1
|
Zhang C, Luo Y, Fu N, Mu S, Peng J, Liu Y, Zhang G. Phase Engineering and Dispersion Stabilization of Cobalt toward Enhanced Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310499. [PMID: 38805738 DOI: 10.1002/smll.202310499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Phase engineering is promising to increase the intrinsic activity of the catalyst toward hydrogen evolution reaction (HER). However, the polymorphism interface is unstable due to the presence of metastable phases. Herein, phase engineering and dispersion stabilization are applied simultaneously to boost the HER activity of cobalt without sacrificing the stability. A fast and facile approach (plasma cathodic electro deposition) is developed to prepare cobalt film with a hetero-phase structure. The polymorphs of cobalt are realized through reduced stacking fault energy due to the doping of Mo, and the high temperature treatment resulted from the plasma discharge. Meanwhile, homogeneously dispersed oxide/carbide nanoparticles are produced from the reaction of plasma-induced oxygen/carbon atoms with electro-deposited metal. The existence of rich polymorphism interface and oxide/carbide help to facilitate H2 production by the tuning of electronic structure and the increase of active sites. Furthermore, oxide/carbide dispersoid effectively prevents the phase transition through a pinning effect on the grain boundary. As-prepared Co-hybrid/CoO_MoC exhibits both high HER activity and robust stability (44 mV at 10 mA cm-2, Tafel slope of 53.2 mV dec-1, no degradation after 100 h test). The work reported here provides an alternate approach to the design of advanced HER catalysts for real application.
Collapse
Affiliation(s)
- Chao Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| | - Yihang Luo
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| | - Nianqing Fu
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| | - Songlin Mu
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| | - Jihua Peng
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Guoge Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China
| |
Collapse
|
2
|
Fang Z, Zhou Z, Zeng Z, Xia YG, Liu J, Hu B, Li K, Li JH, Lu Q. Revealing the Synergistic Effect of Cation and Anion Vacancies on Enhanced Fenton-Like Reaction: The Electron Density Modulation of O 2p-Co 3d Bands. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402748. [PMID: 38898734 DOI: 10.1002/smll.202402748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Defect engineering is considered as a flexible and effective mean to improve the performance of Fenton-like reactions. Herein, a simple method is employed to synthesize Co3O4 catalysts with Co-O vacancy pairs (VP) for peroxymonosulfate (PMS) activation. Multi-scaled characterization, experimental, and simulation results jointly revealed that the cation vacancies-VCo contributed to enhanced conductivity and anion vacancies-VO provided a new active center for the 1O2 generation. Co3O4-VP can optimize the O 2p and Co 3d bands with the strong assistance of synergistic double vacancies to reduce the reaction energy barrier of the "PMS → Co(IV) = O → 1O2" pathway, ultimately triggering the stable transition of mechanism. Co3O4-VP catalysts with radical-nonradical collaborative mechanism achieve the synchronous improvement of activity and stability, and have good environmental robustness to favor water decontamination applications. This result highlights the possibility of utilizing anion and cation vacancy engineering strategies to rational design Co3O4-based materials widely used in catalytic reactions.
Collapse
Affiliation(s)
- Zhimo Fang
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Zhou Zhou
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Zepeng Zeng
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Yuan-Gu Xia
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Ji Liu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Bin Hu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Kai Li
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Ji-Hong Li
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Qiang Lu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
3
|
Ou W, Li L, Zhou W, Chen M, Zhu C, Zhu X, Yuan K. Developing a Cobalt Phosphide Catalyst with Combined Cobalt Defects and Phosphorus Vacancies to Boost Oxygen Evolution Reaction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4647. [PMID: 39336389 PMCID: PMC11433320 DOI: 10.3390/ma17184647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Defect engineering, by adjusting the surface charge and active sites of CoP catalysts, significantly enhances the efficiency of the oxygen evolution reaction (OER). We have developed a new Co1-xPv catalyst that has both cobalt defects and phosphorus vacancies, demonstrating excellent OER performance. Under both basic and acidic media, the catalyst incurs a modest overvoltage, with 238 mV and 249 mV needed, respectively, to attain a current density of 10 mA cm-2. In the practical test of alkaline electrocatalytic water splitting (EWS), the Co1-xPv || Pt/C EWS shows a low cell voltage of 1.51 V and superior performance compared to the noble metal-based EWS (RuO2 || Pt/C, 1.66 V). This catalyst's exceptional catalytic efficiency and longevity are mainly attributed to its tunable electronic structure. The presence of cobalt defects facilitates the transformation of Co2+ to Co3+, while phosphorus vacancies enhance the interaction with oxygen species (*OH, *O, *OOH), working in concert to improve the OER efficiency. This strategy offers a new approach to designing transition metal phosphide catalysts with coexisting metal defects and phosphorus vacancies, which is crucial for improving energy conversion efficiency and catalyst performance.
