives as Anti-Parkinson Drug Candidates. Mol Biotechnol 2024:10.1007/s12033-024-01200-y. [PMID: 38834896 DOI: 10.1007/s12033-024-01200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating condition that can cause locomotor problems in affected patients, such as tremors and body rigidity. PD therapy often includes the use of monoamine oxidase B (MAOB) inhibitors, particularly phenylhalogen compounds and coumarin-based semi-synthetic compounds. The objective of this study was to analyze the structural, pharmacokinetic, and pharmacodynamic profile of a series of Triazolo Thiadiazepine-fused Coumarin Derivatives (TDCDs) against MAOB, in comparison with the inhibitor safinamide. To achieve this goal, we utilized structure-based virtual screening techniques, including target prediction and absorption, distribution, metabolism, and excretion (ADME) prediction based on multi-parameter optimization (MPO) topological analysis, as well as ligand-based virtual screening techniques, such as docking and molecular dynamics. The findings indicate that the TDCDs exhibit structural similarity to other bioactive compounds containing coumarin and MAOB-binding azoles, which are present in the ChEMBL database. The topological analyses suggest that TDCD3 has the best ADME profile, particularly due to the alignment between low lipophilicity and high polarity. The coumarin and triazole portions make a strong contribution to this profile, resulting in a permeability with Papp estimated at 2.15 × 10-5 cm/s, indicating high cell viability. The substance is predicted to be metabolically stable. It is important to note that this is an objective evaluation based on the available data. Molecular docking simulations showed that the ligand has an affinity energy of - 8.075 kcal/mol with MAOB and interacts with biological substrate residues such as Pro102 and Phe103. The results suggest that the compound has a safe profile in relation to the MAOB model, making it a promising active ingredient for the treatment of PD.
Collapse
Affiliation(s)
- Antônio Mateus Gomes Pereira
- Doctoral Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE, Brazil
- Center of Molecular Bioprospecting and Applied Experimentation, University Center INTA - UNINTA, Sobral, CE, Brazil
| | | | - Matheus Nunes da Rocha
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Jesyka Macêdo Guedes
- Center of Exact Sciences and Technology, State University Vale Do Acaraú, Sobral, CE, Brazil
| | - Márcia Machado Marinho
- Center of Exact Sciences and Technology, State University Vale Do Acaraú, Sobral, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Pedro de Lima-Neto
- Department of Analytical Chemistry and Phisicochemistry, Federal University of Ceará, Campus Do Pici, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- Center of Exact Sciences and Technology, State University Vale Do Acaraú, Sobral, CE, Brazil.
| |
Collapse
|
5
|
Hardy FG, Wong HPH, de Visser SP. Computational Study Into the Oxidative Ring-Closure Mechanism During the Biosynthesis of Deoxypodophyllotoxin. Chemistry 2024; 30:e202400019. [PMID: 38323740 DOI: 10.1002/chem.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024]
Abstract
The nonheme iron dioxygenase deoxypodophyllotoxin synthase performs an oxidative ring-closure reaction as part of natural product synthesis in plants. How the enzyme enables the oxidative ring-closure reaction of (-)-yatein and avoids substrate hydroxylation remains unknown. To gain insight into the reaction mechanism and understand the details of the pathways leading to products and by-products we performed a comprehensive computational study. The work shows that substrate is bound tightly into the substrate binding pocket with the C7'-H bond closest to the iron(IV)-oxo species. The reaction proceeds through a radical mechanism starting with hydrogen atom abstraction from the C7'-H position followed by ring-closure and a final hydrogen transfer to form iron(II)-water and deoxypodophyllotoxin. Alternative mechanisms including substrate hydroxylation and an electron transfer pathway were explored but found to be higher in energy. The mechanism is guided by electrostatic perturbations of charged residues in the second-coordination sphere that prevent alternative pathways.
Collapse
Affiliation(s)
- Fintan G Hardy
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
6
|
da Rocha MN, da Fonseca AM, Dantas ANM, Dos Santos HS, Marinho ES, Marinho GS. In Silico Study in MPO and Molecular Docking of the Synthetic Drynaran Analogues Against the Chronic Tinnitus: Modulation of the M1 Muscarinic Acetylcholine Receptor. Mol Biotechnol 2024; 66:254-269. [PMID: 37079267 DOI: 10.1007/s12033-023-00748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
Tinnitus is a syndrome that affects the human auditory system and is characterized by a perception of sounds in the absence of acoustic stimuli, or in total silence. Research indicates that muscarinic acetylcholine receptors (mAChRs), especially the M1 type, have a fundamental role in the alterations of auditory perceptions of tinnitus. Here, a series of computer-aided tools were used, from molecular surface analysis software to services available on the web for estimating pharmacokinetics and pharmacodynamics. The results infer that the low lipophilicity ligands, that is, the 1a-d alkyl furans, present the best pharmacokinetic profile, as compounds with an optimal alignment between permeability and clearance. However, only ligands 1a and 1b have properties that are safe for the central nervous system, the site of cholinergic modulation. These ligands showed similarity with compounds deposited in the European Molecular Biology Laboratory chemical (ChEMBL) database acting on the mAChRs M1 type, the target selected for the molecular docking test. The simulations suggest that the 1 g ligand can form the ligand-receptor complex with the best affinity energy order and that, together with the 1b ligand, they are competitive agonists in relation to the antagonist Tiotropium, in addition to acting in synergism with the drug Bromazepam in the treatment of chronic tinnitus.
Collapse
Affiliation(s)
- Matheus Nunes da Rocha
- Graduate Program in Natural Sciences, Center for Science and Technology, State University of Ceará, Fortaleza, CE, Brazil.
| | - Aluísio Marques da Fonseca
- Institute of Engineering and Sustainable Development, Academic Master in Sociobiodiversity and Sustainable Technologies, University of International Integration of Afro-Brazilian Lusofonia, Acarape, CE, Brazil
| | | | | | - Emmanuel Silva Marinho
- Graduate Program in Natural Sciences, Center for Science and Technology, State University of Ceará, Fortaleza, CE, Brazil
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Limoeiro Do Norte, CE, Brazil
| | - Gabrielle Silva Marinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Limoeiro Do Norte, CE, Brazil
| |
Collapse
|
7
|
Zhang F, Zeng T, Wu R. QM/MM Modeling Aided Enzyme Engineering in Natural Products Biosynthesis. J Chem Inf Model 2023; 63:5018-5034. [PMID: 37556841 DOI: 10.1021/acs.jcim.3c00779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Natural products and their derivatives are widely used across various industries, particularly pharmaceuticals. Modern engineered biosynthesis provides an alternative way of producing and meeting the growing need for diverse natural products. Natural enzymes, on the other hand, often exhibit unsatisfactory catalytic characteristics and necessitate further enzyme engineering modifications. QM/MM, as a powerful and extensively used computational tool in the field of enzyme catalysis, has been increasingly applied in rational enzyme engineering over the past decade. In this review, we summarize recent advances in QM/MM computational investigation on enzyme catalysis and enzyme engineering for natural product biosynthesis. The challenges and perspectives for future QM/MM applications aided enzyme engineering in natural product biosynthesis will also be discussed.
