1
|
Ji T, Liaqat F, Khazi MI, Liaqat N, Nawaz MZ, Zhu D. Lignin biotransformation: Advances in enzymatic valorization and bioproduction strategies. INDUSTRIAL CROPS AND PRODUCTS 2024; 216:118759. [DOI: 10.1016/j.indcrop.2024.118759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
2
|
Lučić M, Allport T, Clarke TA, Williams LJ, Wilson MT, Chaplin AK, Worrall JAR. The oligomeric states of dye-decolorizing peroxidases from Streptomyces lividans and their implications for mechanism of substrate oxidation. Protein Sci 2024; 33:e5073. [PMID: 38864770 PMCID: PMC11168072 DOI: 10.1002/pro.5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/13/2024]
Abstract
A common evolutionary mechanism in biology to drive function is protein oligomerization. In prokaryotes, the symmetrical assembly of repeating protein units to form homomers is widespread, yet consideration in vitro of whether such assemblies have functional or mechanistic consequences is often overlooked. Dye-decolorizing peroxidases (DyPs) are one such example, where their dimeric α + β barrel units can form various oligomeric states, but the oligomer influence, if any, on mechanism and function has received little attention. In this work, we have explored the oligomeric state of three DyPs found in Streptomyces lividans, each with very different mechanistic behaviors in their reactions with hydrogen peroxide and organic substrates. Using analytical ultracentrifugation, we reveal that except for one of the A-type DyPs where only a single sedimenting species is detected, oligomer states ranging from homodimers to dodecamers are prevalent in solution. Using cryo-EM on preparations of the B-type DyP, we determined a 3.02 Å resolution structure of a hexamer assembly that corresponds to the dominant oligomeric state in solution as determined by analytical ultracentrifugation. Furthermore, cryo-EM data detected sub-populations of higher-order oligomers, with one of these formed by an arrangement of two B-type DyP hexamers to give a dodecamer assembly. Our solution and structural insights of these oligomer states provide a new framework to consider previous mechanistic studies of these DyP members and are discussed in terms of long-range electron transfer for substrate oxidation and in the "storage" of oxidizable equivalents on the heme until a two-electron donor is available.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life SciencesUniversity of EssexColchesterUK
| | - Thomas Allport
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUK
| | | | | | | | - Amanda K. Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUK
| | | |
Collapse
|
3
|
Hermann E, Rodrigues CF, Martins LO, Peterbauer C, Oostenbrink C. Engineering A-type Dye-Decolorizing Peroxidases by Modification of a Conserved Glutamate Residue. Chembiochem 2024; 25:e202300872. [PMID: 38376941 DOI: 10.1002/cbic.202300872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
Dye-decolorizing peroxidases (DyPs) are recently identified microbial enzymes that have been used in several Biotechnology applications from wastewater treatment to lignin valorization. However, their properties and mechanism of action still have many open questions. Their heme-containing active site is buried by three conserved flexible loops with a putative role in modulating substrate access and enzyme catalysis. Here, we investigated the role of a conserved glutamate residue in stabilizing interactions in loop 2 of A-type DyPs. First, we did site saturation mutagenesis of this residue, replacing it with all possible amino acids in bacterial DyPs from Bacillus subtilis (BsDyP) and from Kitasatospora aureofaciens (KaDyP1), the latter being characterized here for the first time. We screened the resulting libraries of variants for activity towards ABTS and identified variants with increased catalytic efficiency. The selected variants were purified and characterized for activity and stability. We furthermore used Molecular Dynamics simulations to rationalize the increased catalytic efficiency and found that the main reason is the electron channeling becoming easier from surface-exposed tryptophans. Based on our findings, we also propose that this glutamate could work as a pH switch in the wild-type enzyme, preventing intracellular damage.
Collapse
Affiliation(s)
- Enikö Hermann
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190, Vienna, Austria
- Institute for Molecular Modeling and Simulation, Department of Material Science and Life Sciences, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Carolina F Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Clemens Peterbauer
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190, Vienna, Austria
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, Department of Material Science and Life Sciences, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
4
|
Pupart H, Lukk T, Väljamäe P. Dye-decolorizing peroxidase of Thermobifida halotolerance displays complex kinetics with both substrate inhibition and apparent positive cooperativity. Arch Biochem Biophys 2024; 754:109931. [PMID: 38382807 DOI: 10.1016/j.abb.2024.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Dye-decolorizing peroxidases (DyPs) have been intensively investigated for the purpose of industrial dye decolourization and lignin degradation. Unfortunately, the characterization of these peroxidases is hampered by their non-Michaelis-Menten kinetics, exemplified by substrate inhibition and/or positive cooperativity. Although often observed, the underlying mechanisms behind the unusual kinetics of DyPs are poorly understood. Here we studied the kinetics of the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroquinones, and anthraquinone dyes by DyP from the bacterium Thermobifida halotolerans (ThDyP) and solved its crystal structure. We also provide rate equations for different kinetic mechanisms explaining the complex kinetics of heme peroxidases. Kinetic studies along with the analysis of the structure of ThDyP suggest that the substrate inhibition is caused by the non-productive binding of ABTS to the enzyme resting state. Strong irreversible inactivation of ThDyP by H2O2 in the absence of ABTS suggests that the substrate inhibition by H2O2 may be caused by the non-productive binding of H2O2 to compound I. Positive cooperativity was observed only with the oxidation of ABTS but not with the two electron-donating substrates. Although the conventional mechanism of cooperativity cannot be excluded, we propose that the oxidation of ABTS assumes the simultaneous binding of two ABTS molecules to reduce compound I to the enzyme resting state, and this causes the apparent positive cooperativity.
Collapse
Affiliation(s)
- Hegne Pupart
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b-202, 51010, Tartu, Estonia.
| |
Collapse
|
5
|
Mangini V, Rosini E, Caliandro R, Mangiatordi GF, Delre P, Sciancalepore AG, Pollegioni L, Haidukowski M, Mazzorana M, Sumarah MW, Renaud JB, Flaig R, Mulè G, Belviso BD, Loi M. DypB peroxidase for aflatoxin removal: New insights into the toxin degradation process. CHEMOSPHERE 2024; 349:140826. [PMID: 38040262 DOI: 10.1016/j.chemosphere.2023.140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most potent carcinogens and a widespread food and feed contaminant. As for other toxins, many efforts are devoted to find efficient and environmentally-friendly methods to degrade AFB1, such as enzymatic treatments, thus improving the safety of food and feed products. In this regard, the dye decolorizing peroxidase of type B (DypB) can efficiently degrade AFB1. The molecular mechanism, which is required to drive protein optimization in view of the usage of DypB as a mycotoxin reduction agent in large scale application, is unknown. Here, we focused on the role of four DypB residues in the degradation of AFB1 by alanine-scanning (residues 156, 215, 239 and 246), which were identified from biochemical assays to be kinetically relevant for the degradation. As a result of DypB degradation, AFB1 is converted into four products. Interestingly, the relative abundancy of these products depends on the replaced residues. Molecular dynamics simulations were used to investigate the role of these residues in the binding step between protein and manganese, a metal ion which is expected to be involved in the degradation process. We found that the size of the haem pocket as well as conformational changes in the protein structure could play a role in determining the kinetics of AFB1 removal and, consequently, guide the process towards specific degradation products.
Collapse
Affiliation(s)
- V Mangini
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Amendola 122/o, Bari, 70126, Italy
| | - E Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese, 21100, Italy
| | - R Caliandro
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Amendola 122/o, Bari, 70126, Italy
| | - G F Mangiatordi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Amendola 122/o, Bari, 70126, Italy
| | - P Delre
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Amendola 122/o, Bari, 70126, Italy
| | - A G Sciancalepore
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Amendola 122/o, Bari, 70126, Italy
| | - L Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese, 21100, Italy
| | - M Haidukowski
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Via Amendola 122/o, Bari, 70126, Italy
| | - M Mazzorana
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - M W Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street London, Ontario, Canada, N5V4T3
| | - J B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street London, Ontario, Canada, N5V4T3
| | - R Flaig
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - G Mulè
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Via Amendola 122/o, Bari, 70126, Italy.
| | - B D Belviso
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Amendola 122/o, Bari, 70126, Italy.
| | - M Loi
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Via Amendola 122/o, Bari, 70126, Italy
| |
Collapse
|
6
|
Pupart H, Vastšjonok D, Lukk T, Väljamäe P. Dye-Decolorizing Peroxidase of Streptomyces coelicolor ( ScDyPB) Exists as a Dynamic Mixture of Kinetically Different Oligomers. ACS OMEGA 2024; 9:3866-3876. [PMID: 38284010 PMCID: PMC10809370 DOI: 10.1021/acsomega.3c07963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Dye-decolorizing peroxidases (DyPs) are heme-dependent enzymes that catalyze the oxidation of various substrates including environmental pollutants such as azo dyes and also lignin. DyPs often display complex non-Michaelis-Menten kinetics with substrate inhibition or positive cooperativity. Here, we performed in-depth kinetic characterization of the DyP of the bacterium Streptomyces coelicolor (ScDyPB). The activity of ScDyPB was found to be dependent on its concentration in the working stock used to initiate the reactions as well as on the pH of the working stock. Furthermore, the above-listed conditions had different effects on the oxidation of 2,2'-azino-di(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) and methylhydroquinone, suggesting that different mechanisms are used in the oxidation of these substrates. The kinetics of the oxidation of ABTS were best described by the model whereby ScDyPB exists as a mixture of two kinetically different enzyme forms. Both forms obey the ping-pong kinetic mechanism, but one form is substrate-inhibited by the ABTS, whereas the other is not. Gel filtration chromatography and dynamic light scattering analyses revealed that ScDyPB exists as a complex mixture of molecules with different sizes. We propose that ScDyPB populations with low and high degrees of oligomerization have different kinetic properties. Such enzyme oligomerization-dependent modulation of the kinetic properties adds further dimension to the complexity of the kinetics of DyPs but also suggests novel possibilities for the regulation of their catalytic activity.