Collapse
Affiliation(s)
| | - Ligui Li
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | | | | | | | | | | |
Collapse
|
4
|
Kim DW, Kim J, Choi JH, Jung DH, Kang JK. Trifunctional Graphene-Sandwiched Heterojunction-Embedded Layered Lattice Electrocatalyst for High Performance in Zn-Air Battery-Driven Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408869. [PMID: 39287109 DOI: 10.1002/advs.202408869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Indexed: 09/19/2024]
Abstract
Zn-air battery (ZAB)-driven water splitting holds great promise as a next-generation energy conversion technology, but its large overpotential, low activity, and poor stability for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) remain obstacles. Here, a trifunctional graphene-sandwiched, heterojunction-embedded layered lattice (G-SHELL) electrocatalyst offering a solution to these challenges are reported. Its hollow core-layered shell morphology promotes ion transport to Co3S4 for OER and graphene-sandwiched MoS2 for ORR/HER, while its heterojunction-induced internal electric fields facilitate electron migration. The structural characteristics of G-SHELL are thoroughly investigated using X-ray absorption spectroscopy. Additionally, atomic-resolution transmission electron microscopy (TEM) images align well with the DFT-relaxed structures and simulated TEM images, further confirming its structure. It exhibits an approximately threefold smaller ORR charge transfer resistance than Pt/C, a lower OER overpotential and Tafel slope than RuO₂, and excellent HER overpotential and Tafel slope, while outlasting noble metals in terms of durability. Ex situ X-ray photoelectron spectroscopy analysis under varying potentials by examining the peak shifts and ratios (Co2+/Co3+ and Mo4+/Mo6+) elucidates electrocatalytic reaction mechanisms. Furthermore, the ZAB with G-SHELL outperforms Pt/C+RuO2 in terms of energy density (797 Wh kg-1) and peak power density (275.8 mW cm-2), realizing the ZAB-driven water splitting.
Collapse
Affiliation(s)
- Dong Won Kim
- Department of Materials Science & Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jihoon Kim
- Department of Materials Science & Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong Hui Choi
- Department of Materials Science & Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Do Hwan Jung
- Department of Materials Science & Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeung Ku Kang
- Department of Materials Science & Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Bao T, Ke H, Li W, Cai L, Huang Y. Highly Efficient Peroxymonosulfate Electroactivation on Co(OH) 2 Nanoarray Electrode for Pefloxacin Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1312. [PMID: 39120417 PMCID: PMC11314119 DOI: 10.3390/nano14151312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The activation of PMS to produce active species is an attractive technique for antibiotic degradation but is restricted to the low reaction kinetics and high costs. In this work, a cobalt-based catalyst was prepared by in situ electrodeposition to enhance the electrically activated PMS process for the degradation of antibiotics. Almost 100% of pefloxacin (PFX) was removed within 10 min by employing Co(OH)2 as the catalyst in the electrically activated peroxymonosulfate (PMS) process, and the reaction kinetic constant reached 0.52 min-1. The redox processes of Co2+ and Co3+ in Co(OH)2 catalysts were considered to be the main pathways for PMS activation, in which 1O2 was the main active species. Furthermore, this strategy could also achieve excellent degradation efficiency for other organic pollutants. This study provides an effective and low-cost strategy with no secondary pollution for pollutant degradation.
