1
|
Zhao Z, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of β,γ-Unsaturated α-Diketones. J Am Chem Soc 2024; 146:33543-33560. [PMID: 39604061 DOI: 10.1021/jacs.4c11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Asymmetric transfer hydrogenation (ATH) has been recognized as a highly valuable strategy that allows access to enantioenriched substances and has been widely applied in the industrial production of drug molecules. However, despite the great success in ATH of ketones, highly efficient, regio- and stereoselective ATH on enones remains underdeveloped. Moreover, optically pure acyloins and 1,2-diols are both extremely useful building blocks in organic synthesis, medicinal chemistry, and materials science, but concise asymmetric approaches allowing access to different types of acyloins and 1,2-diols have scarcely been discovered. We report in this paper the first highly efficient ATH of readily accessible β,γ-unsaturated α-diketones. The protocol affords four types of enantioenriched acyloins and four types of optically pure 1,2-diols in highly regio- and stereoselective fashion. The synthetic value of this work has been showcased by the divergent synthesis of four related natural products. Moreover, systematic mechanistic studies and density functional theory (DFT) calculations have illustrated the origin of the reactivity divergence, revealed the different roles of aromatic and aliphatic substituents in the substrates, and provided a range of unique mechanistic rationales that have not been disclosed in ATH-related studies.
Collapse
Affiliation(s)
- Zhifei Zhao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
2
|
Fernández S, Assaf EA, Ahmad S, Travis BD, Curley JB, Hazari N, Ertem MZ, Miller AJM. Room-Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO 2. Angew Chem Int Ed Engl 2024:e202416061. [PMID: 39571086 DOI: 10.1002/anie.202416061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 12/12/2024]
Abstract
The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy-dense liquid fuels such as methanol remains rare, particularly under low-temperature and low-pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp*=pentamethylcyclopentadienyl, bpy=2,2'-bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H-PNP)Ir(H)3 (H-PNP=HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room-temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.
Collapse
Affiliation(s)
- Sergio Fernández
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Eric A Assaf
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Shahbaz Ahmad
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin D Travis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Julia B Curley
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut, 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut, 06520, United States
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
3
|
Musa S, Peretz Y, Dinnar G. Advances in Chiral Pincer Complexes: Insights and Applications in Catalytic Asymmetric Reactions. Int J Mol Sci 2024; 25:10344. [PMID: 39408673 PMCID: PMC11482493 DOI: 10.3390/ijms251910344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Chiral pincer complexes, characterized by their rigid tridentate coordination framework, have emerged as powerful catalysts in asymmetric synthesis. This review provides a comprehensive overview of recent advancements in the development of chiral pincer-type ligands and their corresponding transition metal complexes. We highlight the latest progress in their application across a range of catalytic asymmetric reactions, including the (transfer) hydrogenation of polar and non-polar bonds, hydrophosphination, alkynylation, Friedel-Crafts reactions, enantioselective reductive cyclization of alkynyl-tethered cyclohexadienones, enantioselective hydrosilylation, as well as Aza-Morita-Baylis-Hillman reactions. The structural rigidity and tunability of chiral pincer complexes enable precise control over stereoselectivity, resulting in high enantioselectivity and efficiency in complex molecular transformations. As the field advances, innovations in ligand design and the exploration of new metal centers are expected to expand the scope and utility of these catalysts, bearing significant implications for the synthesis of enantioenriched compounds in pharmaceuticals, materials science, and beyond.
Collapse
Affiliation(s)
- Sanaa Musa
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11016, Israel
| | - Yuval Peretz
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Gil Dinnar
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11016, Israel
| |
Collapse
|
4
|
White NM, Waldie KM. Electrocatalytic formate and alcohol oxidation by hydride transfer at first-row transition metal complexes. Dalton Trans 2024; 53:11644-11654. [PMID: 38896286 DOI: 10.1039/d3dt04304e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The electrocatalytic oxidation of carbon-based liquid fuels, such as formic acid and alcohols, has important applications for our renewable energy transition. Molecular electrocatalysts based on transition metal complexes provide the opportunity to explore the interplay between precise catalyst design and electrocatalytic activity. Recent advances have seen the development of first-row transition metal electrocatalysts for these transformations that operate via hydride transfer between the substrate and catalyst. In this Frontier article, we present the key contributions to this field and discuss the proposed mechanisms for each case. These studies also reveal the remaining challenges for formate and alcohol oxidation with first-row transition metal systems, for which we provide perspectives on future directions for next-generation electrocatalyst design.
Collapse
Affiliation(s)
- Navar M White
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Kate M Waldie
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
5
|
Borden O, Joseph BT, Head MC, Ammons OA, Kim DE, Bonino AC, Keith JM, Chianese AR. Highly Enantiomerically Enriched Secondary Alcohols via Epoxide Hydrogenolysis. Organometallics 2024; 43:1490-1501. [PMID: 38993820 PMCID: PMC11234370 DOI: 10.1021/acs.organomet.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
In this article, we report the development of ruthenium-catalyzed hydrogenolysis of epoxides to selectively give the branched (Markovnikov) alcohol products. In contrast to previously reported catalysts, the use of Milstein's PNN-pincer-ruthenium complex at room temperature allows the conversion of enantiomerically enriched epoxides to secondary alcohols without racemization of the product. The catalyst is effective for a range of aryl epoxides, alkyl epoxides, and glycidyl ethers and is the first homogeneous system to selectively promote hydrogenolysis of glycidol to 1,2-propanediol, without loss of enantiomeric purity. A detailed mechanistic study was conducted, including experimental observations of catalyst speciation under catalytically relevant conditions, comprehensive kinetic characterization of the catalytic reaction, and computational analysis via density functional theory. Heterolytic hydrogen cleavage is mediated by the ruthenium center and exogenous alkoxide base. Epoxide ring opening occurs through an opposite-side attack of the ruthenium hydride on the less-hindered epoxide carbon, giving the branched alcohol product selectively.