Collapse
Affiliation(s)
- Hegne Pupart
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 15 Akadeemia tee, Tallinn 12618, Estonia
| | - Darja Vastšjonok
- Institute
of Molecular and Cell Biology, University
of Tartu, Riia 23b-202, Tartu 51010, Estonia
| | - Tiit Lukk
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 15 Akadeemia tee, Tallinn 12618, Estonia
| | - Priit Väljamäe
- Institute
of Molecular and Cell Biology, University
of Tartu, Riia 23b-202, Tartu 51010, Estonia
| |
Collapse
|
7
|
Barbosa C, Rodrigues CF, Lončar N, Martins LO, Todorovic S, Silveira CM. Spectroelectrochemistry for determination of the redox potential in heme enzymes: Dye-decolorizing peroxidases. BBA ADVANCES 2023; 5:100112. [PMID: 38235374 PMCID: PMC10792693 DOI: 10.1016/j.bbadva.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Dye-decolorizing peroxidases (DyPs) are heme-containing enzymes that are structurally unrelated to other peroxidases. Some DyPs show high potential for applications in biotechnology, which critically depends on the stability and redox potential (E°') of the enzyme. Here we provide a comparative analysis of UV-Vis- and surface-enhanced resonance Raman-based spectroelectrochemical methods for determination of the E°' of DyPs from two different organisms, and their variants generated targeting E°' upshift. We show that substituting the highly conserved Arginine in the distal side of the heme pocket by hydrophobic amino acid residues impacts the heme architecture and redox potential of DyPs from the two organisms in a very distinct manner. We demonstrate the advantages and drawbacks of the used spectroelectrochemical approaches, which is relevant for other heme proteins that contain multiple heme centers or spin populations.
Collapse
Affiliation(s)
- Catarina Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Carolina F. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Nikola Lončar
- Gecco Biotech, Nijenborgh 4, Groningen 9747AG, the Netherlands
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Célia M. Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
8
|
Silva D, Sousa AC, Robalo MP, Martins LO. A wide array of lignin-related phenolics are oxidized by an evolved bacterial dye-decolourising peroxidase. N Biotechnol 2023; 77:176-184. [PMID: 36563877 DOI: 10.1016/j.nbt.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lignin is the second most abundant natural polymer next to cellulose and by far the largest renewable source of aromatic compounds on the planet. Dye-decolourising peroxidases (DyPs) are biocatalysts with immense potential in lignocellulose biorefineries to valorize emerging lignin building blocks for environmentally friendly chemicals and materials. This work investigates the catalytic potential of the engineered PpDyP variant 6E10 for the oxidation of 24 syringyl, guaiacyl and hydroxybenzene lignin-phenolic derivatives. Variant 6E10 exhibited up to 100-fold higher oxidation rates at pH 8 for all the tested phenolic substrates compared to the wild-type enzyme and other acidic DyPs described in the literature. The main products of reactions were dimeric isomers with molecular weights of (2 × MWsubstrate - 2 H). Their structure depends on the substitution pattern of the aromatic ring of substrates, i.e., of the coupling possibilities of the primarily formed radicals upon enzymatic oxidation. Among the dimers identified were syringaresinol, divanillin and diapocynin, important sources of structural scaffolds exploitable in medicinal chemistry, food additives and polymers.
Collapse
Affiliation(s)
- Diogo Silva
- Institute of Chemical and Biological Technology António Xavier, NOVA New University of Lisbon, Av da República, 2780-157 Oeiras, Portugal
| | - Ana Catarina Sousa
- Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Polytechnic Institute of Lisbon, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; Centre for Structural Chemistry, Institute of Molecular Sciences, Complexo I; Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Paula Robalo
- Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Polytechnic Institute of Lisbon, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; Centre for Structural Chemistry, Institute of Molecular Sciences, Complexo I; Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Lígia O Martins
- Institute of Chemical and Biological Technology António Xavier, NOVA New University of Lisbon, Av da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
9
|
Paul M, Pandey NK, Banerjee A, Shroti GK, Tomer P, Gazara RK, Thatoi H, Bhaskar T, Hazra S, Ghosh D. An insight into omics analysis and metabolic pathway engineering of lignin-degrading enzymes for enhanced lignin valorization. BIORESOURCE TECHNOLOGY 2023; 379:129045. [PMID: 37044152 DOI: 10.1016/j.biortech.2023.129045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Lignin, a highly heterogeneous polymer of lignocellulosic biomass, is intricately associated with cellulose and hemicellulose, responsible for its strength and rigidity. Lignin decomposition is carried out through certain enzymes derived from microorganisms to promote the hydrolysis of lignin. Analyzing multi-omics data helps to emphasize the probable value of fungal-produced enzymes to degrade the lignocellulosic material, which provides them an advantage in their ecological niches. This review focuses on lignin biodegrading microorganisms and associated ligninolytic enzymes, including lignin peroxidase, manganese peroxidase, versatile peroxidase, laccase, and dye-decolorizing peroxidase. Further, enzymatic catalysis, lignin biodegradation mechanisms, vital factors responsible for lignin modification and degradation, and the design and selection of practical metabolic pathways are also discussed. Highlights were made on metabolic pathway engineering, different aspects of omics analyses, and its scope and applications to ligninase enzymes. Finally, the advantages and essential steps of successfully applying metabolic engineering and its path forward have been addressed.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha 757003, India
| | - Niteesh Kumar Pandey
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ayan Banerjee
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Gireesh Kumar Shroti
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Preeti Tomer
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Rajesh Kumar Gazara
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha 757003, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Saugata Hazra
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Debashish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
10
|
Scocozza M, Vieyra F, Battaglini F, Martins LO, Murgida DH. Electrochemical Actuation of a DyP Peroxidase: A Facile Method for Drastic Improvement of the Catalytic Performance. ACS Catal 2023; 13:7437-7449. [PMID: 37288089 PMCID: PMC10243304 DOI: 10.1021/acscatal.3c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Dye decolorizing peroxidases (DyP) have attracted interest for applications such as dye-containing wastewater remediation and biomass processing. So far, efforts to improve operational pH ranges, activities, and stabilities have focused on site-directed mutagenesis and directed evolution strategies. Here, we show that the performance of the DyP from Bacillus subtilis can be drastically boosted without the need for complex molecular biology procedures by simply activating the enzyme electrochemically in the absence of externally added H2O2. Under these conditions, the enzyme shows specific activities toward a variety of chemically different substrates that are significantly higher than in its canonical operation. Moreover, it presents much broader pH activity profiles with the maxima shifted toward neutral to alkaline. We also show that the enzyme can be successfully immobilized on biocompatible electrodes. When actuated electrochemically, the enzymatic electrodes have two orders of magnitude higher turnover numbers than with the standard H2O2-dependent operation and preserve about 30% of the initial electrocatalytic activity after 5 days of operation-storage cycles.
Collapse
Affiliation(s)
- Magalí
F. Scocozza
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Francisco Vieyra
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Ligia O. Martins
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
11
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fern'andez-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology-A review. Int J Biol Macromol 2023:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational frameworks, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fern'andez-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanizaci'on El Bosque, 28670 Villaviciosa de Od'on, Spain; Grupo de Investigaci'on en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
12
|
Silva D, Rodrigues F, Lorena C, Borges PT, Martins LO. Biocatalysis for biorefineries: The case of dye-decolorizing peroxidases. Biotechnol Adv 2023; 65:108153. [PMID: 37044267 DOI: 10.1016/j.biotechadv.2023.108153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Dye-decolorizing Peroxidases (DyPs) are heme-containing enzymes in fungi and bacteria that catalyze the reduction of hydrogen peroxide to water with concomitant oxidation of various substrates, including anthraquinone dyes, lignin-related phenolic and non-phenolic compounds, and metal ions. Investigation of DyPs has shed new light on peroxidases, one of the most extensively studied families of oxidoreductases; still, details of their microbial physiological role and catalytic mechanisms remain to be fully disclosed. They display a distinctive ferredoxin-like fold encompassing anti-parallel β-sheets and α-helices, and long conserved loops surround the heme pocket with a role in catalysis and stability. A tunnel routes H2O2 to the heme pocket, whereas binding sites for the reducing substrates are in cavities near the heme or close to distal aromatic residues at the surface. Variations in reactions, the role of catalytic residues, and mechanisms were observed among different classes of DyP. They were hypothetically related to the presence or absence of distal H2O molecules in the heme pocket. The engineering of DyPs for improved properties directed their biotechnological applications, primarily centered on treating textile effluents and degradation of other hazardous pollutants, to fields such as biosensors and valorization of lignin, the most abundant renewable aromatic polymer. In this review, we track recent research contributions that furthered our understanding of the activity, stability, and structural properties of DyPs and their biotechnological applications. Overall, the study of DyP-type peroxidases has significant implications for environmental sustainability and the development of new bio-based products and materials with improved end-of-life options via biodegradation and chemical recyclability, fostering the transition to a sustainable bio-based industry in the circular economy realm.