Collapse
Affiliation(s)
| | | | | | | | - Yi Huang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; (T.B.); (H.K.); (W.L.); (L.C.)
| |
Collapse
|
6
|
Wang R, Dai Z, Zhang W, Ma C. The electrocatalytic degradation of 1,4-dioxane by Co-Bi/GAC particle electrode. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1132-1148. [PMID: 39215728 DOI: 10.2166/wst.2024.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Efficient degradation of industrial organic wastewater has become a significant environmental concern. Electrochemical oxidation technology is promising due to its high catalytic degradation ability. In this study, Co-Bi/GAC particle electrodes were prepared and characterized for degradation of 1,4-dioxane. The electrochemical process parameters were optimized by response surface methodology (RSM), and the influence of water quality factors on the removal rate of 1,4-dioxane was investigated. The results showed that the main influencing factors were the Co/Bi mass ratio and calcination temperature. The carrier metals, Co and Bi, existed mainly on the GAC surface as Co3O4 and Bi2O3. The removal of 1,4-dioxane was predominantly achieved through the synergistic reaction of electrode adsorption, anodic oxidation, and particle electrode oxidation, with ·OH playing a significant role as the main active free radical. Furthermore, the particle electrode was demonstrated in different acid-base conditions (pH = 3, 5, 7, 9, and 11). However, high concentrations of Cl- and NO3- hindered the degradation process, potentially participating in competitive reactions. Despite this, the particle electrode exhibited good stability after five cycles. The results provide a new perspective for constructing efficient and stable three-dimensional (3D) electrocatalytic particle electrodes to remove complex industrial wastewater.
Collapse
Affiliation(s)
- Rui Wang
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China
| | - Zhineng Dai
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China; Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen, China E-mail:
| | - Wenqi Zhang
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China
| | - Chao Ma
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
7
|
Wei L, Zhou K, Li HQ, Yang P, Liu B. Cobalt based bimetallic catalysts for heterogeneous electro-Fenton adapting to vary pH for HEDP and MIT degradation. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 38780498 DOI: 10.1080/09593330.2024.2356226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Most of the materials studied as catalysts in the electro-Fenton system are variants of iron oxide or iron hydroxide. However, iron-based catalysts often exhibit weak catalytic capabilities under neutral and alkaline conditions. In this work, we synthesized three cobalt based bimetallic oxides, Co2CuOx, Co2AlOx, and Co2NiOx, using hydrothermal method and evaluated them as catalysts for the heterogeneous electro-Fenton system to remove 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) and Methylisothiazolinone [2-methyl-4-isothiazolin-3-one] (MIT). Co2NiOx has the highest catalytic degradation activity for HEDP, and Co2CuOx has the best catalytic degradation effect for MIT. Based on characterization results of the catalysts, the reasons for the differences in the pollutant removal efficiency were analysed, and the optimal pH for the three cobalt based oxides to remove HEDP and MIT was investigated. The results showed that the optimal pH values of the three cobalt based bimetallic oxides are not only influenced by the second metal type, but also by the properties of pollutants. Therefore, suitable cobalt based catalysts can be selected based on the different properties of pollutants, or the composition of cobalt based catalysts can be adjusted to meet the different pH requirements of target wastewater. The three cobalt based bimetallic oxides exhibited good degradation of HEDP and MIT under neutral conditions, which to some extent solved the problem of narrow pH range in the practical application of the electro-Fenton process.
Collapse
Affiliation(s)
- Liping Wei
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Kexin Zhou
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Hui-Qiang Li
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Baicang Liu
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
8
|
Ma L, Yuan J, Liu Z, Luo Y, Su Y, Zhu K, Feng Z, Niu H, Xiao S, Wei J, Xiang X. Mesoporous Electrocatalysts with p-n Heterojunctions for Efficient Electroreduction of CO 2 and N 2 to Urea. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26015-26024. [PMID: 38721726 DOI: 10.1021/acsami.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The electrocatalytic synthesis of high-value-added urea by activating N2 and CO2 is a green synthesis technology that has achieved carbon neutrality. However, the chemical adsorption and C-N coupling ability of N2 and CO2 on the surface of the catalyst are generally poor, greatly limiting the improvement of electrocatalytic activity and selectivity in electrocatalytic urea synthesis. Herein, novel hierarchical mesoporous CeO2/Co3O4 heterostructures are fabricated, and at an ultralow applied voltage of -0.2 V, the urea yield rate reaches 5.81 mmol g-1 h-1, with a corresponding Faraday efficiency of 30.05%. The hierarchical mesoporous material effectively reduces the mass transfer resistance of reactants and intermediates, making it easier for them to access active centers. The emerging space-charge regions at the heterointerface generate local electrophilic and nucleophilic regions, facilitating CO2 targeted adsorption in the electrophilic region and activation to produce *CO intermediates and N2 targeted adsorption in the nucleophilic region and activation to generate *N ═ N* intermediates. Then, the electrons in the σ orbitals of *N ═ N* intermediates can be easily accepted by the empty eg orbitals of Co3+ in CeO2/Co3O4, which presents a low-spin state (LS: t2g6eg0). Subsequently, *CO couples with *N ═ N* to produce the key intermediate *NCON*. Interestingly, it was discovered through in situ Raman spectroscopy that the CeO2/Co3O4 catalyst has a reversible spinel structure before and after the electrocatalytic reaction, which is due to the surface reconstruction of the catalyst during the electrocatalytic reaction process, producing amorphous active cobalt oxides, which is beneficial for improving electrocatalytic activity.