Collapse
Affiliation(s)
- Olivia
J. Borden
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Benjamin T. Joseph
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Marianna C. Head
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Obsidian A. Ammons
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Diane Eun Kim
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Abigail C. Bonino
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Jason M. Keith
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Anthony R. Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| |
Collapse
|
6
|
Barakat M, Elhajj S, Yazji R, Miller AJM, Hasanayn F. Kinetic Isotope Effects and the Mechanism of CO 2 Insertion into the Metal-Hydride Bond of fac-(bpy)Re(CO) 3H. Inorg Chem 2024; 63:12133-12145. [PMID: 38901030 DOI: 10.1021/acs.inorgchem.4c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The 1,2-insertion reaction of CO2 into metal-hydride bonds of d6-octahedral complexes to give κ1-O-metal-formate products is the key step in various CO2 reduction schemes and as a result has attracted extensive mechanistic investigations. For many octahedral catalysts, CO2 insertion follows an associative mechanism in which CO2 interacts directly with the coordinated hydride ligand instead of the more classical dissociative mechanism that opens an empty coordination site to bind the substrate to the metal prior to a hydride migration step. To better understand the associative mechanism, we conducted a systematic quantum chemical investigation on the reaction between CO2 and fac-(bpy)Re(CO)3H (1-Re-H; bpy = 2,2'-bipyridine) starting with the gas phase and then moving to THF and other solvents with increased dielectric constants. Detailed analyses of the potential energy surfaces (PESs) and intrinsic reaction coordinates (IRCs) reveal that the reaction is enabled in all media by an initial stage of making a 3c-2e bond between the carbon of CO2 and the metal-hydride bond that is most consistent with an organometallic bridging hydride Re-H-CO2 species. Once CO2 is bent and anchored to the metal-hydride bond, the reaction proceeds by a rotation motion via a cyclic transition state TS2 that interchanges Re-H-CO2 and Re-O-CHO coordination. The combined stages provide an asynchronous-concerted pathway for CO2 insertion on the Gibbs free energy surface with TS2 as the highest energy point. Consideration of TS2 as a rate-determining TS gives activation barriers, inverse KIEs, substituent effects, and solvent effects that agree with the experimental data available in this system. An important new insight revealed by the analyses of the results is that the initial stage of the reaction is not a hydride transfer step as has been assumed in some studies. In fact, the loose vibration of the TS that can be identified for the first stage of the reaction in solution (TS1) does not involve the Re-H stretching vibrational mode. Accordingly, the imaginary frequency of TS1 is insensitive to deuteration, and therefore, TS1 leads to no significant KIE.
Collapse
Affiliation(s)
- Mariam Barakat
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Sarah Elhajj
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Riyad Yazji
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
7
|
Marron DP, Galvin CM, Dressel JM, Waymouth RM. Cobaltocene-Mediated Catalytic Hydride Transfer: Strategies for Electrocatalytic Hydrogenation. J Am Chem Soc 2024; 146:17075-17083. [PMID: 38864712 DOI: 10.1021/jacs.4c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The selective electrocatalytic hydrogenation of organics with transition metal hydrides is a promising strategy for electrosynthesis and energy storage. We report the electrocatalytic hydrogenation of acetone with a cyclopentadienone-iridium complex in a tandem electrocatalytic cycle with a cobaltocene mediator. The reductive protonation of cobaltocenium with mild acids generates (C5H5)CoI(C5H6) (CpCoI(CpH)), which functions as an electrocatalytic hydride mediator to deliver a hydride to cationic Ir(III) without generating hydrogen. Electrocatalytic hydride transfer by CpCoI(CpH) to a cationic Ir species leads to the efficient (Faradaic efficiency > 90%) electrohydrogenation of acetone, a valuable hydrogenation target as a liquid organic hydrogen carrier (LOHC). Hydride-transfer mediation presents a powerful strategy to generate metal hydrides that are inaccessible by stepwise electron/proton transfer.
Collapse
Affiliation(s)
- Daniel P Marron
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Conor M Galvin
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Julia M Dressel
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| |
Collapse
|
8
|
Gulyaeva ES, Buhaibeh R, Boundor M, Azouzi K, Willot J, Bastin S, Duhayon C, Lugan N, Filippov OA, Sortais JB, Valyaev DA, Canac Y. Impact of the Methylene Bridge Substitution in Chelating NHC-Phosphine Mn(I) Catalyst for Ketone Hydrogenation. Chemistry 2024; 30:e202304201. [PMID: 38314964 DOI: 10.1002/chem.202304201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Systematic modification of the chelating NHC-phosphine ligand (NHC = N-heterocyclic carbene) in highly efficient ketone hydrogenation Mn(I) catalyst fac-[(Ph2PCH2NHC)Mn(CO)3Br] has been performed and the catalytic activity of the resulting complexes was evaluated using acetophenone as a benchmark substrate. While the variation of phosphine and NHC moieties led to inferior results than for a parent system, the incorporation of a phenyl substituent into the ligand methylene bridge improved catalytic performance by ca. 3 times providing maximal TON values in the range of 15000-20000. Mechanistic investigation combining experimental and computational studies allowed to rationalize this beneficial effect as an enhanced stabilization of reaction intermediates including anionic hydride species fac-[(Ph2PC(Ph)NHC)Mn(CO)3H]- playing a crucial role in the hydrogenation process. These results highlight the interest of such carbon bridge substitution strategy being rarely employed in the design of chemically non-innocent ligands.
Collapse
Affiliation(s)
- Ekaterina S Gulyaeva
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia
| | - Ruqaya Buhaibeh
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Mohamed Boundor
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Karim Azouzi
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jérémy Willot
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Stéphanie Bastin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Carine Duhayon
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Noël Lugan
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia
| | - Jean-Baptiste Sortais
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 5, France
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| |
Collapse
|
9
|
Ramspoth TF, Kootstra J, Harutyunyan SR. Unlocking the potential of metal ligand cooperation for enantioselective transformations. Chem Soc Rev 2024; 53:3216-3223. [PMID: 38381077 PMCID: PMC10985679 DOI: 10.1039/d3cs00998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 02/22/2024]
Abstract
Metal-ligand cooperation, in which both the metal and the ligand of a transition metal complex actively participate in chemical transformations leading to enhanced reactivity or selectivity in chemical reactions, has emerged as a powerful and versatile concept in catalysis. This Viewpoint discusses the development trajectory of transition metal-based complexes as catalysts in (de)hydrogenative processes, in particular those cases where metal-ligand cooperation has been invoked to rationalise the observed high reactivities and excellent selectivities. The historical context, mechanistic aspects and current applications are discussed with the suggestion to explore the potential of the MLC mode of action of such catalysts in enantioselective transformations beyond (de)hydrogenative processes.