Collapse
Affiliation(s)
- Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - F Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Constança Lorena
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
13
|
Jones JA, Andreas MP, Giessen TW. Exploring the Extreme Acid Tolerance of a Dynamic Protein Nanocage. Biomacromolecules 2023; 24:1388-1399. [PMID: 36796007 DOI: 10.1021/acs.biomac.2c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Encapsulins are microbial protein nanocages capable of efficient self-assembly and cargo enzyme encapsulation. Due to their favorable properties, including high thermostability, protease resistance, and robust heterologous expression, encapsulins have become popular bioengineering tools for applications in medicine, catalysis, and nanotechnology. Resistance against physicochemical extremes like high temperature and low pH is a highly desirable feature for many biotechnological applications. However, no systematic search for acid-stable encapsulins has been carried out, while the influence of pH on encapsulin shells has so far not been thoroughly explored. Here, we report on a newly identified encapsulin nanocage from the acid-tolerant bacterium Acidipropionibacterium acidipropionici. Using transmission electron microscopy, dynamic light scattering, and proteolytic assays, we demonstrate its extreme acid tolerance and resilience against proteases. We structurally characterize the novel nanocage using cryo-electron microscopy, revealing a dynamic five-fold pore that displays distinct "closed" and "open" states at neutral pH but only a singular "closed" state under strongly acidic conditions. Further, the "open" state exhibits the largest pore in an encapsulin shell reported to date. Non-native protein encapsulation capabilities are demonstrated, and the influence of external pH on internalized cargo is explored. Our results expand the biotechnological application range of encapsulin nanocages toward potential uses under strongly acidic conditions and highlight pH-responsive encapsulin pore dynamics.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0624, United States
| | - Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0624, United States
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0624, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan 48109-1382, United States
| |
Collapse
|
14
|
Cagide C, Marizcurrena JJ, Vallés D, Alvarez B, Castro-Sowinski S. A bacterial cold-active dye-decolorizing peroxidase from an Antarctic Pseudomonas strain. Appl Microbiol Biotechnol 2023; 107:1707-1724. [PMID: 36773063 DOI: 10.1007/s00253-023-12405-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
DyP (dye-decolorizing peroxidase) enzymes are hemeproteins that catalyze the H2O2-dependent oxidation of various molecules and also carry out lignin degradation, albeit with low activity. We identified a dyp gene in the genome of an Antarctic cold-tolerant microbe (Pseudomonas sp. AU10) that codes for a class B DyP. The recombinant protein (rDyP-AU10) was produced using Escherichia coli as a host and purified. We found that rDyP-AU10 is mainly produced as a dimer and has characteristics that resemble psychrophilic enzymes, such as high activity at low temperatures (20 °C) when using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 as substrates, thermo-instability, low content of arginine, and a catalytic pocket surface larger than the DyPs from some mesophilic and thermophilic microbes. We also report the steady-state kinetic parameters of rDyP-AU10 for ABTS, hydroquinone, and ascorbate. Stopped-flow kinetics revealed that Compound I is formed with a rate constant of (2.07 ± 0.09) × 106 M-1 s-1 at pH 5 and that this is the predominant species during turnover. The enzyme decolors dyes and modifies kraft lignin, suggesting that this enzyme may have potential use in bioremediation and in the cellulose and biofuel industries. KEY POINTS: • An Antarctic Pseudomonas strain produces a dye-decolorizing peroxidase. • The recombinant enzyme (rDyP-AU10) was produced in E. coli and purified. • rDyP-AU10 showed high activity at low temperatures. • rDyP-AU10 is potentially useful for biotechnological applications.
Collapse
Affiliation(s)
- Célica Cagide
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Juan José Marizcurrena
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Diego Vallés
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, and Centro de Investigaciones Biomédicas, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
15
|
Unexpected diversity of dye-decolorizing peroxidases. Biochem Biophys Rep 2023; 33:101401. [DOI: 10.1016/j.bbrep.2022.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
|
16
|
Singh AK, Bilal M, Jesionowski T, Iqbal HMN. Assessing chemical hazard and unraveling binding affinity of priority pollutants to lignin modifying enzymes for environmental remediation. CHEMOSPHERE 2023; 313:137546. [PMID: 36529171 DOI: 10.1016/j.chemosphere.2022.137546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/23/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Lignin-modifying enzymes (LMEs) are impactful biocatalysts in environmental remediation applications. However, LMEs-assisted experimental degradation neglects the molecular basis of pollutant degradation. Furthermore, throughout the remediation process, the inherent hazards of environmental pollutants remain untapped for in-depth toxicological endpoints. In this investigation, a predictive toxicological framework and a computational framework adopting LMEs were employed to assess the hazards of Priority Pollutants (PP) and its possible LMEs-assisted catalytic screening. The potential hazardous outcomes of PP were assessed using Quantitative structure-activity relationship (QSARs)-based techniques including Toxtree, ECOSAR, and T.E.S.T. tools. Toxicological findings revealed positive outcomes in a multitude of endpoints for all PP. The PP compound 2,3,7,8-TCDD (dioxin) was found to exhibit the lowest concentration of aquatic toxicity implementing aquatic model systems; LC50 as 0.01, 0.01, 0.04 (mg L-1) for Fish (96 H), Daphnid (48 H), Green algae (96 H) respectively. T.E.S.T. results revealed that chloroform, and 2-chlorophenol both seem to be developmental toxicants. Subsequently, LMEs-assisted docking procedure was employed in predictive mitigation of PP. The docking approach as predicted degradation revealed the far lowest docking energy score for Versatile peroxidase (VP)- 2,3,7,8-TCDD docked complex with a binding energy of -9.2 (kcal mol-1), involved PHE-46, PRO-139, PRO-141, ILE-148, LEU-165, HIS-169, LEU-228, MET-262, and MET-265 as key interacting amino acid residues. Second most ranked but lesser than VP, Lignin peroxidase (LiP)- 2,3,7,8-TCDD docked complex exhibited a rather lower binding affinity score (-8.8 kcal mol-1). Predictive degradation screening employing comparative docking revealed varying binding affinities, portraying that each LMEs member has independent feasibility to bind PP as substrate. Predictive findings endorsed the hazardous nature of associated PP in a multitude of endpoints, which could be attenuated by undertaking LMEs as a predictive approach to protect the environment and implement it in regulatory considerations.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
17
|
Periplasmic expression of Pseudomonas fluorescens peroxidase Dyp1B and site-directed mutant Dyp1B enzymes enhances polymeric lignin degradation activity in Pseudomonas putida KT2440. Enzyme Microb Technol 2023; 162:110147. [DOI: 10.1016/j.enzmictec.2022.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
|
18
|
Borges PT, Silva D, Silva TF, Brissos V, Cañellas M, Lucas MF, Masgrau L, Melo EP, Machuqueiro M, Frazão C, Martins LO. Unveiling molecular details behind improved activity at neutral to alkaline pH of an engineered DyP-type peroxidase. Comput Struct Biotechnol J 2022; 20:3899-3910. [PMID: 35950185 PMCID: PMC9334217 DOI: 10.1016/j.csbj.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023] Open
Abstract
DyP-type peroxidases (DyPs) are microbial enzymes that catalyze the oxidation of a wide range of substrates, including synthetic dyes, lignin-derived compounds, and metals, such as Mn2+ and Fe2+, and have enormous biotechnological potential in biorefineries. However, many questions on the molecular basis of enzyme function and stability remain unanswered. In this work, high-resolution structures of PpDyP wild-type and two engineered variants (6E10 and 29E4) generated by directed evolution were obtained. The X-ray crystal structures revealed the typical ferredoxin-like folds, with three heme access pathways, two tunnels, and one cavity, limited by three long loops including catalytic residues. Variant 6E10 displays significantly increased loops' flexibility that favors function over stability: despite the considerably higher catalytic efficiency, this variant shows poorer protein stability compared to wild-type and 29E4 variants. Constant-pH MD simulations revealed a more positively charged microenvironment near the heme pocket of variant 6E10, particularly in the neutral to alkaline pH range. This microenvironment affects enzyme activity by modulating the pK a of essential residues in the heme vicinity and should account for variant 6E10 improved activity at pH 7-8 compared to the wild-type and 29E4 that show optimal enzymatic activity close to pH 4. Our findings shed light on the structure-function relationships of DyPs at the molecular level, including their pH-dependent conformational plasticity. These are essential for understanding and engineering the catalytic properties of DyPs for future biotechnological applications.
Collapse
Affiliation(s)
- Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tomás F.D. Silva
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marina Cañellas
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
| | | | - Laura Masgrau
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain,Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eduardo P. Melo
- Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Miguel Machuqueiro
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal,Corresponding author.
| |
Collapse
|
19
|
Shao Q, Li X, Chen Y, Zhang Z, Cui Y, Fan H, Wei D. Investigations on the Fusants From Wide Cross Between White-Rot Fungi and Saccharomyces cerevisiae Reveal Unknown Lignin Degradation Mechanism. Front Microbiol 2022; 13:935462. [PMID: 35898904 PMCID: PMC9310788 DOI: 10.3389/fmicb.2022.935462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The degradation of lignocellulose by fungi, especially white-rot fungi, contributes a lot to carbon cycle, bio-fuel production, and many other bio-based applications. However, the existing enzymatic and non-enzymatic degradation mechanisms cannot be unequivocally supported by in vitro simulation experiment, meaning that additional mechanisms might exist. Right now, it is still very difficult to discover new mechanisms with traditional forward genetic approaches. To disclose novel lignin degradation mechanisms in white-rot fungi, a series of fusants from wide cross by protoplast fusion between Pleurotus ostreatus, a well-known lignin-degrading fungus, and Saccharomyces cerevisiae, a well-known model organism unable to degrade lignocellulose, was investigated regarding their abilities to degrade lignin. By analyzing the activity of traditional lignin-degrading enzyme, the ability to utilize pure lignin compounds and degrade corn stalk, a fusant D1-P was screened out and proved not to contain well-recognized lignin-degrading enzyme genes by whole-genome sequencing. Further investigation with two-dimension nuclear magnetic resonance (NMR) shows that D1-P was found to be able to degrade the main lignin structure β-O-4 linkage, leading to reduced level of this structure like that of the wild-type strain P. ostreatus after a 30-day semi-solid fermentation. It was also found that D1-P shows a degradation preference to β-O-4 linkage in Aβ(S)-threo. Therefore, wide cross between white-rot fungi and S. cerevisiae provides a powerful tool to uncover novel lignocellulose degradation mechanism that will contribute to green utilization of lignocellulose to produce bio-fuel and related bio-based refinery.