Collapse
Affiliation(s)
- Fan Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Tao Zeng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
Wang Y, Dong L, Su H, Liu Y. Dioxygen Activation and N δ,N ε-Dihydroxylation Mechanism Involved in the Formation of N-Nitrosourea Pharmacophore in Streptozotocin Catalyzed by Nonheme Diiron Enzyme SznF. Inorg Chem 2022; 61:15721-15734. [PMID: 36148800 DOI: 10.1021/acs.inorgchem.2c02814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SznF is a nonheme diiron-dependent enzyme that catalyzes the critical N-nitrosation involved in the formation of the N-nitrosourea moiety in the pancreatic cancer drug streptozotocin. The N-nitrosation contains two successive N-hydroxylation and N-nitrosation steps, which are carried out by two separate active sites, namely, the central domain and cupin domain. Recently, the crystal structure of SznF was obtained, and the central domain was proved to contain a diiron cofactor to catalyze the N-hydroxylation. In this work, to gain insights into the O2 activation and the successive N-hydroxylation mechanism, on the basis of the high-resolution crystal structure, the enzyme-substrate complex models were constructed, and a series of combined QM/MM calculations were performed. Based on our calculations, the activation of O2 starts from the diiron(II,III)-superoxo (S) to generate the diiron(IV)-oxo species (Q) via a diiron(III,III)-peroxo (P)-like transition state or unstable intermediate (P'), and species P' can be described as a hybridization of diiron(IV)-oxo species and diiron(III,III)-peroxo (P) owing to the long distances of Fe1-Fe2 (4.22 Å) and O1-O2 (1.89 Å), which is different from those of other nonheme diiron enzymes. In the following hydroxylation of Nδ and Nε, the Nδ-hydroxylation was confirmed to occur first, agreeing with the experimental observations. Because the diiron(IV)-oxo species (Q) is responsible for hydroxylation, the reaction follows the H-abstraction/OH rebound mechanism, and the first abstraction occurs on the Nδ-H rather than Nε-H, which may be attributed to the different orientation of Fe(IV)-oxo relative to N-H as well as the bond dissociation enthalpies of two N-H bonds. The hydroxylation of N-methyl-L-arginine does not employ the diiron(III,III)-hydroperoxo (P″) to trigger the electrophilic attack of the guanidine to directly form the N-O bond, as previously suggested. In addition, our calculations also revealed that the direct attack of the Fe(IV)═O unit to the Nδ of the substrate corresponds to a higher barrier than that in the H-abstraction/OH rebound mechanism. These results may provide useful information for understanding the formation of the di-hydroxylation intermediate involved in the biosynthesis of N-nitrosation.
Collapse
Affiliation(s)
- Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Lihua Dong
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin 300308, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
9
|
Auman D, Ecker F, Mader SL, Dorst KM, Bräuer A, Widmalm G, Groll M, Kaila VRI. Peroxy Intermediate Drives Carbon Bond Activation in the Dioxygenase AsqJ. J Am Chem Soc 2022; 144:15622-15632. [PMID: 35980821 DOI: 10.1021/jacs.2c05650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dioxygenases catalyze stereoselective oxygen atom transfer in metabolic pathways of biological, industrial, and pharmaceutical importance, but their precise chemical principles remain controversial. The α-ketoglutarate (αKG)-dependent dioxygenase AsqJ synthesizes biomedically active quinolone alkaloids via desaturation and subsequent epoxidation of a carbon-carbon bond in the cyclopeptin substrate. Here, we combine high-resolution X-ray crystallography with enzyme engineering, quantum-classical (QM/MM) simulations, and biochemical assays to describe a peroxidic intermediate that bridges the substrate and active site metal ion in AsqJ. Homolytic cleavage of this moiety during substrate epoxidation generates an activated high-valent ferryl (FeIV = O) species that mediates the next catalytic cycle, possibly without the consumption of the metabolically valuable αKG cosubstrate. Our combined findings provide an important understanding of chemical bond activation principles in complex enzymatic reaction networks and molecular mechanisms of dioxygenases.
Collapse
Affiliation(s)
- Dirk Auman
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Felix Ecker
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Sophie L Mader
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Kevin M Dorst
- Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Alois Bräuer
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Göran Widmalm
- Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Michael Groll
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
10
|
Waheed SO, Varghese A, Chaturvedi SS, Karabencheva-Christova TG, Christov CZ. How Human TET2 Enzyme Catalyzes the Oxidation of Unnatural Cytosine Modifications in Double-Stranded DNA. ACS Catal 2022; 12:5327-5344. [PMID: 36339349 PMCID: PMC9629818 DOI: 10.1021/acscatal.2c00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylation of cytosine bases is strongly linked to gene expression, imprinting, aging, and carcinogenesis. The Ten-eleven translocation (TET) family of enzymes, which are Fe(II)/2-oxoglutarate (2OG)-dependent enzymes, employ Fe(IV)=O species to dealkylate the lesioned bases to an unmodified cytosine. Recently, it has been shown that the TET2 enzyme can catalyze promiscuously DNA substrates containing unnatural alkylated cytosine. Such unnatural substrates of TET can be used as direct probes for measuring the TET activity or capturing TET from cellular samples. Herein, we studied the catalytic mechanisms during the oxidation of the unnatural C5-position modifications (5-ethylcytosine (5eC), 5-vinylcytosine (5vC) and 5-ethynylcytosine (5eyC)) and the demethylation of N4-methylated lesions (4-methylcytosine (4mC) and 4,4-dimethylcytosine(4dmC)) of the cytosine base by the TET2 enzyme using molecular dynamics (MD) and combined quantum mechanics and molecular mechanics (QM/MM) computational approaches. The results reveal that the chemical nature of the alkylation of the double-stranded (ds) DNA substrates induces distinct changes in the interactions in the binding site, the second coordination sphere, and long-range correlated motions of the ES complexes. The rate-determining hydrogen atom transfer (HAT) is faster in N4-methyl substituent substrates than in the C5-alkylations. Importantly, the calculations show the preference of hydroxylation over desaturation in both 5eC and 5vC substrates. The studies elucidate the post-hydroxylation rearrangements of the hydroxylated intermediates of 5eyC and 5vC to ketene and 5-formylmethylcytosine (5fmC), respectively, and hydrolysis of hemiaminal intermediate of 4mC to formaldehyde and unmodified cytosine proceed exclusively in aqueous solution outside of the enzyme environment. Overall, the studies show that the chemical nature of the unnatural alkylated cytosine substrates exercises distinct effects on the binding interactions, reaction mechanism, and dynamics of TET2.