Collapse
Affiliation(s)
- Tizian-Frank Ramspoth
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Johanan Kootstra
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Syuzanna R Harutyunyan
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
10
|
Xu L, Yang T, Sun H, Zeng J, Mu S, Zhang X, Chen GQ. Rhodium-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of 1,3-Dipolar Nitrones. Angew Chem Int Ed Engl 2024; 63:e202319662. [PMID: 38366812 DOI: 10.1002/anie.202319662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Owing to their distinctive 1,3-dipolar structure, the catalytic asymmetric hydrogenation of nitrones to hydroxylamines has been a formidable and longstanding challenge, characterized by intricate enantiocontrol and susceptibility to N-O bond cleavage. In this study, the asymmetric hydrogenation and transfer hydrogenation of nitrones were accomplished with a tethered TsDPEN-derived cyclopentadienyl rhodium(III) catalyst (TsDPEN: p-toluenesulfonyl-1,2-diphenylethylene-1,2-diamine), the reaction proceeds via a novel 7-membered cyclic transition state, producing chiral hydroxylamines with up to 99 % yield and >99 % ee. The practical viability of this methodology was underscored by gram-scale catalytic reactions and subsequent transformations. Furthermore, mechanistic investigations and DFT calculations were also conducted to elucidate the origin of enantioselectivity.
Collapse
Affiliation(s)
- Liren Xu
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Tilong Yang
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Hao Sun
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Jingwen Zeng
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Shuo Mu
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Xumu Zhang
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Khamis N, Zheng Y, Diamantakis MN, Clarkson GJ, Liu J, Wills M. Regio- and Enantioselective Asymmetric Transfer Hydrogenation of One Carbonyl Group in a Diketone through Steric Hindrance. J Org Chem 2024; 89:2759-2763. [PMID: 38308650 PMCID: PMC10877611 DOI: 10.1021/acs.joc.3c01950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
On the basis of steric hindrance, one carbonyl group in a diketone can be reduced in a regioselective manner, with high enantioselectivity. The methodology can be extended to ketones with varied length of hydrocarbon chain spacing, and the products can be converted by oxidation to hydroxy esters or lactones without loss of enantiopurity.
Collapse
Affiliation(s)
- Noha Khamis
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, Faculty of Science, University
of Alexandria, Alexandria, Egypt
| | - Ye Zheng
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Guy J. Clarkson
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | - Jie Liu
- Department
of Physics, The University of Warwick, Coventry CV4 7AL, U.K.
| | - Martin Wills
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
12
|
Kasemthaveechok S, Gérardo P, von Wolff N. Merging electrocatalytic alcohol oxidation with C-N bond formation by electrifying metal-ligand cooperative catalysts. Chem Sci 2023; 14:13437-13445. [PMID: 38033911 PMCID: PMC10685316 DOI: 10.1039/d3sc03408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Electrification of thermal chemical processes could play an important role in creating a more energy efficient chemical sector. Here we demonstrate that a range of MLC catalysts can be successfully electrified and used for imine formation from alcohol precursors, thus demonstrating the first example of molecular electrocatalytic C-N bond formation.This novel concept allowed energy efficiency to be increased by an order of magnitude compared to thermal catalysis. Molecular EAO and the electrification of homogeneous catalysts can thus contribute to current efforts for the electrocatalytic generation of C-N bonds from simple building blocks.
Collapse
Affiliation(s)
| | - Patrice Gérardo
- Laboratoire de Chimie et Biochimie, Pharmacologiques et Toxicologiques, Université Paris Cité/CNRS UMR8601 F-75006 Paris France
| | - Niklas von Wolff
- Laboratoire d'Électrochimie Moléculaire, Université Paris Cité/CNRS UMR7591 F-75013 Paris France
| |
Collapse
|
13
|
Grømer B, Saito S. Hydrogenation of CO 2 to MeOH Catalyzed by Highly Robust (PNNP)Ir Complexes Activated by Alkali Bases in Alcohol. Inorg Chem 2023; 62:14116-14123. [PMID: 37589272 DOI: 10.1021/acs.inorgchem.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Despite receiving significant attention, well-defined homogeneous complexes for hydrogenation of carbon dioxide (CO2) to methanol (MeOH) are scarce and suffer issues of low catalyst turnover numbers (TONs) at high catalyst concentrations and deactivation in the presence of CO and at elevated temperatures. Herein, we disclose a system deploying sterically demanded (PNNP)Ir complexes for a sustained activity for hydrogenation of CO2 to MeOH at temperatures ∼200 °C in an alcohol solvent. Through reaction optimization, we achieved a TON of ∼9000 for MeOH formation, which exceeds most active homogeneous systems reported to date, and robustness on par with or exceeding most reactive systems utilizing amine additives was demonstrated. The key to achieving sustained catalyst turnover for the system was utilizing a catalytic amount of an alkali base additive, which serves the dual purpose of facilitating more efficient outer-sphere reduction of CO2 and HCO2Et and enhancing the selectivity of MeOH over in situ formed CO.
Collapse
Affiliation(s)
- Bendik Grømer
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Wu X, Zeng Y, Meng L, Li X. Mechanistic insights and computational design of Cu/M bimetallic synergistic catalysts for Suzuki-Miyaura coupling of arylboronic esters with alkyl halides. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Kumar R, Pandey MK, Bhandari A, Choudhury J. Balancing the Seesaw in Mn-Catalyzed N-Heteroarene Hydrogenation: Mechanism-Inspired Catalyst Design for Simultaneous Taming of Activation and Transfer of H 2. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Ataie S, Lohoar M, Mangin LP, Baker RT. Coinage metal amido and thiolate SNS complexes: consequences of catalyst speciation in Cu(I)-catalysed carbonyl hydroboration. Chem Commun (Camb) 2023; 59:4044-4046. [PMID: 36928477 DOI: 10.1039/d2cc06077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Three new IPr-Ag- and -Au-SNS amido and thiolate complexes were synthesized and compared to their previously reported Cu analogues as carbonyl hydroboration catalysts (IPr = bis(2,6-diisopropylphenyl)imidazol-2-ylidene). Although these complexes showed no catalytic activity, treatment of the IPr-Ag-SNS amido complex with pinacolborane released the N-borylated ligand, SMeNBpinSMe, (L1-Bpin). This finding led us to reinvestigate the IPr-Cu-SNS amido precatalyst, revealing that immediate loss of L1-Bpin converts our catalyst system to [CuH(IPr)]2.