Collapse
Affiliation(s)
- Qi Shao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xin Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ying Chen
- Institute of Agro-Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhijun Zhang
- Institute of Agro-Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yong Cui
- Tianjin Tianren Century Technology Co., Ltd., Tianjin, China
| | - Huan Fan
- Institute of Animal Husbandry and Veterinary Research, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Dongsheng Wei
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
20
|
Quaye JA, Ball J, Gadda G. Kinetic solvent viscosity effects uncover an internal isomerization of the enzyme-substrate complex in Pseudomonas aeruginosa PAO1 NADH:Quinone oxidoreductase. Arch Biochem Biophys 2022; 727:109342. [PMID: 35777523 DOI: 10.1016/j.abb.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/02/2022]
Abstract
NAD(P)H:quinone oxidoreductases (NQOs) play an essential protective role as antioxidants in the detoxification of quinones in both Prokaryotes and Eukaryotes. NQO from Pseudomonas aeruginosa PAO1 uses FMN to catalyze the two-electron reduction of various quinones with NADH. In this study, steady-state kinetics, kinetic solvent viscosity effects, and rapid reaction kinetics were used to determine which kinetic steps control the overall turnover of the enzyme with benzoquinone or juglone. The rate constant for flavin reduction (kred) at pH 6.0 was 12.9 ± 0.3 s-1, and the Kd for NADH was at least an order of magnitude lower than 90 μM. With benzoquinone, the kcat value was 11.7 ± 0.3 s-1, consistent with flavin reduction being almost entirely rate-limiting for overall turnover. With juglone, a kcat value of 10.0 ± 0.5 s-1 was recorded. The normalized plot of the relative solvent viscosity effects on the kcat values established that hydride transfer from NADH to the FMN and quinol product release, with a calculated rate constant (kP-rel) of 52 s-1, are partially rate-limiting for the overall turnover of NQO. Kinetic solvent viscosity effects with glucose or sucrose revealed a hyperbolic dependence on the kcat and kcat/Km values with benzoquinone or juglone, respectively, consistent with the presence of a solvent-sensitive internal isomerization of the enzyme-substrate complex (ES). The data demonstrate opposing effects of benzoquinone and juglone on the equilibrium of the NQO ES isomerization with glucose or sucrose. Thus, our study demonstrates how quinol substrate properties alter the equilibrium of NQO ES isomerization.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA, 30302, USA
| | - Jacob Ball
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA, 30302, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA, 30302, USA; Department of Biology, Georgia State University, Atlanta, GA, 30302, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
21
|
Rathore S, Varshney A, Mohan S, Dahiya P. An innovative approach of bioremediation in enzymatic degradation of xenobiotics. Biotechnol Genet Eng Rev 2022; 38:1-32. [PMID: 35081881 DOI: 10.1080/02648725.2022.2027628] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Worldwide, environmental pollution due to a complex mixture of xenobiotics has become a serious concern. Several xenobiotic compounds cause environmental contamination due to their severe toxicity, prolonged exposure, and limited biodegradability. From the past few decades, microbial-assisted degradation (bioremediation) of xenobiotic pollutants has evolved as the most effective, eco-friendly, and valuable approach. Microorganisms have unique metabolism, the capability of genetic modification, diversity of enzymes, and various degradation pathways necessary for the bioremediation process. Microbial xenobiotic degradation is effective but a slow process that limits its application in bioremediation. However, the study of microbial enzymes for bioremediation is gaining global importance. Microbial enzymes have a huge ability to transform contaminants into non-toxic forms and thereby reduce environmental pollution. Recently, various advanced techniques, including metagenomics, proteomics, transcriptomics, metabolomics are effectively utilized for the characterization, metabolic machinery, new proteins, metabolic genes of microorganisms involved in the degradation process. These advanced molecular techniques provide a thorough understanding of the structural and functional aspects of complex microorganisms. This review gives a brief note on xenobiotics and their impact on the environment. Particular attention will be devoted to the class of pollutants and the enzymes such as cytochrome P450, dehydrogenase, laccase, hydrolase, protease, lipase, etc. capable of converting these pollutants into innocuous products. This review attempts to deliver knowledge on the role of various enzymes in the biodegradation of xenobiotic pollutants, along with the use of advanced technologies like recombinant DNA technology and Omics approaches to make the process more robust and effective.
Collapse
Affiliation(s)
| | - Ayushi Varshney
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Sumedha Mohan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Praveen Dahiya
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| |
Collapse
|
22
|
Scocozza MF, Martins LO, Murgida DH. Direct Electrochemical Generation of Catalytically Competent Oxyferryl Species of Classes I and P Dye Decolorizing Peroxidases. Int J Mol Sci 2021; 22:12532. [PMID: 34830413 PMCID: PMC8653965 DOI: 10.3390/ijms222212532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
This work introduces a novel way to obtain catalytically competent oxyferryl species for two different dye-decolorizing peroxidases (DyPs) in the absence of H2O2 or any other peroxide by simply applying a reductive electrochemical potential under aerobic conditions. UV-vis and resonance Raman spectroscopies show that this method yields long-lived compounds II and I for the DyPs from Bacillus subtilis (BsDyP; Class I) and Pseudomonas putida (PpDyP; Class P), respectively. Both electrochemically generated high valent intermediates are able to oxidize ABTS at both acidic and alkaline pH. Interestingly, the electrocatalytic efficiencies obtained at pH 7.6 are very similar to the values recorded for regular catalytic ABTS/H2O2 assays at the optimal pH of the enzymes, ca. 3.7. These findings pave the way for the design of DyP-based electrocatalytic reactors operable in an extended pH range without the need of harmful reagents such as H2O2.
Collapse
Affiliation(s)
- Magalí F. Scocozza
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| | - Daniel H. Murgida
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
23
|
Rodrigues CF, Borges PT, Scocozza MF, Silva D, Taborda A, Brissos V, Frazão C, Martins LO. Loops around the Heme Pocket Have a Critical Role in the Function and Stability of BsDyP from Bacillus subtilis. Int J Mol Sci 2021; 22:ijms221910862. [PMID: 34639208 PMCID: PMC8509576 DOI: 10.3390/ijms221910862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022] Open
Abstract
Bacillus subtilis BsDyP belongs to class I of the dye-decolorizing peroxidase (DyP) family of enzymes and is an interesting biocatalyst due to its high redox potential, broad substrate spectrum and thermostability. This work reports the optimization of BsDyP using directed evolution for improved oxidation of 2,6-dimethoxyphenol, a model lignin-derived phenolic. After three rounds of evolution, one variant was identified displaying 7-fold higher catalytic rates and higher production yields as compared to the wild-type enzyme. The analysis of X-ray structures of the wild type and the evolved variant showed that the heme pocket is delimited by three long conserved loop regions and a small α helix where, incidentally, the mutations were inserted in the course of evolution. One loop in the proximal side of the heme pocket becomes more flexible in the evolved variant and the size of the active site cavity is increased, as well as the width of its mouth, resulting in an enhanced exposure of the heme to solvent. These conformational changes have a positive functional role in facilitating electron transfer from the substrate to the enzyme. However, they concomitantly resulted in decreasing the enzyme’s overall stability by 2 kcal mol−1, indicating a trade-off between functionality and stability. Furthermore, the evolved variant exhibited slightly reduced thermal stability compared to the wild type. The obtained data indicate that understanding the role of loops close to the heme pocket in the catalysis and stability of DyPs is critical for the development of new and more powerful biocatalysts: loops can be modulated for tuning important DyP properties such as activity, specificity and stability.