Collapse
Affiliation(s)
- Sodiq O. Waheed
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ann Varghese
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shobhit S. Chaturvedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
11
|
Wang B, Wu P, Shaik S. Critical Roles of Exchange and Superexchange Interactions in Dictating Electron Transfer and Reactivity in Metalloenzymes. J Phys Chem Lett 2022; 13:2871-2877. [PMID: 35325545 DOI: 10.1021/acs.jpclett.2c00513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron transfer (ET) is a fundamental process in transition-metal-dependent metalloenzymes. In these enzymes, the spin-spin interactions within the same metal center and/or between different metal sites can play a pivotal role in the catalytic cycle and reactivity. This Perspective highlights that the exchange and/or superexchange interactions can intrinsically modulate the inner-sphere and long-range electron transfer, thus controlling the mechanism and activity of metalloenzymes. For mixed-valence diiron oxygenases, the spin-regulated inner-sphere ET can be dictated by exchange interactions, leading to efficient O-O bond activations. Likewise, the spin-regulated inner-sphere ET can be enhanced by both exchange and superexchange interactions in [Fe4S4]-dependent SAM enzymes, which enable the efficient cleavage of the S─C(γ) or S─C5' bond of SAM. In addition to inner-sphere ET, superexchange interactions may modulate the long-range ET between metalloenzymes. We anticipate that the exchange and superexchange enhanced reactivity could be applicable in other important metalloenzymes, such as Photosystem II and nitrogenases.
Collapse
Affiliation(s)
- Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Liu Y, Liu Y. Computational Study of Aromatic Hydroxylation Catalyzed by the Iron-Dependent Hydroxylase PqqB Involved in the Biosynthesis of Redox Cofactor Pyrroloquinoline Quinone. Inorg Chem 2022; 61:5943-5956. [PMID: 35362953 DOI: 10.1021/acs.inorgchem.2c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PqqB from Methylobacterium extorquens is a unique nonheme iron-dependent hydroxylase involved in the biosynthesis of redox cofactor pyrroloquinoline quinone (PQQ). A series of recent experiments have demonstrated that PqqB catalyzes the stepwise insertions of two oxygen atoms into the tyrosine ring of the diamino acid substrate, generating the quinone moiety of PQQ; however, the reaction details have not been elucidated yet. In this paper, on the basis of the crystal structures, the enzyme-substrate complex models were constructed, and the catalytic mechanism of PqqB was explored by performing a series of combined QM/MM calculations. Our results confirmed that the first hydroxylation is performed by the highly reactive FeIV-oxo species and follows the typical H-abstraction/hydroxyl rebound mechanism, which is similar to the common aliphatic hydroxylation catalyzed by the α-KG enzymes. Nevertheless, the second hydroxylation is achieved by the Fe-O2 species, and the reactant complex can be described as an intermediate radical-FeII-superoxide, that is, the dioxygen is activated by accepting an electron from the bidentate coordination intermediate. Since both the dioxygen and intermediate are activated by electron transfer, the distal oxygen of superoxide can directly attack the carbonyl carbon of substrate to form an alkylperoxo intermediate, then the O-O heterolysis occurs to afford the epoxide intermediate, which finally evolves into the product by rearrangement. It is the bidentate coordination of catechol moiety to iron that leads to the one-electron oxidation of the substrate by the dioxygen, which significantly activates the substrate and promotes the superoxide radical attack. During the catalysis, Asp90 and His240 in the second sphere play an important role by acting as acid-base catalysts to mediate the proton transfer and manipulate the suitable orientation of superoxide. These findings may provide useful information for understanding the unique reaction mechanism of PqqB that employs both the FeIV-oxo and FeII-superoxide to carry out the aromatic hydroxylation.
Collapse
Affiliation(s)
- Yaru Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
13
|
Liu X, Yuan Z, Su H, Hou X, Deng Z, Xu H, Guo B, Yin D, Sheng X, Rao Y. Molecular Basis of the Unusual Seven-Membered Methylenedioxy Bridge Formation Catalyzed by Fe(II)/α-KG-Dependent Oxygenase CTB9. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuanzhong Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences and National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P. R. China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Dejing Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences and National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
14
|
Tassano E, Moore C, Dussauge S, Vargas A, Snajdrova R. Discovery of New Fe(II)/α-Ketoglutarate-Dependent Dioxygenases for Oxidation of l-Proline. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erika Tassano
- Global Discovery Chemistry, Novartis Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Charles Moore
- Global Discovery Chemistry, Novartis Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Solene Dussauge
- Global Discovery Chemistry, Novartis Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Alexandra Vargas
- Global Discovery Chemistry, Novartis Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Radka Snajdrova
- Global Discovery Chemistry, Novartis Institute for Biomedical Research, 4056 Basel, Switzerland
| |
Collapse
|
15
|
Mori T, Zhai R, Ushimaru R, Matsuda Y, Abe I. Molecular insights into the endoperoxide formation by Fe(II)/α-KG-dependent oxygenase NvfI. Nat Commun 2021; 12:4417. [PMID: 34285212 PMCID: PMC8292354 DOI: 10.1038/s41467-021-24685-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
Endoperoxide-containing natural products are a group of compounds with structurally unique cyclized peroxide moieties. Although numerous endoperoxide-containing compounds have been isolated, the biosynthesis of the endoperoxides remains unclear. NvfI from Aspergillus novofumigatus IBT 16806 is an endoperoxidase that catalyzes the formation of fumigatonoid A in the biosynthesis of novofumigatonin. Here, we describe our structural and functional analyses of NvfI. The structural elucidation and mutagenesis studies indicate that NvfI does not utilize a tyrosyl radical in the reaction, in contrast to other characterized endoperoxidases. Further, the crystallographic analysis reveals significant conformational changes of two loops upon substrate binding, which suggests a dynamic movement of active site during the catalytic cycle. As a result, NvfI installs three oxygen atoms onto a substrate in a single enzyme turnover. Based on these results, we propose a mechanism for the NvfI-catalyzed, unique endoperoxide formation reaction to produce fumigatonoid A.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | - Rui Zhai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- ACT-X, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
16
|
Lin YT, Ali HS, de Visser SP. Electrostatic Perturbations from the Protein Affect C-H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme. Chemistry 2021; 27:8851-8864. [PMID: 33978257 DOI: 10.1002/chem.202100791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/08/2022]
Abstract
The nonheme iron dioxygenase 2-(trimethylammonio)-ethylphosphonate dioxygenase (TmpA) is an enzyme involved in the regio- and chemoselective hydroxylation at the C1 -position of the substrate as part of the biosynthesis of glycine betaine in bacteria and carnitine in humans. To understand how the enzyme avoids breaking the weak C2 -H bond in favor of C1 -hydroxylation, we set up a cluster model of 242 atoms representing the first and second coordination sphere of the metal center and substrate binding pocket, and investigated possible reaction mechanisms of substrate activation by an iron(IV)-oxo species by density functional theory methods. In agreement with experimental product distributions, the calculations predict a favorable C1 -hydroxylation pathway. The calculations show that the selectivity is guided through electrostatic perturbations inside the protein from charged residues, external electric fields and electric dipole moments. In particular, charged residues influence and perturb the homolytic bond strength of the C1 -H and C2 -H bonds of the substrate, and strongly strengthens the C2 -H bond in the substrate-bound orientation.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hafiz Saqib Ali