Collapse
Affiliation(s)
- Saeed Ataie
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | - Maxwell Lohoar
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Loïc P Mangin
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
17
|
Head M, Joseph BT, Keith JM, Chianese AR. The Mechanism of Markovnikov-Selective Epoxide Hydrogenolysis Catalyzed by Ruthenium PNN and PNP Pincer Complexes. Organometallics 2023; 42:347-356. [PMID: 36937786 PMCID: PMC10015984 DOI: 10.1021/acs.organomet.2c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 03/02/2023]
Abstract
The homogeneous catalysis of epoxide hydrogenolysis to give alcohols has recently received significant attention. Catalyst systems have been developed for the selective formation of either the Markovnikov (branched) or anti-Markovnikov (linear) alcohol product. Thus far, the reported catalysts exhibiting Markovnikov selectivity all feature the potential for Noyori/Shvo-type bifunctional catalysis, with either a RuH/NH or FeH/OH core structure. The proposed mechanisms of epoxide ring-opening have involved cooperative C-O bond hydrogenolysis involving the metal hydride and the acidic pendant group on the ligand, in analogy to the well-documented mechanism of polar double-bond hydrogenation exhibited by catalysts of this type. In this work, we present a combined computational/experimental study of the mechanism of epoxide hydrogenolysis catalyzed by Noyori-type PNP and PNN complexes of ruthenium. We find that, at least for these ruthenium systems, the previously proposed bifunctional pathway for epoxide ring-opening is energetically inaccessible; instead, the ring-opening proceeds through opposite-side nucleophilic attack of the ruthenium hydride on the epoxide carbon, without the involvement of the ligand N-H group. For both catalyst systems, the rate law and overall barrier predicted by density functional theory (DFT) are consistent with the results from kinetic studies.
Collapse
Affiliation(s)
- Marianna
C. Head
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Benjamin T. Joseph
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Jason M. Keith
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Anthony R. Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| |
Collapse
|
18
|
Sohtome Y, Komagawa S, Nakamura A, Hashizume D, Lectard S, Akakabe M, Hamashima Y, Uchiyama M, Sodeoka M. Experimental and Computational Investigation of Facial Selectivity Switching in Nickel-Diamine-Acetate-Catalyzed Michael Reactions. J Org Chem 2023. [PMID: 36813263 DOI: 10.1021/acs.joc.2c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chiral Ni complexes have revolutionized both asymmetric acid-base and redox catalysis. However, the coordination isomerism of Ni complexes and their open-shell property still often hinder the elucidation of the origin of their observed stereoselectivity. Here, we report our experimental and computational investigations to clarify the mechanism of β-nitrostyrene facial selectivity switching in Ni(II)-diamine-(OAc)2-catalyzed asymmetric Michael reactions. In the reaction with a dimethyl malonate, the Evans transition state (TS), in which the enolate binds in the same plane with the diamine ligand, is identified as the lowest-energy TS to promote C-C bond formation from the Si face in β-nitrostyrene. In contrast, a detailed survey of the multiple potential pathways in the reaction with α-keto esters points to a clear preference for our proposed C-C bond-forming TS, in which the enolate coordinates to the Ni(II) center in apical-equatorial positions relative to the diamine ligand, thereby promoting Re face addition in β-nitrostyrene. The N-H group plays a key orientational role in minimizing steric repulsion.
Collapse
Affiliation(s)
- Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinsuke Komagawa
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Ayako Nakamura
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Sylvain Lectard
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshitaka Hamashima
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
19
|
Hong Z, Qian C, Zhou S. HBF4-promoted, 3d transition metal-catalyzed reductive amination using EDTA-type ligand: Theoretical and experimental study. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Schlenker K, Casselman LK, VanderLinden RT, Saouma CT. Large changes in hydricity as a function of charge and not metal in (PNP)M–H (de)hydrogenation catalysts that undergo metal–ligand cooperativity. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01349e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ligand pKa and metal hydricity scale with one another in (de)hydrogenation catalysts that undergo metal–ligand cooperativity, irrespective of metal or ligand identity. Anionic hydrides are significantly more hydridic than their neutral counterparts.
Collapse
Affiliation(s)
- Kevin Schlenker
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Lillee K. Casselman
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | | | - Caroline T. Saouma
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
21
|
Poli R. A new classification for the ever-expanding mechanistic landscape of catalyzed hydrogenations, dehydrogenations and transfer hydrogenations. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
22
|
Wang F, Zhang Z, Chen Y, Ratovelomanana-Vidal V, Yu P, Chen GQ, Zhang X. Stereodivergent synthesis of chiral succinimides via Rh-catalyzed asymmetric transfer hydrogenation. Nat Commun 2022; 13:7794. [PMID: 36528669 PMCID: PMC9759521 DOI: 10.1038/s41467-022-35124-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Chiral succinimide moieties are ubiquitous in biologically active natural products and pharmaceuticals. Until today, despite the great interest, little success has been made for stereodivergent synthesis of chiral succinimides. Here, we report a general and efficient method for accessing 3,4-disubstituted succinimides through a dynamic kinetic resolution strategy based on asymmetric transfer hydrogenation. The Rh catalyst system exhibit high activities, enantioselectivities, and diastereoselectivities (up to 2000 TON, up to >99% ee, and up to >99:1 dr). Products with syn- and anti-configuration are obtained separately by control of the reaction conditions. For the N-unprotected substrates, both the enol and the imide group can be reduced by control of reaction time and catalyst loading. In addition, the detailed reaction pathway and origin of stereoselectivity are elucidated by control experiments and theoretical calculations. This study offers a straightforward and stereodivergent approach to the valuable enantioenriched succinimides (all 4 stereoisomers) from cheap chemical feedstocks in a single reaction step.