Collapse
Affiliation(s)
- Carolina F. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Magali F. Scocozza
- Instituto de Química Física de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET—Universidad de Buenos Aires, Buenos Aires 148EHA, Argentina;
| | - Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
- Correspondence:
| |
Collapse
|
24
|
Tian G, Hao G, Chen X, Liu Y. Tyrosyl Radical-Mediated Sequential Oxidative Decarboxylation of Coproporphyrinogen III through PCET: Theoretical Insights into the Mechanism of Coproheme Decarboxylase ChdC. Inorg Chem 2021; 60:13539-13549. [PMID: 34382397 DOI: 10.1021/acs.inorgchem.1c01864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peroxide-dependent coproheme decarboxylase ChdC from Geobacillus stearothermophilus catalyzes two key steps in the synthesis of heme b, i.e., two sequential oxidative decarboxylations of coproporphyrinogen III (coproheme III) at propionate groups P2 and P4. In the binding site of coproheme III, P2 and P4 are anchored by different residues (Tyr144, Arg217, and Ser222 for P2 and Tyr113, Lys148, and Trp156 for P4); however, strong experimental evidence supports that the generated Tyr144 radical acts as an unique intermediary for hydrogen atom transfer (HAT) from both reactive propionates. So far, the reaction details are still unclear. Herein, we carried out quantum mechanics/molecular mechanics calculations to explore the decarboxylation mechanism of coproheme III. In our calculations, the coproheme Cpd I, Fe(IV) = O coupled to a porphyrin radical cation (por•+) with four propionate groups, was used as a reactant model. Our calculations reveal that Tyr144 is directly involved in the decarboxylation of propionate group P2. First, the proton-coupled electron transfer (PCET) occurs from Tyr144 to P2, generating a Tyr144 radical, which then abstracts a hydrogen atom from the Cβ of P2. The β-H extraction was calculated to be the rate-limiting step of decarboxylation. It is the porphyrin radical cation (por•+) that makes the PCET from Tyr144 to P2 to be quite easy to initiate the decarboxylation. Finally, the electron transfers from the Cβ• through the porphyrin to the iron center, leading to the decarboxylation of P2. Importantly, the decarboxylation of P4 mediated by Lys148 was calculated to be very difficult, which suggests that after the P2 decarboxylation, the generated harderoheme III intermediate should rebind or rotate in the active site so that the propionate P4 occupies the binding site of P2, and Tyr144 again mediates the decarboxylation of P4. Thus, our calculations support the fact that Tyr144 is responsible for the decarboxylation of both P2 and P4.
Collapse
Affiliation(s)
- Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China.,School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Gangping Hao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xiaohua Chen
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
25
|
Lučić M, Wilson MT, Svistunenko DA, Owen RL, Hough MA, Worrall JAR. Aspartate or arginine? Validated redox state X-ray structures elucidate mechanistic subtleties of Fe IV = O formation in bacterial dye-decolorizing peroxidases. J Biol Inorg Chem 2021; 26:743-761. [PMID: 34477969 PMCID: PMC8463360 DOI: 10.1007/s00775-021-01896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022]
Abstract
Structure determination of proteins and enzymes by X-ray crystallography remains the most widely used approach to complement functional and mechanistic studies. Capturing the structures of intact redox states in metalloenzymes is critical for assigning the chemistry carried out by the metal in the catalytic cycle. Unfortunately, X-rays interact with protein crystals to generate solvated photoelectrons that can reduce redox active metals and hence change the coordination geometry and the coupled protein structure. Approaches to mitigate such site-specific radiation damage continue to be developed, but nevertheless application of such approaches to metalloenzymes in combination with mechanistic studies are often overlooked. In this review, we summarize our recent structural and kinetic studies on a set of three heme peroxidases found in the bacterium Streptomyces lividans that each belong to the dye decolourizing peroxidase (DyP) superfamily. Kinetically, each of these DyPs has a distinct reactivity with hydrogen peroxide. Through a combination of low dose synchrotron X-ray crystallography and zero dose serial femtosecond X-ray crystallography using an X-ray free electron laser (XFEL), high-resolution structures with unambiguous redox state assignment of the ferric and ferryl (FeIV = O) heme species have been obtained. Experiments using stopped-flow kinetics, solvent-isotope exchange and site-directed mutagenesis with this set of redox state validated DyP structures have provided the first comprehensive kinetic and structural framework for how DyPs can modulate their distal heme pocket Asp/Arg dyad to use either the Asp or the Arg to facilitate proton transfer and rate enhancement of peroxide heterolysis.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, Oxfordshire, UK
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
26
|
Characterization of Two Hydrogen Peroxide Resistant Peroxidases from Rhodococcus opacus 1CP. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dye-decolorizing peroxidases (DyP) are a family of heme-dependent enzymes present on a broad spectrum of microorganisms. While the natural function of these enzymes is not fully understood, their capacity to degrade highly contaminant pigments such as azo dyes or anthraquinones make them excellent candidates for applications in bioremediation and organic synthesis. In this work, two novel DyP peroxidases from the organism Rhodococcus opacus 1CP (DypA and DypB) were cloned and expressed in Escherichia coli. The enzymes were purified and biochemically characterized. The activities of the two DyPs via 2,2′-azino-bis [3-ethylbenzthiazoline-6-sulphonic acid] (ABTS) assay and against Reactive Blue 5 were assessed and optimized. Results showed varying trends for DypA and DypB. Remarkably, these enzymes presented a particularly high tolerance towards H2O2, retaining its activities at about 10 mM H2O2 for DypA and about 4.9 mM H2O2 for DypB.
Collapse
|
27
|
Li T, Song HL, Xu H, Yang XL, Chen QL. Biological detoxification and decolorization enhancement of azo dye by introducing natural electron mediators in MFCs. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125864. [PMID: 34492812 DOI: 10.1016/j.jhazmat.2021.125864] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Reactive red 2 (RR2) is a highly recalcitrant and toxic azo dye that can cause the collapse of biological treatment system. Although MFC can decolorize RR2 effectively, its performance is still inevitably affected by toxicity. Anthraquinone can enhance MFCs' performance through mediating electron transfer. In this study, an anthraquinone-rich natural plants (B.rheum (Rheum offcinale Baill)) was extracted and then added to MFCs. The optimal dosage was selected and the enhanced effects were investigated. The results showed that adding 5%(V/V) extract resulted in the optimal performance elevation of MFC. When 5% extract was added together with RR2, 15.63% and 1.33-fold improvement in RR2 decolorization efficiency and rate were achieved compared with the control group. Meanwhile, higher power density (2.75 W/m3), coulombic efficiency (6.45%), and lower internal resistance (233.69 Ω) were also observed when 5% B.rheum extract and RR2 were added. B.rheum extract in MFCs enhanced microbial activity and enriched the dye-degrading microorganisms, such as Enterobacter, Raoultella, Comamonas and Shinella. B.rheum extract acts as "antidote" in alleviating the biotoxicity of RR2 was firstly illustrated in this study. The results provided a new strategy for using plant-source electron mediators to simultaneously improve biological detoxification, bioelectricity generation and dye decolorization in bioelectrochemical system.
Collapse
Affiliation(s)
- Tao Li
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China.
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Qiao-Ling Chen
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
28
|
Singh AK, Bilal M, Iqbal HMN, Meyer AS, Raj A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145988. [PMID: 33684751 DOI: 10.1016/j.scitotenv.2021.145988] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Lignin modifying enzymes from fungi and bacteria are potential biocatalysts for sustainable mitigation of different potentially toxic pollutants in wastewater. Notably, the paper and pulp industry generates enormous amounts of wastewater containing high amounts of complex lignin-derived chlorinated phenolics and sulfonated pollutants. The presence of these compounds in wastewater is a critical issue from environmental and toxicological perspectives. Some chloro-phenols are harmful to the environment and human health, as they exert carcinogenic, mutagenic, cytotoxic, and endocrine-disrupting effects. In order to address these most urgent concerns, the use of oxidative lignin modifying enzymes for bioremediation has come into focus. These enzymes catalyze modification of phenolic and non-phenolic lignin-derived substances, and include laccase and a range of peroxidases, specifically lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). In this review, we explore the key pollutant-generating steps in paper and pulp processing, summarize the most recently reported toxicological effects of industrial lignin-derived phenolic compounds, especially chlorinated phenolic pollutants, and outline bioremediation approaches for pollutant mitigation in wastewater from this industry, emphasizing the oxidative catalytic potential of oxidative lignin modifying enzymes in this regard. We highlight other emerging biotechnical approaches, including phytobioremediation, bioaugmentation, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based technology, protein engineering, and degradation pathways prediction, that are currently gathering momentum for the mitigation of wastewater pollutants. Finally, we address current research needs and options for maximizing sustainable biobased and biocatalytic degradation of toxic industrial wastewater pollutants.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Anne S Meyer
- Department for Biotechnology and Biomedicine, Technical University of Denmark, Building 221, DK-2800 Lyngby, Denmark.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
29
|
Li L, Wang T, Chen T, Huang W, Zhang Y, Jia R, He C. Revealing two important tryptophan residues with completely different roles in a dye-decolorizing peroxidase from Irpex lacteus F17. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:128. [PMID: 34059116 PMCID: PMC8165797 DOI: 10.1186/s13068-021-01978-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/19/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Dye-decolorizing peroxidases (DyPs) represent a novel family of heme peroxidases that use H2O2 as the final electron acceptor to catalyze the oxidation of various organic compounds. A DyP from Irpex lacteus F17 (Il-DyP4, corresponding to GenBank MG209114), obtained by heterologous expression, exhibits a high catalytic efficiency for phenolic compounds and a strong decolorizing ability toward various synthetic dyes. However, the enzyme structure and the catalytic residues involved in substrate oxidation remain poorly understood. RESULTS Here, we obtained a high-resolution structure (2.0 Å, PDB: 7D8M) of Il‑DyP4 with α-helices, anti-parallel β-sheets and one ferric heme cofactor sandwiched between two domains. The crystal structure of Il‑DyP4 revealed two heme access channels leading from the enzyme molecular surface to its heme region, and also showed four conserved amino acid residues forming the pocket for the conversion of hydrogen peroxide into the water molecule. In addition, we found that Trp264 and Trp380, were two important residues with different roles in Il‑DyP4, by using site-directed mutagenesis and an electron paramagnetic resonance (EPR) study. Trp264 is a noncatalytic residue that mainly is used for maintaining the normal spatial conformation of the heme region and the high-spin state of heme Fe3+ of Il‑DyP4, while Trp380 serves as the surface-exposed radical-forming residue that is closely related to the oxidation of substrates including not only bulky dyes, but also simple phenols. CONCLUSIONS This study is important for better understanding the catalytic properties of fungal DyPs and their structure-function relationships.