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
17
|
Ali HS, Henchman RH, Visser SP. Mechanism of Oxidative Ring‐Closure as Part of the Hygromycin Biosynthesis Step by a Nonheme Iron Dioxygenase. ChemCatChem 2021. [DOI: 10.1002/cctc.202100393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
18
|
Meyer F, Frey R, Ligibel M, Sager E, Schroer K, Snajdrova R, Buller R. Modulating Chemoselectivity in a Fe(II)/α-Ketoglutarate-Dependent Dioxygenase for the Oxidative Modification of a Nonproteinogenic Amino Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fabian Meyer
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Raphael Frey
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Mathieu Ligibel
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Emine Sager
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Kirsten Schroer
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Rebecca Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
19
|
Han SB, Ali HS, de Visser SP. Glutarate Hydroxylation by the Carbon Starvation-Induced Protein D: A Computational Study into the Stereo- and Regioselectivities of the Reaction. Inorg Chem 2021; 60:4800-4815. [DOI: 10.1021/acs.inorgchem.0c03749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sungho Bosco Han
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
20
|
Waheed SO, Chaturvedi SS, Karabencheva-Christova TG, Christov CZ. Catalytic Mechanism of Human Ten-Eleven Translocation-2 (TET2) Enzyme: Effects of Conformational Changes, Electric Field, and Mutations. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sodiq O. Waheed
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shobhit S. Chaturvedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
21
|
Ali HS, Henchman RH, Warwicker J, de Visser SP. How Do Electrostatic Perturbations of the Protein Affect the Bifurcation Pathways of Substrate Hydroxylation versus Desaturation in the Nonheme Iron-Dependent Viomycin Biosynthesis Enzyme? J Phys Chem A 2021; 125:1720-1737. [DOI: 10.1021/acs.jpca.1c00141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Richard H. Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
22
|
Ali HS, Henchman RH, de Visser SP. What Determines the Selectivity of Arginine Dihydroxylation by the Nonheme Iron Enzyme OrfP? Chemistry 2020; 27:1795-1809. [PMID: 32965733 DOI: 10.1002/chem.202004019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
The nonheme iron enzyme OrfP reacts with l-Arg selectively to form the 3R,4R-dihydroxyarginine product, which in mammals can inhibit the nitric oxide synthase enzymes involved in blood pressure control. To understand the mechanisms of dioxygen activation of l-Arg by OrfP and how it enables two sequential oxidation cycles on the same substrate, we performed a density functional theory study on a large active site cluster model. We show that substrate binding and positioning in the active site guides a highly selective reaction through C3 -H hydrogen atom abstraction. This happens despite the fact that the C3 -H and C4 -H bond strengths of l-Arg are very similar. Electronic differences in the two hydrogen atom abstraction pathways drive the reaction with an initial C3 -H activation to a low-energy 5 σ-pathway, while substrate positioning destabilizes the C4 -H abstraction and sends it over the higher-lying 5 π-pathway. We show that substrate and monohydroxylated products are strongly bound in the substrate binding pocket and hence product release is difficult and consequently its lifetime will be long enough to trigger a second oxygenation cycle.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
23
|
Liu Y, Shi J, Liu Y. Mechanistic Insights into the Oxidative Ring Expansion from Penicillin N to Deacetoxycephalosporin C Catalyzed by a Nonheme Iron(II) and α-KG-Dependent Oxygenase. Inorg Chem 2020; 59:12218-12231. [PMID: 32822181 DOI: 10.1021/acs.inorgchem.0c01211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deacetoxycephalosporin C synthase (DAOCS) is a nonheme iron(II) and 2-oxoglutarate (α-KG)-dependent oxygenase that catalyzes the oxidative ring expansion of penicillin N (penN) to deacetoxycephalosporin C (DAOC). Earlier reported crystal structures of DAOCS indicated that the substrate penicillin binds at the same site of succinate, leading to the proposal of the unusual "ping-pong" mechanism. However, more recent data provided evidence of the formation of ternary DAOCS·α-KG·penN complex, and thus DAOCS should follow the usual consensus mechanism of α-KG-dependent nonheme iron(II) oxygenases. Nevertheless, how DAOCS catalyzes the ring expansion is unknown. In this paper, on the basis of the crystal structure, we constructed two reactant models and performed a series of combined quantum mechanics/molecular mechanics (QM/MM) calculations to illuminate the catalysis of DAOCS. The binding mode of substrate was found to be crucial in determining which hydrogen atom in two methyl groups is first abstracted and whether the second H-abstraction to be abstracted in the final desaturation step locates in a suitable orientation. The highly reactive FeIV-oxo species prefers to abstract a hydrogen atom from one of two methyl groups in penN to trigger the ring arrangement. After the H-abstraction, the generated methylene radical intermediate can easily initiate the ring arrangement. First, the C-S bond cleaves to generate a thiyl radical, which is in concert with the formation of the terminal C═C double bond; the newly generated thiyl radical then rapidly shifts to the more stable tertiary C atom to complete ring expansion. In the final step, the FeIII-OH species abstracts the second hydrogen to give the desaturated DAOC product. During the catalysis, no active site residue is directly involved in the chemistry, which implies that the other pocket residues except the coordinate ones with iron play a role only in anchoring the substrate.
Collapse
Affiliation(s)
- Yaru Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Junyou Shi
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
24
|
Li J, Liao HJ, Tang Y, Huang JL, Cha L, Lin TS, Lee JL, Kurnikov IV, Kurnikova MG, Chang WC, Chan NL, Guo Y. Epoxidation Catalyzed by the Nonheme Iron(II)- and 2-Oxoglutarate-Dependent Oxygenase, AsqJ: Mechanistic Elucidation of Oxygen Atom Transfer by a Ferryl Intermediate. J Am Chem Soc 2020; 142:6268-6284. [PMID: 32131594 PMCID: PMC7343540 DOI: 10.1021/jacs.0c00484] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanisms of enzymatic epoxidation via oxygen atom transfer (OAT) to an olefin moiety is mainly derived from the studies on thiolate-heme containing epoxidases, such as cytochrome P450 epoxidases. The molecular basis of epoxidation catalyzed by nonheme-iron enzymes is much less explored. Herein, we present a detailed study on epoxidation catalyzed by the nonheme iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, AsqJ. The native substrate and analogues with different para substituents ranging from electron-donating groups (e.g., methoxy) to electron-withdrawing groups (e.g., trifluoromethyl) were used to probe the mechanism. The results derived from transient-state enzyme kinetics, Mössbauer spectroscopy, reaction product analysis, X-ray crystallography, density functional theory calculations, and molecular dynamic simulations collectively revealed the following mechanistic insights: (1) The rapid O2 addition to the AsqJ Fe(II) center occurs with the iron-bound 2OG adopting an online-binding mode in which the C1 carboxylate group of 2OG is trans to the proximal histidine (His134) of the 2-His-1-carboxylate facial triad, instead of assuming the offline-binding mode with the C1 carboxylate group trans to the distal histidine (His211); (2) The decay rate constant of the ferryl intermediate is not strongly affected by the nature of the para substituents of the substrate during the OAT step, a reactivity behavior that is drastically different from nonheme Fe(IV)-oxo synthetic model complexes; (3) The OAT step most likely proceeds through a stepwise process with the initial formation of a C(benzylic)-O bond to generate an Fe-alkoxide species, which is observed in the AsqJ crystal structure. The subsequent C3-O bond formation completes the epoxide installation.