Collapse
Affiliation(s)
- Fangyuan Wang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Zongpeng Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Yu Chen
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Virginie Ratovelomanana-Vidal
- grid.4444.00000 0001 2112 9282PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Peiyuan Yu
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Gen-Qiang Chen
- grid.263817.90000 0004 1773 1790Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Xumu Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| |
Collapse
|
23
|
Kuß DA, Hölscher M, Leitner W. Combined Computational and Experimental Investigation on the Mechanism of CO 2 Hydrogenation to Methanol with Mn-PNP-Pincer Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- David A. Kuß
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim a.d. Ruhr, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
24
|
Skaria M, Culpepper JD, Daly SR. Leveraging Metal and Ligand Reactive Sites for One Pot Reactions: Ligand-Centered Borenium Ions for Tandem Catalysis with Palladium. Chemistry 2022; 28:e202201791. [PMID: 35997655 PMCID: PMC9828003 DOI: 10.1002/chem.202201791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/12/2023]
Abstract
Tandem catalysts that perform two different organic transformations in a single pot are highly desirable because they enable rapid and efficient assembly of simple organic building blocks into more complex molecules. Many examples of tandem catalysis rely on metal-catalyzed reactions involving one or more metal complexes. Remarkably, despite surging interest in the development of chemically reactive (i. e., non-innocent) ligands, there are few examples of metal complexes that leverage ligand-centered reactivity to perform catalytic reactions in tandem with separate catalytic reactions at the metal. Here we report how multifunctional Pd complexes with triaminoborane-derived diphosphorus ligands, called TBDPhos, appear to facilitate borenium-catalyzed cycloaddition reactions at the ligand, and Pd-catalyzed Stille and Suzuki cross-coupling reactions at the metal. Both transformations can be accessed in one pot to afford rare examples of tandem catalysis using separate metal and ligand catalysis sites in a single complex.
Collapse
Affiliation(s)
- Manisha Skaria
- Department of ChemistryThe University of IowaIowa CityIowa52242USA
| | | | - Scott R. Daly
- Department of ChemistryThe University of IowaIowa CityIowa52242USA
| |
Collapse
|
25
|
Tocqueville D, Crisanti F, Guerrero J, Nubret E, Robert M, Milstein D, von Wolff N. Electrification of a Milstein-type catalyst for alcohol reformation. Chem Sci 2022; 13:13220-13224. [PMID: 36425491 PMCID: PMC9667915 DOI: 10.1039/d2sc04533h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2023] Open
Abstract
Novel energy and atom efficiency processes will be keys to develop the sustainable chemical industry of the future. Electrification could play an important role, by allowing to fine-tune energy input and using the ideal redox agent: the electron. Here we demonstrate that a commercially available Milstein ruthenium catalyst (1) can be used to promote the electrochemical oxidation of ethanol to ethyl acetate and acetate, thus demonstrating the four electron oxidation under preparative conditions. Cyclic voltammetry and DFT-calculations are used to devise a possible catalytic cycle based on a thermal chemical step generating the key hydride intermediate. Successful electrification of Milstein-type catalysts opens a pathway to use alcohols as a renewable feedstock for the generation of esters and other key building blocks in organic chemistry, thus contributing to increase energy efficiency in organic redox chemistry.
Collapse
Affiliation(s)
- Damien Tocqueville
- Laboratoire d'Electrochimie MoléculaireUniversité Paris Cité, CNRS Paris F-75006 France
| | - Francesco Crisanti
- Laboratoire d'Electrochimie MoléculaireUniversité Paris Cité, CNRS Paris F-75006 France
| | - Julian Guerrero
- Laboratoire d'Electrochimie MoléculaireUniversité Paris Cité, CNRS Paris F-75006 France
| | - Esther Nubret
- Laboratoire d'Electrochimie MoléculaireUniversité Paris Cité, CNRS Paris F-75006 France
| | - Marc Robert
- Laboratoire d'Electrochimie MoléculaireUniversité Paris Cité, CNRS Paris F-75006 France
- Institut Universitaire de France (IUF) Paris F-75005 France
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science Rehovot 7610001 Israel
| | - Niklas von Wolff
- Laboratoire d'Electrochimie MoléculaireUniversité Paris Cité, CNRS Paris F-75006 France
| |
Collapse
|
26
|
Zhang G, Zeng H, Zheng S, Neary MC, Dub PA. Markovnikov alcohols via epoxide hydroboration by molecular alkali metal catalysts. iScience 2022; 25:105119. [PMID: 36185366 PMCID: PMC9515598 DOI: 10.1016/j.isci.2022.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College and PhD in Chemistry Program, the Graduate Center of City University of New York, New York, NY 10019, USA
- Corresponding author
| | - Haisu Zeng
- Department of Sciences, John Jay College and PhD in Chemistry Program, the Graduate Center of City University of New York, New York, NY 10019, USA
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Shengping Zheng
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Michelle C. Neary
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Corresponding author
| |
Collapse
|
27
|
Wang Y, Liu S, Yang H, Li H, Lan Y, Liu Q. Structure, reactivity and catalytic properties of manganese-hydride amidate complexes. Nat Chem 2022; 14:1233-1241. [PMID: 36097055 DOI: 10.1038/s41557-022-01036-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
The high efficiency of widely applied Noyori-type hydrogenation catalysts arises from the N-H moiety coordinated to a metal centre, which stabilizes rate-determining transition states through hydrogen-bonding interactions. It was proposed that a higher efficiency could be achieved by substituting an N-M' group (M' = alkali metals) for the N-H moiety using a large excess of metal alkoxides (M'OR); however, such a metal-hydride amidate intermediate has not yet been isolated. Here we present the synthesis, isolation and reactivity of a metal-hydride amidate complex (HMn-NLi). Kinetic studies show that the rate of hydride transfer from HMn-NLi to a ketone is 24-fold higher than that of the corresponding amino metal-hydride complex (HMn-NH). Moreover, the hydrogenation of N-alkyl-substituted aldimines was realized using HMn-NLi as the active catalyst, whereas HMn-NH is much less effective. These results highlight the superiority of M/NM' bifunctional catalysis over the classic M/NH bifunctional catalysis for hydrogenation reactions.
Collapse
Affiliation(s)
- Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China
| | - Haobo Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Hengxu Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China. .,College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China.
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
28
|
Khamis N, Clarkson GJ, Wills M. Heterocycle-containing Noyori-Ikariya catalysts for asymmetric transfer hydrogenation of ketones. Dalton Trans 2022; 51:13462-13469. [PMID: 35994090 DOI: 10.1039/d2dt02411j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a range of N-(heterocyclesulfonyl)-functionalised Noyori-Ikariya catalysts is described. The complexes were prepared through a short sequence from C2-symmetric 1,2-diphenylethylene-1,2-diamine (DPEN) and were characterised by a range of methods including X-ray crystallography. The complexes were active catalysts for the asymmetric transfer hydrogenation (ATH) of a range of acetophenone derivatives, giving products of high ee in most cases, with notably good results for ortho-substituted acetophenones.