Collapse
Affiliation(s)
- Lingjia Ma
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiongliang Yuan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhaotao Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yiqing Luo
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuning Su
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Kunye Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zefeng Feng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huihua Niu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuaishuai Xiao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianjun Wei
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang 324000, P. R. China
| |
Collapse
|
9
|
Guggenberger P, Priamushko T, Patil P, Florek J, Garstenauer D, Mautner A, Won Shin J, Ryoo R, Pichler CM, Kleitz F. Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity. J Colloid Interface Sci 2024; 661:574-587. [PMID: 38308896 DOI: 10.1016/j.jcis.2024.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1Fe0.1Ni0.3Co2.5O4, MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150-200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm-2), highest current density (433 mA cm-2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm-2). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications.
Collapse
Affiliation(s)
- Patrick Guggenberger
- Department of Functional Materials and Catalysis, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Tatiana Priamushko
- Department of Functional Materials and Catalysis, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria; Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstraße 1, 91058 Erlangen, Germany
| | - Prathamesh Patil
- CEST Centre of Electrochemical and Surface Technology, Viktor Kaplan-Straße 2, 2700 Wiener Neustadt, Austria
| | - Justyna Florek
- Department of Functional Materials and Catalysis, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Daniel Garstenauer
- Department of Functional Materials and Catalysis, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Andreas Mautner
- Department of Materials Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Jae Won Shin
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Ryong Ryoo
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330 Jeonnam, Republic of Korea
| | - Christian M Pichler
- CEST Centre of Electrochemical and Surface Technology, Viktor Kaplan-Straße 2, 2700 Wiener Neustadt, Austria; Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
10
|
Ye C, Liu B, Li Q, Yu M, Liu Y, Tai Z, Pan Z, Qiu Y. Activating Inert Crystal Face via Facet-Dependent Quench-Engineering for Electrocatalytic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309856. [PMID: 38100241 DOI: 10.1002/smll.202309856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Indexed: 05/25/2024]
Abstract
Developing a facile strategy to activate the inert crystal face of an electrocatalyst is critical to full-facet utilization, yet still challenging. Herein, the electrocatalytic activity of the inert crystal face is activated by quenching Co3O4 cubes and hexagonal plates with different crystal faces in Fe(NO3)3 solution, and the regulation mechanism of facet-dependent quench-engineering is further revealed. Compared to the Co3O4 cube with exposed {100} facet, the Co3O4 hexagonal plate with exposed {111} facet is more responsive to quenching, accompanied by a rougher surface, richer defect, and more Fe doping. Theoretical calculations indicate that the {111} facet has a more open structure with lower defect formation energy and Fe doping energy, ensuring its electronic and coordination structure is easier to optimize. Therefore, quench-engineering largely increases the catalytic activity of {111) facet for oxygen evolution reaction by 13.2% (the overpotential at 10 mA cm-2 decreases from 380 to 330 mV), while {100} facet only increases by 7.6% (from 393 to 363 mV). The quenched Co3O4 hexagonal plate exhibits excellent electrocatalytic activity and stability in both zinc-air battery and water-splitting. The work reveals the influence mechanism of crystal face on quench-engineering and inspires the activation of the inert crystal face.