Collapse
Affiliation(s)
- Liuqing Li
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Tao Wang
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Taohua Chen
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Wenhan Huang
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Yinliang Zhang
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Rong Jia
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601.
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China.
| | - Chao He
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601.
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
30
|
Sugano Y, Yoshida T. DyP-Type Peroxidases: Recent Advances and Perspectives. Int J Mol Sci 2021; 22:5556. [PMID: 34074047 PMCID: PMC8197335 DOI: 10.3390/ijms22115556] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
In this review, we chart the major milestones in the research progress on the DyP-type peroxidase family over the past decade. Though mainly distributed among bacteria and fungi, this family actually exhibits more widespread diversity. Advanced tertiary structural analyses have revealed common and different features among members of this family. Notably, the catalytic cycle for the peroxidase activity of DyP-type peroxidases appears to be different from that of other ubiquitous heme peroxidases. DyP-type peroxidases have also been reported to possess activities in addition to peroxidase function, including hydrolase or oxidase activity. They also show various cellular distributions, functioning not only inside cells but also outside of cells. Some are also cargo proteins of encapsulin. Unique, noteworthy functions include a key role in life-cycle switching in Streptomyces and the operation of an iron transport system in Staphylococcus aureus, Bacillus subtilis and Escherichia coli. We also present several probable physiological roles of DyP-type peroxidases that reflect the widespread distribution and function of these enzymes. Lignin degradation is the most common function attributed to DyP-type peroxidases, but their activity is not high compared with that of standard lignin-degrading enzymes. From an environmental standpoint, degradation of natural antifungal anthraquinone compounds is a specific focus of DyP-type peroxidase research. Considered in its totality, the DyP-type peroxidase family offers a rich source of diverse and attractive materials for research scientists.
Collapse
Affiliation(s)
- Yasushi Sugano
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Tokyo 112-8681, Japan;
| | | |
Collapse
|
31
|
Singh AK, Bilal M, Iqbal HMN, Raj A. Lignin peroxidase in focus for catalytic elimination of contaminants - A critical review on recent progress and perspectives. Int J Biol Macromol 2021; 177:58-82. [PMID: 33577817 DOI: 10.1016/j.ijbiomac.2021.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
Lignin peroxidase (LiP) seems to be a catalyst for cleaving high-redox potential non-phenolic compounds with an oxidative cleavage of CC and COC bonds. LiP has been picked to seek a practical and cost-effective alternative to the sustainable mitigation of diverse environmental contaminants. LiP has been an outstanding tool for catalytic cleaning and efficient mitigation of environmental pollutants, including lignin, lignin derivatives, dyes, endocrine-disrupting compounds (EDCs), and persistent organic pollutants (POPs) for the past couple of decades. The extended deployment of LiP has proved to be a promising method for catalyzing these environmentally related hazardous pollutants of supreme interest. The advantageous potential and capabilities to act at different pH and thermostability offer its working tendencies in extended environmental engineering applications. Such advantages led to the emerging demand for LiP and increasing requirements in industrial and biotechnological sectors. The multitude of the ability attributed to LiP is triggered by its stability in xenobiotic and non-phenolic compound degradation. However, over the decades, the catalytic activity of LiP has been continuing in focus enormously towards catalytic functionalities over the available physiochemical, conventional, catalyst mediated technology for catalyzing such molecules. To cover this literature gap, this became much more evident to consider the catalytic attributes of LiP. In this review, the existing capabilities of LiP and other competencies have been described with recent updates. Furthermore, numerous recently emerged applications, such as textile effluent treatment, dye decolorization, catalytic elimination of pharmaceutical and EDCs compounds, have been discussed with suitable examples.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
32
|
Shrestha R, Jia K, Khadka S, Eltis LD, Li P. Mechanistic Insights into DyPB from Rhodococcus jostii RHA1 Via Kinetic Characterization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruben Shrestha
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kaimin Jia
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Samiksha Khadka
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ping Li
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
33
|
Nys K, Furtmüller PG, Obinger C, Van Doorslaer S, Pfanzagl V. On the Track of Long-Range Electron Transfer in B-Type Dye-Decolorizing Peroxidases: Identification of a Tyrosyl Radical by Computational Prediction and Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2021; 60:1226-1241. [PMID: 33784066 PMCID: PMC8154254 DOI: 10.1021/acs.biochem.1c00129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/24/2021] [Indexed: 11/29/2022]
Abstract
The catalytic activity of dye-decolorizing peroxidases (DyPs) toward bulky substrates, including anthraquinone dyes, phenolic lignin model compounds, or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), is in strong contrast to their sterically restrictive active site. In two of the three known subfamilies (A- and C/D-type DyPs), catalytic protein radicals at surface-exposed sites, which are connected to the heme cofactor by electron transfer path(s), have been identified. So far in B-type DyPs, there has been no evidence for protein radical formation after activation by hydrogen peroxide. Interestingly, B-type Klebsiella pneumoniae dye-decolorizing peroxidase (KpDyP) displays a persistent organic radical in the resting state composed of two species that can be distinguished by W-band electron spin echo electron paramagnetic resonance (EPR) spectroscopy. Here, on the basis of a comprehensive mutational and EPR study of computationally predicted tyrosine and tryptophan variants of KpDyP, we demonstrate the formation of tyrosyl radicals (Y247 and Y92) and a radical-stabilizing Y-W dyad between Y247 and W18 in KpDyP, which are unique to enterobacterial B-type DyPs. Y247 is connected to Y92 by a hydrogen bonding network, is solvent accessible in simulations, and is involved in ABTS oxidation. This suggests the existence of long-range electron path(s) in B-type DyPs. The mechanistic and physiological relevance of the reaction mechanism of B-type DyPs is discussed.
Collapse
Affiliation(s)
- Kevin Nys
- BIMEF
Laboratory, Department of Chemistry, University
of Antwerp, 2610 Antwerp, Belgium
| | - Paul Georg Furtmüller
- Department
of Chemistry, Institute of Biochemistry,
BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Christian Obinger
- Department
of Chemistry, Institute of Biochemistry,
BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Sabine Van Doorslaer
- BIMEF
Laboratory, Department of Chemistry, University
of Antwerp, 2610 Antwerp, Belgium
| | - Vera Pfanzagl
- Department
of Chemistry, Institute of Biochemistry,
BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
34
|
Singh AK, Katari SK, Umamaheswari A, Raj A. In silico exploration of lignin peroxidase for unraveling the degradation mechanism employing lignin model compounds. RSC Adv 2021; 11:14632-14653. [PMID: 35423962 PMCID: PMC8697836 DOI: 10.1039/d0ra10840e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Lignin peroxidase is a heme-containing biocatalyst, well-known for its diverse applications in the fields from environmental chemistry to biotechnology. LiP-mediated oxidative catalysis is H2O2-dependent, and can oxidize phenolic, and non-phenolic substrates by oxidative cleavage of the C-C and C-O bonds of lignin. In contrast to fungi-derived LiP, the binding affinity of bacterial-derived LiP to lignin at the molecular level is poorly known to date. Tremendous wet-lab studies have been unveiled that provide degradation and biotransformation information on kraft lignin, whilst studies on the completely transformed compounds and the degradation of each transformed compounds simultaneously during degradation are scarce. To gain an understanding of the degradation process using docking, and MDS based studies, we assessed the binding affinity of selected lignin model compounds with bacterial origin LiP and validated such docked complexes exploiting 30 ns molecular dynamics simulations. We selected and picked a total of 12 lignin model compounds for molecular modeling analysis, namely two chlorinated lignin model compounds (monomer) (2-chlorosyringaldehyde and 5-chlorovanillin), eight standard lignin model compounds (veratryl alcohol, syringyl alcohol, sinapyl alcohol, methyl hydroquinone, guaiacol, coniferyl alcohol, catechol, and 4-methoxy phenol), while, two 4-O-5, and β-O-4 linkage-based multimeric model compounds (dimer: 2-methoxy-6-(2-methoxy-4-methylphenoxy)-4-methylphenol; trimer: syringyl β-O-4 syringyl β-O-4 sinapyl alcohol). Far more specific binding residues were observed from XP-Glide docking, as TYR, HIP (protonated histidine), PHE, VAL, ASP, THR, LYS and GLN. The binding affinity was confirmed by the Gibbs free energy or binding energy (ΔG) score; furthermore, it is found that the maximum binding energy seems to be observed for 4-methoxyphenol with a Glide score of -3.438 with Pi-Pi stacking and H-bond type bonding interactions, whilst the lowest XP Gscore as -8.136 with Pi-Pi stacking and H-bond (side chain) type bonding interactions were found for the trimer model compound. The docked complexes were further evaluated for deep rigorous structural and functional fluctuation analyses through high-performance molecular dynamics simulations-DESMOND, after a post simulation run of 30 ns. The RMSD trajectory analyses of the protein-ligands were found to be in the equilibrium state at the end of simulation run for multimeric lignin model compounds. In addition, ionic ligand-protein interaction occurs among chlorinated compounds, while hydrophobic and H-bond contacts have frequently been observed in all lignin-model compounds. The findings herein demonstrate that bacterial LiP can effectively catalyze multiple lignin model compounds, and it might further be used as an effective tool for sustainable mitigation of diverse environmental contaminants.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, 31, Mahatma Gandhi Marg Lucknow 226001 Uttar Pradesh India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sudheer Kumar Katari
- Department of Bioinformatics, Sri Venkateswara Institute of Medical Sciences (SVIMS) University Tirupati 517507 Andhra Pradesh India
| | - Amineni Umamaheswari
- Department of Bioinformatics, Sri Venkateswara Institute of Medical Sciences (SVIMS) University Tirupati 517507 Andhra Pradesh India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, 31, Mahatma Gandhi Marg Lucknow 226001 Uttar Pradesh India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
35
|
De novo biosynthesis of a nonnatural cobalt porphyrin cofactor in E. coli and incorporation into hemoproteins. Proc Natl Acad Sci U S A 2021; 118:2017625118. [PMID: 33850014 DOI: 10.1073/pnas.2017625118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enzymes that bear a nonnative or artificially introduced metal center can engender novel reactivity and enable new spectroscopic and structural studies. In the case of metal-organic cofactors, such as metalloporphyrins, no general methods exist to build and incorporate new-to-nature cofactor analogs in vivo. We report here that a common laboratory strain, Escherichia coli BL21(DE3), biosynthesizes cobalt protoporphyrin IX (CoPPIX) under iron-limited, cobalt-rich growth conditions. In supplemented minimal media containing CoCl2, the metabolically produced CoPPIX is directly incorporated into multiple hemoproteins in place of native heme b (FePPIX). Five cobalt-substituted proteins were successfully expressed with this new-to-nature cobalt porphyrin cofactor: myoglobin H64V V68A, dye decolorizing peroxidase, aldoxime dehydratase, cytochrome P450 119, and catalase. We show conclusively that these proteins incorporate CoPPIX, with the CoPPIX making up at least 95% of the total porphyrin content. In cases in which the native metal ligand is a sulfur or nitrogen, spectroscopic parameters are consistent with retention of native metal ligands. This method is an improvement on previous approaches with respect to both yield and ease-of-implementation. Significantly, this method overcomes a long-standing challenge to incorporate nonnatural cofactors through de novo biosynthesis. By utilizing a ubiquitous laboratory strain, this process will facilitate spectroscopic studies and the development of enzymes for CoPPIX-mediated biocatalysis.