Collapse
Affiliation(s)
- Noha Khamis
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK. .,Department of Chemistry, Faculty of science, University of Alexandria, Alexandria, Egypt
| | - Guy J Clarkson
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
29
|
Patil RD, Dutta M, Pratihar S. Hydrogenation Involving Two Different Proton- and Hydride-Transferring Reagents through Metal–Ligand Cooperation: Mechanism and Scope. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rahul Daga Patil
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Manali Dutta
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
30
|
Ravi Kishore D, Sreenivasulu C, Satyanarayana G, Dapkekar AB. Recent Applications on Dual-Catalysis for C–C and C–X Cross-Coupling Reactions. SYNOPEN 2022. [DOI: 10.1055/a-1896-4168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractCoupling reactions stand amid the most significant reactions in synthetic organic chemistry. Of late, these coupling strategies are being viewed as a versatile synthetic tool for a wide range of organic transformations in many sectors of chemistry, ranging from indispensable synthetic scaffolds and natural products of biological significance to novel organic materials. Further, the use of dual-catalysis in accomplishing various interesting cross-coupling transformations is an emerging field in synthetic organic chemistry, owing to their high catalytic performance rather than the use of a single catalyst. In recent years, synthetic organic chemists have given considerable attention to hetero-dual catalysis; wherein these catalytic systems have been employed for the construction of versatile carbon–carbon [C(sp
3)–C(sp
3), C(sp
3)–C(sp
2), C(sp
2)–C(sp
2)] and carbon–heteroatom (C–N, C–O, C–P, C–S) bonds. Therefore, in this mini-review, we are emphasizing recently developed various cross-coupling reactions catalysed by transition-metal dual-catalysis (i.e., using palladium and copper catalysts, but omitting the reports on photoredox/metal catalysis).1 Introduction2 Cu/Pd-Catalysed Bond Formation2.1 Pd/Cu-Catalysed C(sp
3)–C(sp
2) Bond Formation2.2 Pd/Cu-Catalysed C(sp
2)–C(sp
2) Bond Formation2.3 Pd/Cu-Catalysed C(sp)–C(sp
2) Bond Formation2.4 Pd/Cu-Catalysed C(sp
3)–C(sp
3) Bond Formation2.5 Pd/Cu-Catalysed C–X (X = B, N, P, S, Si) Bond Formation3 Conclusion
Collapse
|
31
|
Xia Y, Wang S, Miao R, Liao J, Ouyang L, Luo R. Synthesis of N-alkoxy amines and hydroxylamines via the iridium-catalyzed transfer hydrogenation of oximes. Org Biomol Chem 2022; 20:6394-6399. [PMID: 35866589 DOI: 10.1039/d2ob01084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic iridium (Ir) complexes were found to catalyze the transfer hydrogenation of oximes to access N-alkoxy amines and hydroxylamines, and the reaction was accelerated by trifluoroacetic acid. The practical application of this protocol was demonstrated by a gram-scale transformation and two-step synthesis of the fungicide furmecyclox (BAS 389F) in overall yields of 92 and 85%, respectively. An asymmetric protocol using chiral Ir complexes to afford chiral N-alkoxy amines was demonstrated, but the low yields/ee obtained indicated that further development was required.
Collapse
Affiliation(s)
- Yanping Xia
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China.
| | - Sen Wang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China.
| | - Rui Miao
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China.
| | - Jianhua Liao
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China.,School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China.
| | - Lu Ouyang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China.
| | - Renshi Luo
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, P. R. China. .,College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
32
|
Tsui BTH, Sung MMH, Kinas J, Hahn FE, Morris RH. A Ruthenium Protic N-Heterocyclic Carbene Complex as a Precatalyst for the Efficient Transfer Hydrogenation of Aryl Ketones. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brian T. H. Tsui
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Molly M. H. Sung
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jenny Kinas
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster D-48149, Germany
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster D-48149, Germany
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
33
|
Ballav T, Chakrabortty R, Das A, Ghosh S, Ganesh V. Palladium‐Catalyzed Dual Catalytic Synthesis of Heterocycles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tamal Ballav
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | | | - Aniruddha Das
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Suman Ghosh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Venkataraman Ganesh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry Department of Chemistry,Indian Institute Technology Kharagpur 721302 Kharagpur INDIA
| |
Collapse
|
34
|
Orzari LO, Assumpção MHMT, Nandenha J, Neto AO, Junior LHM, Bergamini M, Janegitz BC. Pd, Ag and Bi carbon-supported electrocatalysts as electrochemical multifunctional materials for ethanol oxidation and dopamine determination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Shimbayashi T, Ito H, Shimizu M, Sano H, Sakaki S, Fujita KI. Effect of Substituents in Functional Bipyridonate Ligands on Ruthenium‐Catalyzed Dehydrogenative Oxidation of Alcohols: An Experimental and Computational Study. ChemCatChem 2022. [DOI: 10.1002/cctc.202200280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takuya Shimbayashi
- Kyoto University Graduate School of Human and Environmental Studies Yoshidanihonmatsu-cho, Sakyo-ku 606-8501 Kyoto JAPAN
| | - Hajime Ito
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Mineyuki Shimizu
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Hayato Sano
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Shigeyoshi Sakaki
- Kyoto University: Kyoto Daigaku Element Strategy Initiative for Catalysts and Batteries Goryo-Ohara, Nishikyo-ku 615-8245 Kyoto JAPAN
| | - Ken-ichi Fujita
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies Yoshidanihonmatsucho, Sakyo-ku 606-8501 Kyoto JAPAN
| |
Collapse
|
36
|
Puig E, Verron R, Kechaou-Perrot M, Vendier L, Gornitzka H, Miqueu K, Sotiropoulos JM, Fischmeister C, Sutra P, Igau A. Shvo-Type Metal–Ligand Cooperative Catalysts: Tethered η 5-Oxocyclohexadienyl Ruthenium Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emmanuel Puig
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 F-31077, France
- Université de Toulouse, UPS, INPT, Toulouse Cedex 4 F-31077, France
| | - Raphaël Verron
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, Rennes F-35042, France
| | - Manel Kechaou-Perrot
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 F-31077, France
- Université de Toulouse, UPS, INPT, Toulouse Cedex 4 F-31077, France
| | - Laure Vendier
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 F-31077, France
- Université de Toulouse, UPS, INPT, Toulouse Cedex 4 F-31077, France
| | - Heinz Gornitzka
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 F-31077, France
- Université de Toulouse, UPS, INPT, Toulouse Cedex 4 F-31077, France
| | - Karinne Miqueu
- CNRS/Université de Pau & des Pays de l’Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR CNRS 5254, 2 Avenue du Président P. Angot, Pau 64053, Cedex 09, France