Collapse
Affiliation(s)
- Changchun Ye
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510000, China
- Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529100, China
| | - Bo Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Qian Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Minxing Yu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yajie Liu
- Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529100, China
| | - Zhixing Tai
- Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529100, China
| | - Zhenghui Pan
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yongcai Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
11
|
Zheng Z, Zheng X, Jiang J, Zhang Q, Li P, Li C, Gu Q, Wei L, Konstantinov K, Yang W, Chen Y, Wang J. Low-Overpotential Rechargeable Na-CO 2 Batteries Enabled by an Oxygen-Vacancy-Rich Cobalt Oxide Catalyst. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17657-17665. [PMID: 38531381 DOI: 10.1021/acsami.4c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Rechargeable sodium-carbon dioxide (Na-CO2) batteries have been proposed as a promising CO2 utilization technique, which could realize CO2 reduction and generate electricity at the same time. They suffer, however, from several daunting problems, including sluggish CO2 reduction and evolution kinetics, large polarization, and poor cycling stability. In this study, a rambutan-like Co3O4 hollow sphere catalyst with abundant oxygen vacancies was synthesized and employed as an air cathode for Na-CO2 batteries. Density functional theory calculations reveal that the abundant oxygen vacancies on Co3O4 possess superior CO2 binding capability, accelerating CO2 electroreduction, and thereby improving the discharge capacity. In addition, the oxygen vacancies also contribute to decrease the CO2 decomposition free energy barrier, which is beneficial for reducing the overpotential further and improving round-trip efficiency. Benefiting from the excellent catalytic ability of rambutan-like Co3O4 hollow spheres with abundant oxygen vacancies, the fabricated Na-CO2 batteries exhibit extraordinary electrochemical performance with a large discharge capacity of 8371.3 mA h g-1, a small overpotential of 1.53 V at a current density of 50 mA g-1, and good cycling stability over 85 cycles. These results provide new insights into the rational design of air cathode catalysts to accelerate practical applications of rechargeable Na-CO2 batteries and potentially Na-air batteries.
Collapse
Affiliation(s)
- Zhi Zheng
- Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Xiaobo Zheng
- Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia
| | - Jicheng Jiang
- Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia
| | - Qi Zhang
- Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia
| | - Peng Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Can Li
- College of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China
| | - Qinfen Gu
- The Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia
- Institute for Carbon Neutralization,College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
12
|
Behera A, Seth D, Agarwal M, Haider MA, Bhattacharyya AJ. Exploring Cu-Doped Co 3O 4 Bifunctional Oxygen Electrocatalysts for Aqueous Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17574-17586. [PMID: 38556732 DOI: 10.1021/acsami.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The efficiency of oxygen electrocatalysis is a key factor in diverse energy domain applications, including the performance of metal-air batteries, such as aqueous Zinc (Zn)-air batteries. We demonstrate here that the doping of cobalt oxide with optimal amounts of copper (abbreviated as Cu-doped Co3O4) results in a stable and efficient bifunctional electrocatalyst for oxygen reduction (ORR) and evolution (OER) reactions in aqueous Zn-air batteries. At high Cu-doping concentrations (≥5%), phase segregation occurs with the simultaneous presence of Co3O4 and copper oxide (CuO). At Cu-doping concentrations ≤5%, the Cu ion resides in the octahedral (Oh) site of Co3O4, as revealed by X-ray diffraction (XRD)/Raman spectroscopy investigations and molecular dynamics (MD) calculations. The residence of Cu@Oh sites leads to an increased concentration of surface Co3+-ions (at catalytically active planes) and oxygen vacancies, which is beneficial for the OER. Temperature-dependent magnetization measurements reveal favorable d-orbital configuration (high eg occupancy ≈ 1) and a low → high spin-state transition of the Co3+-ions, which are beneficial for the ORR in the alkaline medium. The influence of Cu-doping on the ORR activity of Co3O4 is additionally accounted in DFT calculations via interactions between solvent water molecules and oxygen vacancies. The application of the bifunctional Cu-doped (≤5%) Co3O4 electrocatalyst resulted in an aqueous Zn-air battery with promising power density (=84 mW/cm2), stable cyclability (over 210 cycles), and low charge/discharge overpotential (=0.92 V).