Collapse
Affiliation(s)
- Jikun Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hsuan-Jen Liao
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jhih-Liang Huang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lide Cha
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Te-Sheng Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Justin L. Lee
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Igor V. Kurnikov
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Maria G. Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
25
|
Li H, Liu Y. Mechanistic Investigation of Isonitrile Formation Catalyzed by the Nonheme Iron/α-KG-Dependent Decarboxylase (ScoE). ACS Catal 2020. [DOI: 10.1021/acscatal.9b05411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hong Li
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
26
|
Li H, Zhu W, Liu Y. Mechanism of Uncoupled Carbocyclization and Epimerization Catalyzed by Two Non-Heme Iron/α-Ketoglutarate Dependent Enzymes. J Chem Inf Model 2019; 59:5086-5098. [PMID: 31790238 DOI: 10.1021/acs.jcim.9b00837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The non-heme iron/α-ketoglutarate dependent enzymes SnoK and SnoN from Streptomyces nogalater are involved in the biosynthesis of anthracycline nogalamycin. Although they have similar active sites, SnoK is responsible for carbocyclization whereas SnoN solely catalyzes the hydroxyl epimerization. Herein, we performed docking, molecular simulations, and a series of combined quantum mechanics and molecular mechanics (QM/MM) calculations to illuminate the mechanisms of two enzymes. The catalytic reactions of two enzymes occur on the quintet state surface. For SnoK, the whole reaction includes two separated hydrogen-abstraction steps and one radical addition, and the latter step is calculated to be rate limiting with an energy barrier of 21.7 kcal/mol. Residue D106 is confirmed to participate in the construction of the hydrogen bond network, which plays a crucial role in positioning the bulky substrate in a specific orientation. Moreover, it is found that SnoN is only responsible for the hydrogen abstraction of the intermediate, and no residue was suggested to be suitable for donating a hydrogen atom to the substrate radical, which further confirms the suggestion based on experiments that either a cellular reductant or another enzyme protein could donate a hydrogen atom to the substrate. Our docking results coincide with the previous structural study that the different roles of two enzymes are achieved by minor changes in the alignment of the substrates in front of the reactive ferryl-oxo species. This work highlights the reaction mechanisms catalyzed by SnoK and SnoN, which is helpful for engineering the enzymes for the biosynthesis of anthracycline nogalamycin.
Collapse
Affiliation(s)
- Hong Li
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Wenyou Zhu
- College of Chemistry and Chemical Engineering , Xuzhou Institute of Technology , Xuzhou , Jiangsu 221111 , China
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| |
Collapse
|
27
|
Ghafoor S, Mansha A, de Visser SP. Selective Hydrogen Atom Abstraction from Dihydroflavonol by a Nonheme Iron Center Is the Key Step in the Enzymatic Flavonol Synthesis and Avoids Byproducts. J Am Chem Soc 2019; 141:20278-20292. [PMID: 31749356 DOI: 10.1021/jacs.9b10526] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plant non-heme iron dioxygenase flavonol synthase performs a regioselective desaturation reaction as part of the biosynthesis of the signaling molecule flavonol that triggers the growing of leaves and flowers. These compounds also have health benefits for humans. Desaturation of aliphatic compounds generally proceeds through two consecutive hydrogen atom abstraction steps from two adjacent carbon atoms and in nature often is performed by a high-valent iron(IV)-oxo species. We show that the order of the hydrogen atom abstraction steps, however, is opposite of those expected from the C-H bond strengths in the substrate and determines the product distributions. As such, flavonol synthase follows a negative catalysis mechanism. Using density functional theory methods on large active-site model complexes, we investigated pathways for desaturation and hydroxylation by an iron(IV)-oxo active-site model. Contrary to thermochemical predictions, we find that the oxidant abstracts the hydrogen atom from the strong C2-H bond rather than the weaker C3-H bond of the substrate first. We analyze the origin of this unexpected selective hydrogen atom abstraction pathway and find that the alternative C3-H hydrogen atom abstraction would be followed by a low-energy and competitive substrate hydroxylation mechanism hence, should give considerable amount of byproducts. Our computational modeling studies show that substrate positioning in flavonol synthase is essential, as it guides the reactivity to a chemo- and regioselective substrate desaturation from the C2-H group, leading to desaturation products efficiently.
Collapse
Affiliation(s)
- Sidra Ghafoor
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom.,Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Asim Mansha
- Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| |
Collapse
|
28
|
Lin Y, Stańczak A, Manchev Y, Straganz GD, Visser SP. Can a Mononuclear Iron(III)‐Superoxo Active Site Catalyze the Decarboxylation of Dodecanoic Acid in UndA to Produce Biofuels? Chemistry 2019; 26:2233-2242. [DOI: 10.1002/chem.201903783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yen‐Ting Lin
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Agnieszka Stańczak
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
- Faculty of ChemistrySilesian University of Technology ks. Marcina Strzody 9 44-100 Gliwice Poland
- Tunneling Group, Biotechnology CentreSilesian University of Technology ul. Krzywoustego 8 44–100 Gliwice Poland
| | - Yulian Manchev
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Grit D. Straganz
- Graz University of TechnologyInstitute of Biochemistry Petergasse 12 8010 Graz Austria
| | - Sam P. Visser
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
29
|
Zhang S, Liu Y. Mechanism of fatty acid decarboxylation catalyzed by a non-heme iron oxidase (UndA): a QM/MM study. Org Biomol Chem 2019; 17:9808-9818. [PMID: 31710061 DOI: 10.1039/c9ob02116g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UndA is a non-heme iron enzyme that was recognized to catalyze the decarboxylation of medium chain (C10-C14) fatty acids to produce trace amounts of 1-alkenes. Owing to the electron imbalance during the oxidative decarboxylation of the substrate and the reduction of O2, only single turnover reactions were obtained in UndA in vitro assays. Unlike the general non-heme iron enzymes, the catalytic efficiency of UndA is quite low. According to the previous proposal, both FeIII-OO˙- and FeIV[double bond, length as m-dash]O complexes may abstract the β-H of fatty acids to trigger the oxidative decarboxylation reaction. Herein, on the basis of the crystal structures of UndA in complex with the substrate analogues, we constructed a series of computational models and performed quantum mechanics/molecular mechanics (QM/MM) calculations to explore the UndA-catalyzed decarboxylation using lauric acid as the substrate. Our calculation results reveal that only the FeIII-OO˙- complex can initiate the decarboxylation, and the substrate (lauric acid) should monodentately coordinate to the Fe center to facilitate the β-H abstraction. In addition, the monodentate coordination corresponds to higher relative energy than the bidentate mode, which may explain the low efficiency of UndA. It is also revealed that as long as the β-H is extracted by the FeIII-OO˙-, the decarboxylation of the substrate radical is quite easy, and an electron transfer from the substrate to the iron center is the prerequisite. For the FeIV[double bond, length as m-dash]O complex, since the β-H is far from the OFe atom and the angle of ∠Fe-O-H is 53.1°, the H-abstraction is calculated to be difficult.