| | - Jean-Marc Sotiropoulos
- CNRS/Université de Pau & des Pays de l’Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR CNRS 5254, 2 Avenue du Président P. Angot, Pau 64053, Cedex 09, France
| | - Cédric Fischmeister
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, Rennes F-35042, France
| | - Pierre Sutra
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 F-31077, France
- Université de Toulouse, UPS, INPT, Toulouse Cedex 4 F-31077, France
| | - Alain Igau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 F-31077, France
- Université de Toulouse, UPS, INPT, Toulouse Cedex 4 F-31077, France
| |
Collapse
|
37
|
Nair VV, Arunprasath D, Solai P, Sekar G. Synergistic Dual Amine/Transition Metal Catalysis ‐ Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Pandidurai Solai
- IIT Madras: Indian Institute of Technology Madras Department of Chemistry INDIA
| | - Govindasamy Sekar
- Indian Institute of Technology Madras Department of Chemistry IIT Campus 600 036 Chennai INDIA
| |
Collapse
|
38
|
Reek JNH, de Bruin B, Pullen S, Mooibroek TJ, Kluwer AM, Caumes X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chem Rev 2022; 122:12308-12369. [PMID: 35593647 PMCID: PMC9335700 DOI: 10.1021/acs.chemrev.1c00862] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal catalysis is of utmost importance for the development of sustainable processes in academia and industry. The activity and selectivity of metal complexes are typically the result of the interplay between ligand and metal properties. As the ligand can be chemically altered, a large research focus has been on ligand development. More recently, it has been recognized that further control over activity and selectivity can be achieved by using the "second coordination sphere", which can be seen as the region beyond the direct coordination sphere of the metal center. Hydrogen bonds appear to be very useful interactions in this context as they typically have sufficient strength and directionality to exert control of the second coordination sphere, yet hydrogen bonds are typically very dynamic, allowing fast turnover. In this review we have highlighted several key features of hydrogen bonding interactions and have summarized the use of hydrogen bonding to program the second coordination sphere. Such control can be achieved by bridging two ligands that are coordinated to a metal center to effectively lead to supramolecular bidentate ligands. In addition, hydrogen bonding can be used to preorganize a substrate that is coordinated to the metal center. Both strategies lead to catalysts with superior properties in a variety of metal catalyzed transformations, including (asymmetric) hydrogenation, hydroformylation, C-H activation, oxidation, radical-type transformations, and photochemical reactions.
Collapse
Affiliation(s)
- Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tiddo J Mooibroek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Xavier Caumes
- InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
39
|
Thiyagarajan S, Gunanathan C. Catalytic Hydrogenation of Epoxides to Alcohols. Chem Asian J 2022; 17:e202200118. [PMID: 35486033 DOI: 10.1002/asia.202200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/16/2022] [Indexed: 11/10/2022]
Abstract
Atom-economical catalytic reactions are a highly enticing strategy because all atoms of the starting materials are incorporated into the products. Catalytic hydrogenation of epoxides to alcohols is an attractive and alternative protocol to other synthetic methodologies for the synthesis of alcohols from alkenes. In the last two decades, catalytic hydrogenation of epoxides to alcohols has made remarkable progress in chemical synthesis. In this review, an overview of the catalytic hydrogenation of both terminal and internal epoxides to the corresponding alcohols is presented. An outline of both homogeneous and heterogeneous hydrogenation of epoxides to the corresponding alcohols is provided. Moreover, the selectivity, efficiency, and the reaction mechanisms of these epoxide hydrogenation reactions are highlighted.
Collapse
Affiliation(s)
| | - Chidambaram Gunanathan
- National Institute of Science Education and Research, School of Chemical Sciences, IOP Campus, 752050, Bhubaneswar, INDIA
| |
Collapse
|
40
|
Zhang G, Zeng H, Zheng S, Neary MC, Dub PA. Vanadium-Catalyzed Stereo- and Regioselective Hydroboration of Alkynes to Vinyl Boronates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College and PhD in Chemistry Program, The Graduate Center of City University of New York, New York, New York 10019, United States
| | - Haisu Zeng
- Department of Sciences, John Jay College and PhD in Chemistry Program, The Graduate Center of City University of New York, New York, New York 10019, United States
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Shengping Zheng
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Michelle C. Neary
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
41
|
Polukeev AV, Abdelaziz OY, Wendt OF. Combined Experimental and Computational Study of the Mechanism of Acceptorless Alcohol Dehydrogenation by POCOP Iridium Pincer Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexey V. Polukeev
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Omar Y. Abdelaziz
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ola F. Wendt
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
42
|
Ataie S, Hogeterp S, Ovens JS, Baker RT. SNS ligand-assisted catalyst activation in Zn-catalysed carbonyl hydroboration. Chem Commun (Camb) 2022; 58:3795-3798. [PMID: 35234221 DOI: 10.1039/d1cc06981k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligands that include Lewis acid/base functionality have extensive applications in bifunctional catalysis using first row metals. In this work, zinc bis(amido), bis(thiolate) and amido-thiolate SNS complexes were prepared and compared as precatalysts for carbonyl hydroboration using pinacolborane. Mechanistic studies revealed two different ligand-assisted precatalyst activation pathways, both leading to an active and robust zinc alkoxide catalyst. This work furthers our understanding of metal-ligand cooperation in first-row metal catalysis.
Collapse
Affiliation(s)
- Saeed Ataie
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Seth Hogeterp
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Jeffrey S Ovens
- Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
43
|
Stevens MA, Colebatch AL. Cooperative approaches in catalytic hydrogenation and dehydrogenation. Chem Soc Rev 2022; 51:1881-1898. [PMID: 35230366 DOI: 10.1039/d1cs01171e] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal-ligand cooperativity (MLC) is an established strategy for developing effective hydrogenation and dehydrogenation catalysts. Metal-metal cooperativity (MMC) in bimetallic complexes is not as well understood, and to date has had limited implementation in (de)hydrogenation. Herein we use (de)hydrogenation processes as a platform to examine modes of cooperativity, with a particular focus on catalytic mechanisms. We investigate how lessons learnt from the extensive development of metal-ligand cooperative catalysts can aid the ongoing development of metal-metal cooperative catalysts.