Collapse
Affiliation(s)
- Asutosh Behera
- Solid State and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bengaluru 560012, India
| | - Deepak Seth
- Renewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Manish Agarwal
- CSC, Indian Institute of Technology, New Delhi 110016, India
| | - M Ali Haider
- Renewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Aninda Jiban Bhattacharyya
- Solid State and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bengaluru 560012, India
- Interdisciplinary Center for Energy Research (ICER), Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
13
|
Ding J, Du P, Zhu J, Hu Q, He D, Wu Y, Liu W, Zhu S, Yan W, Hu J, Zhu J, Chen Q, Jiao X, Xie Y. Light-Driven C-C Coupling for Targeted Synthesis of CH 3 COOH with Nearly 100 % Selectivity from CO 2. Angew Chem Int Ed Engl 2024; 63:e202400828. [PMID: 38326235 DOI: 10.1002/anie.202400828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Targeted synthesis of acetic acid (CH3 COOH) from CO2 photoreduction under mild conditions mainly limits by the kinetic challenge of the C-C coupling. Herein, we utilized doping engineering to build charge-asymmetrical metal pair sites for boosted C-C coupling, enhancing the activity and selectivity of CO2 photoreduction towards CH3 COOH. As a prototype, the Pd doped Co3 O4 atomic layers are synthesized, where the established charge-asymmetrical cobalt pair sites are verified by X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy spectra. Theoretical calculations not only reveal the charge-asymmetrical cobalt pair sites caused by Pd atom doping, but also manifest the promoted C-C coupling of double *COOH intermediates through shortening of the coupled C-C bond distance from 1.54 to 1.52 Å and lowering their formation energy barrier from 0.77 to 0.33 eV. Importantly, the decreased reaction energy barrier from the protonation of two*COOH into *CO intermediates for the Pd-Co3 O4 atomic layer slab is 0.49 eV, higher than that of the Co3 O4 atomic layer slab (0.41 eV). Therefore, the Pd-Co3 O4 atomic layers exhibit the CH3 COOH evolution rate of ca. 13.8 μmol g-1 h-1 with near 100% selectivity, both of which outperform all previously reported single photocatalysts for CO2 photoreduction towards CH3 COOH under similar conditions.
Collapse
Affiliation(s)
- Jinyu Ding
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Peijin Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Qing Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Dongpo He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Wenxiu Liu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Shan Zhu
- State Grid Anhui Electric Power Research Institute, 230601, Hefei, China
| | - Wensheng Yan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Jun Hu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Junfa Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
14
|
Li Y, Zhang Q, Chong Y, Huang WH, Chen CL, Jin X, Chen G, Fan Z, Qiu Y, Ye D. Efficient Photothermal Catalytic Oxidation Enabled by Three-Dimensional Nanochannel Substrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5153-5161. [PMID: 38456428 DOI: 10.1021/acs.est.3c09077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Photothermal catalysis exhibits promising prospects to overcome the shortcomings of high-energy consumption of traditional thermal catalysis and the low efficiency of photocatalysis. However, there is still a challenge to develop catalysts with outstanding light absorption capability and photothermal conversion efficiency for the degradation of atmospheric pollutants. Herein, we introduced the Co3O4 layer and Pt nanoclusters into the three-dimensional (3D) porous membrane through the atomic layer deposition (ALD) technique, leading to a Pt/Co3O4/AAO monolithic catalyst. The 3D ordered nanochannel structure can significantly enhance the solar absorption capacity through the light-trapping effect. Therefore, the embedded Pt/Co3O4 catalyst can be rapidly heated and the O2 adsorbed on the Pt clusters can be activated to generate sufficient O2- species, exhibiting outstanding activity for the diverse VOCs (toluene, acetone, and formaldehyde) degradation. Optical characterization and simulation calculation confirmed that Pt/Co3O4/AAO exhibited state-of-the-art light absorption and a notable localized surface plasmon resonance (LSPR) effect. In situ diffuse reflectance infrared Fourier transform spectrometry (in situ DRIFTS) studies demonstrated that light irradiation can accelerate the conversion of intermediates during toluene and acetone oxidation, thereby inhibiting byproduct accumulation. Our finding extends the application of AAO's optical properties in photothermal catalytic degradation of air pollutants.
Collapse
Affiliation(s)
- Yifei Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Qianpeng Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Yanan Chong
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan
| | - Xiaojing Jin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, P. R. China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Daiqi Ye
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| |
Collapse
|
15
|
Zhang Y, Zhang S, Li H, Lin Y, Yuan M, Nan C, Chen C. Tunable Oxygen Vacancies of Cobalt Oxides in Lithium-Oxygen Batteries: Morphology Control of Discharge Product. NANO LETTERS 2023; 23:9119-9125. [PMID: 37773017 DOI: 10.1021/acs.nanolett.3c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The discharge product Li2O2 is difficult to decompose in lithium-oxygen batteries, resulting in poor reversibility and cycling stability of the battery, and the morphology of Li2O2 has a great influence on its decomposition during the charging process. Therefore, reasonable design of the catalyst structure to improve the density of catalyst active sites and make Li2O2 form a morphology which is easy to decompose in the charging process will help improve the performance of battery. Here, we demonstrate a series of hollow nanoboxes stacked by Co3O4 nanoparticles with different sizes. The results show that the surface of the nanoboxes composed of smaller size Co3O4 nanoparticles contains abundant pore structure and higher concentration of oxygen vacancies, which changes the adsorption energy of reactants and intermediates, providing more nucleation sites for Li2O2, thereby forming Li2O2 with high dispersion, which is easier to decompose during charging, and eventually improve the performance of the battery. This provides an important idea for the structural design of the cathode catalyst in lithium-oxygen batteries and the regulation of Li2O2 morphology.