Collapse
Affiliation(s)
- Shiqing Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
30
|
Yan L, Liu Y. Insights into the Mechanism and Enantioselectivity in the Biosynthesis of Ergot Alkaloid Cycloclavine Catalyzed by Aj_EasH from Aspergillus japonicus. Inorg Chem 2019; 58:13771-13781. [PMID: 31560525 DOI: 10.1021/acs.inorgchem.9b01168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cycloclavine is a complex ergot alkaloid containing an unusual cyclopropyl moiety, which has a wide range of biological activities and pharmaceutical applications. The biosynthesis of cycloclavine requires a series of enzymes, one of which is a nonheme FeII/α-ketoglutarate-dependent (aKG) oxidase (Aj_EasH). According to the previous proposal, the cyclopropyl ring formation catalyzed by Aj_EasH follows an unprecedented oxidative mechanism; however, the reaction details are unknown. In this article, on the basis of the recently obtained crystal structure of Aj_EasH (EasH from Aspergillus japonicas), the reactant models were built, and the reaction details were investigated by performing QM-only and combined QM and MM calculations. Our calculation results reveal that the biosynthesis of cyclopropyl moiety involves a radical intermediate rather than a carbocationic or carbanionic intermediate as in the biosynthesis of terpenoid family. The iron(IV)-oxo first abstracts a hydrogen atom from the substrate to trigger the reaction, and then the generated radical intermediate undergoes ring rearrangement to form the fused 5-3 ring system of cycloclavine. On the basis of our calculations, the absolute configuration of the cycloclavine catalyzed by Aj_EasH from Aspergillus japonicus should be (5R,8R,10R), which is different from the product isolated from Ipomoea hildebrandtii (5R,8S,10S). Residues at the active site play an important role in substrate binding, ring rearrangement, and enantioselectivity.
Collapse
Affiliation(s)
- Lijuan Yan
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| |
Collapse
|
31
|
Singh W, Quinn D, Moody TS, Huang M. Reaction Mechanism of Histone Demethylation in αKG-dependent Non-Heme Iron Enzymes. J Phys Chem B 2019; 123:7801-7811. [PMID: 31469562 DOI: 10.1021/acs.jpcb.9b06064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Histone demethylases (KDMs) catalyze histone lysine demethylation, an important epigenetic process that controls gene expression in eukaryotes, and represent important cancer drug targets for cancer treatment. Demethylation of histone is comprised of sequential reaction steps including oxygen activation, decarboxylation, and demethylation. The initial oxygen binding and activation steps have been studied. However, the information on the complete catalytic reaction cycle is limited, which has impeded the structure-based design of inhibitors targeting KDMs. Here we report the mechanism of the complete reaction steps catalyzed by a representative nonheme iron αKG-dependent KDM, PHF8 using QM/MM approaches. The atomic-level understanding on the complete reaction mechanism of PHF8 would shed light on the structure-based design of selective inhibitors targeting KDMs to intervene in cancer epigenetics.
Collapse
Affiliation(s)
- Warispreet Singh
- School of Chemistry & Chemical Engineering , Queen's University Belfast , David Keir Building, Stranmillis Road , Belfast BT9 5AG , Northern Ireland , United Kingdom.,Department of Biocatalysis and Isotope Chemistry , Almac Sciences , Almac House, 20 Seagoe Industrial Estate , Craigavon BT63 5QD , Northern Ireland , United Kingdom
| | - Derek Quinn
- Department of Biocatalysis and Isotope Chemistry , Almac Sciences , Almac House, 20 Seagoe Industrial Estate , Craigavon BT63 5QD , Northern Ireland , United Kingdom
| | - Thomas S Moody
- Department of Biocatalysis and Isotope Chemistry , Almac Sciences , Almac House, 20 Seagoe Industrial Estate , Craigavon BT63 5QD , Northern Ireland , United Kingdom.,Arran Chemical Company Limited , Unit 1 Monksland Industrial Estate , Athlone , Co. Roscommon , Ireland
| | - Meilan Huang
- School of Chemistry & Chemical Engineering , Queen's University Belfast , David Keir Building, Stranmillis Road , Belfast BT9 5AG , Northern Ireland , United Kingdom
| |
Collapse
|
32
|
Xue J, Lu J, Lai W. Mechanistic insights into a non-heme 2-oxoglutarate-dependent ethylene-forming enzyme: selectivity of ethylene-formation versusl-Arg hydroxylation. Phys Chem Chem Phys 2019; 21:9957-9968. [PMID: 31041955 DOI: 10.1039/c9cp00794f] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ethylene-forming enzyme (EFE) is a unique member of the Fe(ii)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenases. It converts 2OG into ethylene plus three CO2 molecules (ethylene-forming reaction) and also catalyzes the C5 hydroxylation of l-arginine coupled to the oxidative decarboxylation of 2OG (l-Arg hydroxylation reaction). To uncover the mechanisms of the dual transformations by EFE, quantum mechanical/molecular mechanical (QM/MM) calculations were carried out. Based on the results, a branched mechanism was proposed. An FeII-peroxysuccinate complex with a dissociated CO2 generated through the nucleophilic attack of the superoxo moiety of the Fe-O2 species on the keto carbon of 2OG is the key common intermediate in both reactions. A competition between the subsequent CO2 insertion (a key step in the ethylene-forming pathway) and the O-O bond cleavage (leading to the formation of succinate) governs the product selectivity. The calculated reaction barriers suggested that the CO2 insertion is favored over the O-O bond cleavage. This is consistent with the product preference observed in experiments. By comparison with the results of AsqJ (an Fe/2OG oxygenase that leads to substrate oxidation exclusively), the protein environment was found to be crucial for the selectivity. Further calculations demonstrated that the local electric field of the protein environment in EFE promotes ethylene formation by acting as a charge template, exemplifying the importance of the electrostatic interaction in enzyme catalysis. These findings offer mechanistic insights into the EFE catalysis and provide important clues for better understanding the unique ethylene-forming capability of EFE compared with other Fe/2OG oxygenases.