Collapse
Affiliation(s)
- Michael A Stevens
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Annie L Colebatch
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
44
|
de Zwart FJ, Sinha V, Trincado M, Grützmacher H, de Bruin B. Computational mechanistic studies of ruthenium catalysed methanol dehydrogenation. Dalton Trans 2022; 51:3019-3026. [PMID: 35079760 PMCID: PMC8862544 DOI: 10.1039/d1dt04168a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Homogeneous ruthenium catalysed methanol dehydrogenation could become a key reaction for hydrogen production in liquid fuel cells. In order to improve existing catalytic systems, mechanistic insight is paramount in directing future studies. Herein, we describe what computational mechanistic research has taught us so far about ruthenium catalysed dehydrogenation reactions. In general, two mechanistic pathways can be operative in these reactions: a metal-centered or a metal-ligand cooperative (Noyori-Morris type) minimum energy reaction pathway (MERP). Discerning between these mechanisms on the basis of computational studies has proven to be highly input dependent, and to circumvent pitfalls it is important to consider several factors, such as solvent effects, metal-ligand cooperativity, alternative geometries, and complex electronic structures of metal centres. This Frontiers article summarizes the reported computational research performed on ruthenium catalyzed dehydrogenation reactions performed in the past decade, and serves as a guide for future research.
Collapse
Affiliation(s)
- Felix J de Zwart
- Van 't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Vivek Sinha
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| | - Monica Trincado
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Hansjörg Grützmacher
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Eisenstein O. From the Felkin‐Anh Rule to the Grignard Reaction: an Almost Circular 50 Year Adventure in the World of Molecular Structures and Reaction Mechanisms with Computational Chemistry**. Isr J Chem 2022. [DOI: 10.1002/ijch.202100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Odile Eisenstein
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095 France Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo Oslo 0315 Norway
| |
Collapse
|
46
|
Spielvogel KD, Stumme NC, Fetrow TV, Wang L, Luna JA, Keith JM, Shaw SK, Daly SR. Quantifying Variations in Metal–Ligand Cooperative Binding Strength with Cyclic Voltammetry and Redox-Active Ligands. Inorg Chem 2022; 61:2391-2401. [DOI: 10.1021/acs.inorgchem.1c03014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kyle D. Spielvogel
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Nathan C. Stumme
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Taylor V. Fetrow
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Li Wang
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Javier A. Luna
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Jason M. Keith
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Scott K. Shaw
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Scott R. Daly
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| |
Collapse
|
47
|
Grømer B, Yoshioka S, Saito S. Selective Reduction of Carboxylic Acids to Alcohols in the Presence of Alcohols by a Dual Bulky Transition-Metal Complex/Lewis Acid Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bendik Grømer
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shota Yoshioka
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
48
|
Babón JC, Esteruelas MA, López AM. Homogeneous catalysis with polyhydride complexes. Chem Soc Rev 2022; 51:9717-9758. [DOI: 10.1039/d2cs00399f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This review analyzes the role of transition metal polyhydrides as homogeneous catalysts for organic reactions. Discussed reactions involve nearly every main organic functional group.
Collapse
Affiliation(s)
- Juan C. Babón
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Ana M. López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
49
|
Piyasaengthong A, Williams LJ, Yufit DS, Walton JW. Novel ruthenium complexes bearing bipyridine-based and N-heterocyclic carbene-supported pyridine (NCN) ligands: the influence of ligands on catalytic transfer hydrogenation of ketones. Dalton Trans 2021; 51:340-351. [PMID: 34897327 DOI: 10.1039/d1dt03240b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transfer hydrogenation (TH) is a powerful synthetic tool in the production of secondary alcohols from ketones by using a non-H2 hydrogen source along with metal catalysts. Among homogeneous catalysts, Ru(II) complexes are the most efficient catalysts. In our research, six novel ruthenium(II) complexes bearing bipyridine-based ligands [Ru(L1)Cl2] (1), [Ru(L1)(PPh3)Cl]Cl (2) and [Ru(L2)Cl2] (3) and N-heterocyclic carbene-supported pyridine (NCN) ligands [RuCp(L3)]PF6 (4), [RuCp*(L3)]PF6 (5), and [Ru(p-cymene)(L3)Cl]PF6 (6) (where L1 = 6,6'-bis(aminomethyl)-2,2'-bipyridine, L2 = 6,6'-bis(dimethylaminomethyl)-2,2'-bipyridine and L3 = 1,3-bis(2-methylpyridyl)imidazolium bromide) were synthesised and characterised by NMR spectroscopy, HRMS, and X-ray crystallography. The catalytic transfer hydrogenation of 28 ketones in 2-propanol at 80 °C in the presence of KOtBu (5 mol%) was demonstrated and the effect of ligands is highlighted. The results show that catalyst 1 exhibits improved TH efficiency compared to the commercially available Milstein catalyst and displays higher catalytic activity than 2 due to the steric effect from PPh3. From a combination of kinetic data and Eyring analysis, a zero-order dependence on the acetophenone substrate is observed, implying a rate-limiting hydride transfer step, leading to the proposed inner-sphere hydride transfer mechanism.
Collapse
Affiliation(s)
- Akkharadet Piyasaengthong
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK. .,Bioscience program, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Luke J Williams
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Dmitry S Yufit
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - James W Walton
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
50
|
Artús Suàrez L, Balcells D, Nova A. Computational Studies on the Mechanisms for Deaminative Amide Hydrogenation by Homogeneous Bifunctional Catalysts. Top Catal 2021. [DOI: 10.1007/s11244-021-01542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe deaminative hydrogenation of amides is one of the most convenient pathways for the synthesis of amines and alcohols. The ideal source of reducing equivalents for this reaction is molecular hydrogen, though, in practice, this approach requires high pressures and temperatures, with many catalysts achieving only small turnover numbers and frequencies. Nonetheless, during the last ten years, this field has made major advances towards larger turnovers under milder conditions thanks to the development of bifunctional catalysts. These systems promote the heterolytic cleavage of hydrogen into proton and hydride by combining a basic ligand with an acidic metal centre. The present review focuses on the computational study of the reaction mechanism underlying bifunctional catalysis. This review is structured around the fundamental steps of this mechanism, namely the C=O and C–N hydrogenation of the amide, the C–N protonolysis of the hemiaminal, the C=O hydrogenation of the aldehyde, and the competition between hydrogen activation and catalyst deactivation. In line with the complexity of the mechanism, we also provide a perspective on the use of microkinetic models. Both Noyori- and Milstein-type catalysts are discussed and compared.
Collapse
|