Collapse
Affiliation(s)
- Yu Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuting Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huinan Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuran Lin
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Mengwei Yuan
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Caiyun Nan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Zhang W, Zheng J, Wang R, Huang L, Wang J, Zhang T, Liu X. Water-Trapping Single-Atom Co-N 4 /Graphene Triggering Direct 4e - LiOH Chemistry for Rechargeable Aprotic Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301391. [PMID: 37086134 DOI: 10.1002/smll.202301391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Lithium-oxygen (Li-O2 ) batteries have received extensive attention owing to ultrahigh theoretical energy density. Compared to typical discharge product Li2 O2 , LiOH has attracted much attention for its better chemical and electrochemical stability. Large-scale applications of Li-O2 batteries with LiOH chemistry are hampered by the serious internal shuttling of the water additives with the desired 4e- electrochemical reactions. Here, a metal organic framework-derived "water-trapping" single-atom-Co-N4 /graphene catalyst (Co-SA-rGO) is provided that successfully mitigates the water shuttling and enables the direct 4e- catalytic reaction of LiOH in the aprotic Li-O2 battery. The Co-N4 center is more active toward proton-coupled electron transfer, benefiting - direction 4e- formation of LiOH. 3D interlinked networks also provide large surface area and mesoporous structures to trap ≈12 wt% H2 O molecules and offer rapid tunnels for O2 diffusion and Li+ transportation. With these unique features, the Co-SA-rGO based Li-O2 battery delivers a high discharge platform of 2.83 V and a large discharge capacity of 12 760.8 mAh g-1 . Also, the battery can withstand corrosion in the air and maintain a stable discharge platform for 220 cycles. This work points out the direction of enhanced electron/proton transfer for the single-atom catalyst design in Li-O2 batteries.
Collapse
Affiliation(s)
- Wenjing Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Zheng
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruoyu Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Huang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junkai Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianran Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
17
|
Kießling J, Rosenfeldt S, Schenk AS. Size-controlled liquid phase synthesis of colloidally stable Co 3O 4 nanoparticles. NANOSCALE ADVANCES 2023; 5:3942-3954. [PMID: 37496621 PMCID: PMC10367999 DOI: 10.1039/d3na00032j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
Spinel cobalt(ii,iii) oxide (Co3O4) represents a p-type semiconductor exhibiting promising functional properties in view of applications in a broad range of technological fields including magnetic materials and gas sensors as well as sustainable energy conversion systems based on photo- and electrocatalytic water splitting. Due to their high specific surface area, nanoparticle-based structures appear particularly promising for such applications. However, precise control over the diameter and the particle size distribution is required to achieve reproducible size-dependent properties. We herein introduce a synthetic strategy based on the decomposition of hydroxide precursors for the size-controlled preparation of purified Co3O4 nanoparticles with narrow size distributions adjustable in the range between 3-13 nm. The particles exhibit excellent colloidal stability. Their dispersibility in diverse organic solvents further facilitates processing (i.e. ligand exchange) and opens exciting perspectives for controlled self-assembly of the largely isometric primary particles into mesoscale structures. In view of potential applications, functional properties including absorption characteristics and electrocatalytic activity were probed by UV-Vis spectroscopy and cyclic voltammetry, respectively. In these experiments, low amounts of dispersed Co3O4 particles demonstrate strong light absorbance across the entire visible range and immobilized nanoparticles exhibit a comparably low overpotential towards the oxygen evolution reaction in electrocatalytic water splitting.