Collapse
Affiliation(s)
- Junqin Xue
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | | | | |
Collapse
|
33
|
Qin G, Cui Q, Du A, Wang W, Sun Q. Transition Metal Diborides: A New Type of High‐performance Electrocatalysts for Nitrogen Reduction. ChemCatChem 2019. [DOI: 10.1002/cctc.201900538] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Gangqiang Qin
- State Key Laboratory of Radiation Medicine and Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions School for Radiological and Interdisciplinary SciencesSoochow University Suzhou 215123 China
| | - Qianyi Cui
- State Key Laboratory of Radiation Medicine and Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions School for Radiological and Interdisciplinary SciencesSoochow University Suzhou 215123 China
| | - Aijun Du
- School of Chemistry, Physics and Mechanical EngineeringQueensland University of Technology Brisbane QLD 4001 Australia
| | - Weihua Wang
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Qiao Sun
- State Key Laboratory of Radiation Medicine and Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions School for Radiological and Interdisciplinary SciencesSoochow University Suzhou 215123 China
| |
Collapse
|
34
|
Lu Y, Farrow MR, Fayon P, Logsdail AJ, Sokol AA, Catlow CRA, Sherwood P, Keal TW. Open-Source, Python-Based Redevelopment of the ChemShell Multiscale QM/MM Environment. J Chem Theory Comput 2019; 15:1317-1328. [PMID: 30511845 DOI: 10.1021/acs.jctc.8b01036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ChemShell is a scriptable computational chemistry environment with an emphasis on multiscale simulation of complex systems using combined quantum mechanical and molecular mechanical (QM/MM) methods. Motivated by a scientific need to efficiently and accurately model chemical reactions on surfaces and within microporous solids on massively parallel computing systems, we present a major redevelopment of the ChemShell code, which provides a modern platform for advanced QM/MM embedding models. The new version of ChemShell has been re-engineered from the ground up with a new QM/MM driver module, an improved parallelization framework, new interfaces to high performance QM and MM programs, and a user interface written in the Python programming language. The redeveloped package is capable of performing QM/MM calculations on systems of significantly increased size, which we illustrate with benchmarks on zirconium dioxide nanoparticles of over 160000 atoms.
Collapse
Affiliation(s)
- You Lu
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Matthew R Farrow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom
| | - Pierre Fayon
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Andrew J Logsdail
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.,Cardiff Catalysis Institute, School of Chemistry , Cardiff University , Cardiff CF10 3AT , United Kingdom
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.,Cardiff Catalysis Institute, School of Chemistry , Cardiff University , Cardiff CF10 3AT , United Kingdom.,UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory , Harwell Science and Innovation Campus , Oxon OX11 0QX , United Kingdom
| | - Paul Sherwood
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Thomas W Keal
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| |
Collapse
|
35
|
Bai J, Yan L, Liu Y. Catalytic mechanism of the PrhA (V150L/A232S) double mutant involved in the fungal meroterpenoid biosynthetic pathway: a QM/MM study. Phys Chem Chem Phys 2019; 21:25658-25668. [DOI: 10.1039/c9cp03565f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QM/MM calculations reveal the mechanism of a nonheme Fe(ii)/α-ketoglutarate-dependent oxygenase involved in the fungal meroterpenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Jie Bai
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Lijuan Yan
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| |
Collapse
|
36
|
Wang X, Bakanina Kissanga GM, Li E, Li Q, Yao J. The catalytic mechanism of S-acyltransferases: acylation is triggered on by a loose transition state and deacylation is turned off by a tight transition state. Phys Chem Chem Phys 2019; 21:12163-12172. [DOI: 10.1039/c9cp02248a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of S-acyltransferase is characterized by a loose transition state.
Collapse
Affiliation(s)
- Xia Wang
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| | | | - E. Li
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| | - Qiang Li
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| | - Jianzhuang Yao
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
37
|
Ling B, Li H, Yan L, Liu R, Liu Y. Conversion mechanism of enoyl thioesters into acyl thioesters catalyzed by 2-enoyl-thioester reductases from Candida Tropicalis. Phys Chem Chem Phys 2019; 21:10105-10113. [DOI: 10.1039/c9cp00987f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enoyl thioester reductase from Candida tropicalis (Etr1p) catalyzes the NADPH-dependent conversion of enoyl thioesters into acyl thioesters, which are essential in fatty acid and second metabolite biosynthesis.
Collapse
Affiliation(s)
- Baoping Ling
- School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Shandong University
- Jinan
- China
- School of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu
| | - Hong Li
- School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Shandong University
- Jinan
- China
| | - Lijuan Yan
- School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Shandong University
- Jinan
- China
| | - Rutao Liu
- School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Shandong University
- Jinan
- China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Shandong University
- Jinan
- China
| |
Collapse
|
38
|
Chang WC, Liu P, Guo Y. Mechanistic Elucidation of Two Catalytically Versatile Iron(II)- and α-Ketoglutarate-Dependent Enzymes: Cases Beyond Hydroxylation. COMMENT INORG CHEM 2018. [DOI: 10.1080/02603594.2018.1509856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wei-chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
Gao SS, Naowarojna N, Cheng R, Liu X, Liu P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep 2018; 35:792-837. [PMID: 29932179 PMCID: PMC6093783 DOI: 10.1039/c7np00067g] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.
Collapse
Affiliation(s)
- Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xueting Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
40
|
On how the binding cavity of AsqJ dioxygenase controls the desaturation reaction regioselectivity: a QM/MM study. J Biol Inorg Chem 2018; 23:795-808. [PMID: 29876666 PMCID: PMC6015105 DOI: 10.1007/s00775-018-1575-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/23/2018] [Indexed: 02/03/2023]
Abstract
The Fe(II)/2-oxoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans catalyses two pivotal steps in the synthesis of quinolone antibiotic 4'-methoxyviridicatin, i.e., desaturation and epoxidation of a benzodiazepinedione. The previous experimental results signal that, during the desaturation reaction, hydrogen atom transfer (HAT) from the benzylic carbon atom (C10) is a more likely step to initiate the reaction than the alternative HAT from the ring moiety (C3 atom). To unravel the origins of this regioselectivity and to explain why the observed reaction is desaturation and not the "default" hydroxylation, we performed a QM/MM study on the reaction catalysed by AsqJ. Herein, we report results that complement the experimental findings and suggest that HAT at the C10 position is the preferred reaction due to favourable interactions between the substrate and the binding cavity that compensate for the relatively high intrinsic barrier associated with the process. For the resultant radical intermediate, the desaturation/hydroxylation selectivity is governed by electronic properties of the reactants, i.e., the energy gap between the orbital that hosts the unpaired electron and the sigma orbital for the C-H bond as well as the gap between the orbitals mixing in transition state structures for each elementary step. Regiospecificity of the AsqJ dehydrogenation reaction is dictated by substrate-protein interactions. 82 × 44 mm (300 × 300 dpi).