Collapse
|
36
|
Uchida T, Omura I, Umetsu S, Ishimori K. Radical transfer but not heme distal residues is essential for pH dependence of dye-decolorizing activity of peroxidase from Vibrio cholerae. J Inorg Biochem 2021; 219:111422. [PMID: 33756393 DOI: 10.1016/j.jinorgbio.2021.111422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/02/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Dye-decolorizing peroxidase (DyP) is a heme-containing enzyme that catalyzes the degradation of anthraquinone dyes. A main feature of DyP is the acidic optimal pH for dye-decolorizing activity. In this study, we constructed several mutant DyP enzymes from Vibrio cholerae (VcDyP), with a view to identifying the decisive factor of the low pH preference of DyP. Initially, distal Asp144, a conserved residue, was replaced with His, which led to significant loss of dye-decolorizing activity. Introduction of His into a position slightly distant from heme resulted in restoration of activity but no shift in optimal pH, indicating that distal residues do not contribute to the pH dependence of catalytic activity. His178, an essential residue for dye decolorization, is located near heme and forms hydrogen bonds with Asp138 and Thr278. While Trp and Tyr mutants of His178 were inactive, the Phe mutant displayed ~35% activity of wild-type VcDyP, indicating that this position is a potential radical transfer route from heme to the active site on the protein surface. The Thr278Val mutant displayed similar enzymatic properties as WT VcDyP, whereas the Asp138Val mutant displayed significantly increased activity at pH 6.5. On the basis of these findings, we propose that neither distal amino acid residues, including Asp144, nor hydrogen bonds between His178 and Thr278 are responsible while the hydrogen bond between His178 and Asp138 plays a key role in the pH dependence of activity.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Issei Omura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Sayaka Umetsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
37
|
Comparing Ligninolytic Capabilities of Bacterial and Fungal Dye-Decolorizing Peroxidases and Class-II Peroxidase-Catalases. Int J Mol Sci 2021; 22:ijms22052629. [PMID: 33807844 PMCID: PMC7961821 DOI: 10.3390/ijms22052629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
We aim to clarify the ligninolytic capabilities of dye-decolorizing peroxidases (DyPs) from bacteria and fungi, compared to fungal lignin peroxidase (LiP) and versatile peroxidase (VP). With this purpose, DyPs from Amycolatopsis sp., Thermomonospora curvata, and Auricularia auricula-judae, VP from Pleurotus eryngii, and LiP from Phanerochaete chrysosporium were produced, and their kinetic constants and reduction potentials determined. Sharp differences were found in the oxidation of nonphenolic simple (veratryl alcohol, VA) and dimeric (veratrylglycerol-β- guaiacyl ether, VGE) lignin model compounds, with LiP showing the highest catalytic efficiencies (around 15 and 200 s−1·mM−1 for VGE and VA, respectively), while the efficiency of the A. auricula-judae DyP was 1–3 orders of magnitude lower, and no activity was detected with the bacterial DyPs. VP and LiP also showed the highest reduction potential (1.28–1.33 V) in the rate-limiting step of the catalytic cycle (i.e., compound-II reduction to resting enzyme), estimated by stopped-flow measurements at the equilibrium, while the T. curvata DyP showed the lowest value (1.23 V). We conclude that, when using realistic enzyme doses, only fungal LiP and VP, and in much lower extent fungal DyP, oxidize nonphenolic aromatics and, therefore, have the capability to act on the main moiety of the native lignin macromolecule.
Collapse
|
38
|
Chen SF, Liu XC, Xu JK, Li L, Lang JJ, Wen GB, Lin YW. Conversion of Human Neuroglobin into a Multifunctional Peroxidase by Rational Design. Inorg Chem 2021; 60:2839-2845. [PMID: 33539081 DOI: 10.1021/acs.inorgchem.0c03777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein design has received much attention in the last decades. With an additional disulfide bond to enhance the protein stability, human A15C neuroglobin (Ngb) is an ideal protein scaffold for heme enzyme design. In this study, we rationally converted A15C Ngb into a multifunctional peroxidase by replacing the heme axial His64 with an Asp residue, where Asp64 and the native Lys67 at the heme distal site were proposed to act as an acid-base catalytic couple for H2O2 activation. Kinetic studies showed that the catalytic efficiency of A15C/H64D Ngb was much higher (∼50-80-fold) than that of native dehaloperoxidase, which even exceeds (∼3-fold) that of the most efficient native horseradish peroxidase. Moreover, the dye-decolorizing peroxidase activity was also comparable to that of some native enzymes. Electron paramagnetic resonance, molecular docking, and isothermal titration calorimetry studies provided valuable information for the substrate-protein interactions. Therefore, this study presents the rational design of an efficient multifunctional peroxidase based on Ngb with potential applications such as in bioremediation for environmental sustainability.
Collapse
Affiliation(s)
- Shun-Fa Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jia-Jia Lang
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| |
Collapse
|
39
|
Lučić M, Svistunenko DA, Wilson MT, Chaplin AK, Davy B, Ebrahim A, Axford D, Tosha T, Sugimoto H, Owada S, Dworkowski FSN, Tews I, Owen RL, Hough MA, Worrall JAR. Serial Femtosecond Zero Dose Crystallography Captures a Water-Free Distal Heme Site in a Dye-Decolorising Peroxidase to Reveal a Catalytic Role for an Arginine in Fe IV =O Formation. Angew Chem Int Ed Engl 2020; 59:21656-21662. [PMID: 32780931 PMCID: PMC7756461 DOI: 10.1002/anie.202008622] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 01/06/2023]
Abstract
Obtaining structures of intact redox states of metal centers derived from zero dose X-ray crystallography can advance our mechanistic understanding of metalloenzymes. In dye-decolorising heme peroxidases (DyPs), controversy exists regarding the mechanistic role of the distal heme residues aspartate and arginine in the heterolysis of peroxide to form the catalytic intermediate compound I (FeIV =O and a porphyrin cation radical). Using serial femtosecond X-ray crystallography (SFX), we have determined the pristine structures of the FeIII and FeIV =O redox states of a B-type DyP. These structures reveal a water-free distal heme site that, together with the presence of an asparagine, imply the use of the distal arginine as a catalytic base. A combination of mutagenesis and kinetic studies corroborate such a role. Our SFX approach thus provides unique insight into how the distal heme site of DyPs can be tuned to select aspartate or arginine for the rate enhancement of peroxide heterolysis.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | | | - Michael T. Wilson
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | - Amanda K. Chaplin
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | - Bradley Davy
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUK
| | - Ali Ebrahim
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUK
| | - Danny Axford
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUK
| | | | | | - Shigeki Owada
- RIKEN Spring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | | | - Ivo Tews
- Biological SciencesInstitute for Life SciencesUniversity of SouthamptonUniversity RoadSouthamptonSO17 1BJUK
| | - Robin L. Owen
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUK
| | - Michael A. Hough
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | | |
Collapse
|
40
|
Lučić M, Svistunenko DA, Wilson MT, Chaplin AK, Davy B, Ebrahim A, Axford D, Tosha T, Sugimoto H, Owada S, Dworkowski FSN, Tews I, Owen RL, Hough MA, Worrall JAR. Serial Femtosecond Zero Dose Crystallography Captures a Water‐Free Distal Heme Site in a Dye‐Decolorising Peroxidase to Reveal a Catalytic Role for an Arginine in Fe
IV
=O Formation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marina Lučić
- School of Life Sciences University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | | | - Michael T. Wilson
- School of Life Sciences University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Amanda K. Chaplin
- School of Life Sciences University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Bradley Davy
- Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Ali Ebrahim
- School of Life Sciences University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
- Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Danny Axford
- Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Takehiko Tosha
- RIKEN Spring-8 Center 1-1-1 Kouto Sayo Hyogo 679-5148 Japan
| | | | - Shigeki Owada
- RIKEN Spring-8 Center 1-1-1 Kouto Sayo Hyogo 679-5148 Japan
- Japan Synchrotron Radiation Research Institute 1-1-1 Kouto Sayo Hyogo 679-5198 Japan
| | | | - Ivo Tews
- Biological Sciences Institute for Life Sciences University of Southampton University Road Southampton SO17 1BJ UK
| | - Robin L. Owen
- Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Michael A. Hough
- School of Life Sciences University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | | |
Collapse
|
41
|
Dhankhar P, Dalal V, Mahto JK, Gurjar BR, Tomar S, Sharma AK, Kumar P. Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Arch Biochem Biophys 2020; 693:108590. [DOI: 10.1016/j.abb.2020.108590] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
|
42
|
Catucci G, Valetti F, Sadeghi SJ, Gilardi G. Biochemical features of dye‐decolorizing peroxidases: Current impact on lignin degradation. Biotechnol Appl Biochem 2020; 67:751-759. [DOI: 10.1002/bab.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Gianluca Catucci
- Department of Life Sciences and Systems Biology University of Torino Torino 10123 Italy
| | - Francesca Valetti
- Department of Life Sciences and Systems Biology University of Torino Torino 10123 Italy
| | - Sheila J. Sadeghi
- Department of Life Sciences and Systems Biology University of Torino Torino 10123 Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology University of Torino Torino 10123 Italy
| |
Collapse
|
43
|
Understanding molecular enzymology of porphyrin-binding α + β barrel proteins - One fold, multiple functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140536. [PMID: 32891739 PMCID: PMC7611857 DOI: 10.1016/j.bbapap.2020.140536] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
Abstract
There is a high functional diversity within the structural superfamily of porphyrin-binding dimeric α + β barrel proteins. In this review we aim to analyze structural constraints of chlorite dismutases, dye-decolorizing peroxidases and coproheme decarboxylases in detail. We identify regions of structural variations within the highly conserved fold, which are most likely crucial for functional specificities. The loop linking the two ferredoxin-like domains within one subunit can be of different sequence lengths and can adopt various structural conformations, consequently defining the shape of the substrate channels and the respective active site architectures. The redox cofactor, heme b or coproheme, is oriented differently in either of the analyzed enzymes. By thoroughly dissecting available structures and discussing all available results in the context of the respective functional mechanisms of each of these redox-active enzymes, we highlight unsolved mechanistic questions in order to spark future research in this field.
Collapse
|
44
|
Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Curr Opin Chem Biol 2020; 55:26-33. [PMID: 31918394 DOI: 10.1016/j.cbpa.2019.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
The conversion of polymeric lignin from plant biomass into renewable chemicals is an important unsolved problem in the biorefinery concept. This article summarises recent developments in the discovery of bacterial enzymes for lignin degradation, our current understanding of their molecular mechanism of action, and their use to convert lignin or lignocellulose into aromatic chemicals. The review also discusses the recent developments in screening of metagenomic libraries for new biocatalysts, and the use of protein engineering to enhance lignin degradation activity.
Collapse
|
45
|
Lučić M, Chaplin AK, Moreno-Chicano T, Dworkowski FSN, Wilson MT, Svistunenko DA, Hough MA, Worrall JAR. A subtle structural change in the distal haem pocket has a remarkable effect on tuning hydrogen peroxide reactivity in dye decolourising peroxidases fromStreptomyces lividans. Dalton Trans 2020; 49:1620-1636. [DOI: 10.1039/c9dt04583j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A subtle positional shift of the distal haem pocket aspartate in two dye decolourising peroxidase homologs has a remarkable effect on their reactivity with H2O2.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life Sciences
- University of Essex
- Colchester
- UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 2019; 37:107360. [DOI: 10.1016/j.biotechadv.2019.02.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
|
47
|
Li C, Chen C, Wu X, Tsang CW, Mou J, Yan J, Liu Y, Lin CSK. Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization. BIORESOURCE TECHNOLOGY 2019; 291:121898. [PMID: 31395402 DOI: 10.1016/j.biortech.2019.121898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/07/2023]
Abstract
With the intensive development of lignocellulosic biorefineries to produce fuels and chemicals from biomass-derived carbohydrates, lignin was generated at a large quantity every year. Therefore, lignin has received increasing attention as an abundant aromatics resource in terms of research and development efforts for value-added chemicals production. In this review, studies about lignin degradation especially the crucial enzymes involved and the reaction mechanism were substantially discussed, which provided the molecular basis of lignin biodegradation. Then, the latest improvements in lignin valorization by biological methods were summarized and case studies about value-added compounds from lignin were introduced. Afterwards, challenges, opportunities and prospects regarding biorefinery of lignin were presented.
Collapse
Affiliation(s)
- Chong Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Chao Chen
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Xiaofen Wu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, People's Republic of China
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Jianbin Yan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Yun Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| |
Collapse
|
48
|
Lee S, Kang M, Bae JH, Sohn JH, Sung BH. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Front Bioeng Biotechnol 2019; 7:209. [PMID: 31552235 PMCID: PMC6733911 DOI: 10.3389/fbioe.2019.00209] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Lignin, an aromatic polymer found in plants, has been studied for years in many biological fields. Initially, when biofuel was produced from lignocellulosic biomass, lignin was regarded as waste generated by the biorefinery and had to be removed, because of its inhibitory effects on fermentative bacteria. Although it has since proven to be a natural resource for bio-products with considerable potential, its utilization is confined by its complex structure. Hence, the microbial degradation of lignin has attracted researchers' interest to overcome this problem. From this perspective, the studies have primarily focused on fungal systems, such as extracellular peroxidase and laccase from white- and brown-rot fungi. However, recent reports have suggested that bacteria play an increasing role in breaking down lignin. This paper, therefore, reviews the role of bacteria in lignin and lignin-related research. Several reports on bacterial species in soil that can degrade lignin and their enzymes are included. In addition, a cellulolytic anaerobic bacterium capable of solubilizing lignin and carbohydrate simultaneously has recently been identified, even though the enzyme involved has not been discovered yet. The assimilation of lignin-derived small molecules and their conversion to renewable chemicals by bacteria, such as muconic acid and polyhydroxyalkanoates, including genetic modification to enhance their capability was discussed. This review also covers the indirect use of bacteria for lignin degradation, which is concerned with whole-cell biosensors designed to detect the aromatic chemicals released from lignin transformation.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Minsik Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
49
|
Redox thermodynamics of B-class dye-decolorizing peroxidases. J Inorg Biochem 2019; 199:110761. [PMID: 31325671 DOI: 10.1016/j.jinorgbio.2019.110761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 11/23/2022]
Abstract
With >5000 annotated genes dye-decolorizing peroxidases (DyPs) represent a heme b peroxidase family of broad functional diversity. Bacterial B-class DyPs are poor peroxidases of unknown physiological function. Hydrogen peroxide efficiently mediates the rapid formation of Compound I in B-class DyPs, which, however, is stable and shows modest reactivity towards organic and inorganic electron donors. To understand these characteristics, we have investigated the redox thermodynamics of the one-electron reduction of the ferric high-spin form of wild-type B-class DyP from the pathogenic bacterium Klebsiella pneumoniae (KpDyP) and the variants D143A, R232A and D143A/R232A. These distal amino acids are fully conserved in all DyPs and play important roles in Compound I formation and maintenance of the heme cavity architecture and substrate access route(s). The E°' values of the respective redox couples Fe(III)/Fe(II) varied from -350 mV (wild-type KpDyP) to -299 mV (D143A/R232A) at pH 7.0. Variable-temperature spectroelectrochemical experiments revealed that the reduction reaction of B-class DyPs is enthalpically unfavored but entropically favored with significant differences in enthalpic and entropic contributions to E°' between the four proteins. Molecular dynamics simulations demonstrated the impact of solvent reorganization on the entropy change during reduction reaction and revealed the dynamics and restriction of substrate access channels. Obtained data are discussed with respect to the poor peroxidase activities of B-class DyPs and compared with heme peroxidases from other (super)families as well as with chlorite dismutases, which do not react with hydrogen peroxide but share a similar fold and heme cavity architecture.
Collapse
|
50
|
Fan X, Tian R, Wang T, Liu S, Wang L, Xu J, Liu J, Ma M, Wu Z. An ultrathin iron-porphyrin based nanocapsule with high peroxidase-like activity for highly sensitive glucose detection. NANOSCALE 2018; 10:22155-22160. [PMID: 30474099 DOI: 10.1039/c8nr07288d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For the first time, an ultrathin iron-porphyrin based polymer nanocapsule with multiple peroxidase-like catalytic centers was constructed by covalently assembling iron-porphyrin monomers; this nanocapsule with a single molecule thickness shell acted as a highly efficient artificial enzyme for mimicking peroxidase. On the basis of the peroxidase-like activity of Fe-TPyP based nanocapsules (Fe-TPyP NCs), a highly sensitive colorimetric sensor for glucose determination was fabricated, the limit of detection was found to be as low as 0.098 μM. This study provided a novel strategy for developing artificial enzymes based on covalently assembled nanostructures. Furthermore, the colorimetric sensor for glucose determination showed potential applications in biomedicine and biology.
Collapse
Affiliation(s)
- Xiaotong Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | | | | | | | | | | | | | | | | |
Collapse
|