Collapse
|
41
|
Tian G, Su H, Liu Y. Mechanism of Sulfoxidation and C–S Bond Formation Involved in the Biosynthesis of Ergothioneine Catalyzed by Ergothioneine Synthase (EgtB). ACS Catal 2018. [DOI: 10.1021/acscatal.8b01473] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ge Tian
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, People’s Republic of China
| | - Hao Su
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, People’s Republic of China
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, People’s Republic of China
| |
Collapse
|
42
|
Herr CQ, Hausinger RP. Amazing Diversity in Biochemical Roles of Fe(II)/2-Oxoglutarate Oxygenases. Trends Biochem Sci 2018; 43:517-532. [PMID: 29709390 DOI: 10.1016/j.tibs.2018.04.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
Abstract
Since their discovery in the 1960s, the family of Fe(II)/2-oxoglutarate-dependent oxygenases has undergone a tremendous expansion to include enzymes catalyzing a vast diversity of biologically important reactions. Recent examples highlight roles in controlling chromatin modification, transcription, mRNA demethylation, and mRNA splicing. Others generate modifications in tRNA, translation factors, ribosomes, and other proteins. Thus, oxygenases affect all components of molecular biology's central dogma, in which information flows from DNA to RNA to proteins. These enzymes also function in biosynthesis and catabolism of cellular metabolites, including antibiotics and signaling molecules. Due to their critical importance, ongoing efforts have targeted family members for the development of specific therapeutics. This review provides a general overview of recently characterized oxygenase reactions and their key biological roles.
Collapse
Affiliation(s)
- Caitlyn Q Herr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
43
|
Catalytic mechanism and molecular engineering of quinolone biosynthesis in dioxygenase AsqJ. Nat Commun 2018; 9:1168. [PMID: 29563492 PMCID: PMC5862883 DOI: 10.1038/s41467-018-03442-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 02/13/2018] [Indexed: 12/02/2022] Open
Abstract
The recently discovered FeII/α-ketoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans stereoselectively catalyzes a multistep synthesis of quinolone alkaloids, natural products with significant biomedical applications. To probe molecular mechanisms of this elusive catalytic process, we combine here multi-scale quantum and classical molecular simulations with X-ray crystallography, and in vitro biochemical activity studies. We discover that methylation of the substrate is essential for the activity of AsqJ, establishing molecular strain that fine-tunes π-stacking interactions within the active site. To rationally engineer AsqJ for modified substrates, we amplify dispersive interactions within the active site. We demonstrate that the engineered enzyme has a drastically enhanced catalytic activity for non-methylated surrogates, confirming our computational data and resolved high-resolution X-ray structures at 1.55 Å resolution. Our combined findings provide crucial mechanistic understanding of the function of AsqJ and showcase how combination of computational and experimental data enables to rationally engineer enzymes. The catalytic activity of dioxygenase AsqJ is strictly relying on the methylation of quinolone substrates. Here, the authors apply molecular simulations, X-ray crystallography and in vitro biochemical studies to the engineering of dioxygenase AsqJ with improved catalytic activity for modified non-methylated surrogates.
Collapse
|
44
|
Liao HJ, Li J, Huang JL, Davidson M, Kurnikov I, Lin TS, Lee JL, Kurnikova M, Guo Y, Chan NL, Chang WC. Insights into the Desaturation of Cyclopeptin and its C3 Epimer Catalyzed by a non-Heme Iron Enzyme: Structural Characterization and Mechanism Elucidation. Angew Chem Int Ed Engl 2018; 57:1831-1835. [PMID: 29314482 DOI: 10.1002/anie.201710567] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/04/2017] [Indexed: 11/08/2022]
Abstract
AsqJ, an iron(II)- and 2-oxoglutarate-dependent enzyme found in viridicatin-type alkaloid biosynthetic pathways, catalyzes sequential desaturation and epoxidation to produce cyclopenins. Crystal structures of AsqJ bound to cyclopeptin and its C3 epimer are reported. Meanwhile, a detailed mechanistic study was carried out to decipher the desaturation mechanism. These findings suggest that a pathway involving hydrogen atom abstraction at the C10 position of the substrate by a short-lived FeIV -oxo species and the subsequent formation of a carbocation or a hydroxylated intermediate is preferred during AsqJ-catalyzed desaturation.
Collapse
Affiliation(s)
- Hsuan-Jen Liao
- Institute of Biochemistry and Molecular Biology, College of Medicine, National (Taiwan) University, Taipei, 100, Taiwan
| | - Jikun Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jhih-Liang Huang
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Madison Davidson
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Igor Kurnikov
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Te-Sheng Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National (Taiwan) University, Taipei, 100, Taiwan
| | - Justin L Lee
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Maria Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National (Taiwan) University, Taipei, 100, Taiwan
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
45
|
Liao HJ, Li J, Huang JL, Davidson M, Kurnikov I, Lin TS, Lee JL, Kurnikova M, Guo Y, Chan NL, Chang WC. Insights into the Desaturation of Cyclopeptin and its C3 Epimer Catalyzed by a non-Heme Iron Enzyme: Structural Characterization and Mechanism Elucidation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hsuan-Jen Liao
- Institute of Biochemistry and Molecular Biology; College of Medicine; National (Taiwan) University; Taipei 100 Taiwan
| | - Jikun Li
- Department of Chemistry; Carnegie Mellon University; Pittsburgh PA 15213 USA
| | - Jhih-Liang Huang
- Department of Chemistry; North Carolina State University; Raleigh NC 27695 USA
| | - Madison Davidson
- Department of Chemistry; North Carolina State University; Raleigh NC 27695 USA
| | - Igor Kurnikov
- Department of Chemistry; Carnegie Mellon University; Pittsburgh PA 15213 USA
| | - Te-Sheng Lin
- Institute of Biochemistry and Molecular Biology; College of Medicine; National (Taiwan) University; Taipei 100 Taiwan
| | - Justin L. Lee
- Department of Chemistry; Carnegie Mellon University; Pittsburgh PA 15213 USA
| | - Maria Kurnikova
- Department of Chemistry; Carnegie Mellon University; Pittsburgh PA 15213 USA
| | - Yisong Guo
- Department of Chemistry; Carnegie Mellon University; Pittsburgh PA 15213 USA
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology; College of Medicine; National (Taiwan) University; Taipei 100 Taiwan
| | - Wei-chen Chang
- Department of Chemistry; North Carolina State University; Raleigh NC 27695 USA
| |
Collapse
|
46
|
A Six‐Oxidase Cascade for Tandem C−H Bond Activation Revealed by Reconstitution of Bicyclomycin Biosynthesis. Angew Chem Int Ed Engl 2018; 57:719-723. [DOI: 10.1002/anie.201710529] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 11/07/2022]
|
47
|
Nakamura H, Matsuda Y, Abe I. Unique chemistry of non-heme iron enzymes in fungal biosynthetic pathways. Nat Prod Rep 2018. [DOI: 10.1039/c7np00055c] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions by non-heme iron enzymes in structurally intriguing fungal natural products pathways are summarized and discussed.
Collapse
Affiliation(s)
- Hitomi Nakamura
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| | - Yudai Matsuda
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
- Department of Chemistry
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
48
|
Meng S, Han W, Zhao J, Jian X, Pan H, Tang G. A Six‐Oxidase Cascade for Tandem C−H Bond Activation Revealed by Reconstitution of Bicyclomycin Biosynthesis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Song Meng
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Han
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Juan Zhao
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Hong Jian
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hai‐Xue Pan
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|