Collapse
Affiliation(s)
- Johannes Kießling
- Physical Chemistry IV, University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| | - Sabine Rosenfeldt
- Physical Chemistry I, University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| | - Anna S Schenk
- Physical Chemistry IV, University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| |
Collapse
|
18
|
Yuan CZ, Wang S, San Hui K, Wang K, Li J, Gao H, Zha C, Zhang X, Dinh DA, Wu XL, Tang Z, Wan J, Shao Z, Hui KN. In Situ Immobilizing Atomically Dispersed Ru on Oxygen-Defective Co 3O 4 for Efficient Oxygen Evolution. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng-Zong Yuan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau SAR, P. R. China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Shuo Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau SAR, P. R. China
| | - Kwan San Hui
- School of Engineering, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Kaixi Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau SAR, P. R. China
| | - Junfeng Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau SAR, P. R. China
| | - Haixing Gao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau SAR, P. R. China
| | - Chenyang Zha
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau SAR, P. R. China
| | - Xiaomeng Zhang
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Duc Anh Dinh
- VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Xi-Lin Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau SAR, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing 100190, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6845, Australia
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau SAR, P. R. China
| |
Collapse
|
19
|
Ji W, Li W, Zhang TC, Wang Y, Yuan S. Constructing Dimensionally Stable TiO2 Nanotube Arrays/SnO2/RuO2 Anode via Successive Electrodeposition for Efficient Electrocatalytic Oxidation of As(III). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
20
|
Duraisamy V, Arumugam N, Almansour AI, Wang Y, Liu TX, Kumar SMS. In situ decoration of Co3O4 on N-doped hollow carbon sphere as an effective bifunctional oxygen electrocatalyst for oxygen evolution and oxygen reduction reactions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Engineering single-atom Pd sites in ZIF-derived porous Co3O4 for enhanced elementary mercury removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Enhancing oxygen evolution reaction activity of Co4N1-x film electrodes through nitrogen deficiency. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Liu Y, Tang D, Huang Y, Dong Y, Li W, Li J. Ultrathin Edge-rich Structure of Co3O4 Enabling the Low Charging Overpotential of Li-O2 Battery. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Kang S, Li S, Xiao X, Zhang Z, Shi Y, Zhao M, Wang Y. Porous MCo 2O 4(M = Zn, Cu, Fe, Mn) as high efficient bi-functional catalysts for oxygen reduction and oxygen evolution reaction. NANOTECHNOLOGY 2022; 33:455705. [PMID: 35914509 DOI: 10.1088/1361-6528/ac85c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
High-efficiency bi-functional electrocatalysts with long-term stability are critical to the development of many kinds of fuel cells, because that the performance of battery is limited by the slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, porous MCo2O4(M = Zn, Cu, Fe, Mn) were prepared by hydrothermal method with NH4F and urea as surfactants. FeCo2O4with porous structure has more oxygen defects and the larger specific surface area than other MCo2O4(M = Zn, Cu, Mn), and it not onlysupplies more active sites but also avails the transmission of electrolyte and O2in the process of ORR and OER in 0.1 M KOH aqueous solution. Porous FeCo2O4electrode material produces less intermediate H2O2, and its ORR is mainly controlled by a 4e-reaction path. Compared with commercial Pt/C, the prepared FeCo2O4has comparable ORR activity and excellent OER activity. At the same time, the stability of FeCo2O4to ORR is significantly higher than that of commercial Pt/C. The porous FeCo2O4was prepared by facile synthesis procedure could be a potential promising bi-functional catalyst due to its high electrocatalytic activities and long-term stability for both the ORR and OER.
Collapse
Affiliation(s)
- Shengkai Kang
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Sirong Li
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Xuechun Xiao
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
- National Center for International Research on Photoelectric and Energy Materials, Yunnan University, 650091 Kunming, People's Republic of China
| | - Zhanyu Zhang
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Yang Shi
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Mengyao Zhao
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Yude Wang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, 650504 Kunming, People's Republic of China
| |
Collapse
|
25
|
Yang C, Shang S, Li XY. Oxygen-vacancy-enriched substrate-less SnO x/La-Sb anode for high-performance electrocatalytic oxidation of antibiotics in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129212. [PMID: 35739734 DOI: 10.1016/j.jhazmat.2022.129212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalytic oxidation is a promising technology for treating toxic organic pollutants in water and wastewater, but conventional Ti-based anodes often exhibit a short service life and low efficiency in application. Oxygen vacancy (OV)-based defect engineering is an effective activation method for enhancing the electrocatalytic activity of electrodes. Herein, the controllable formation of OV on the surface of a freestanding SnO2-Sb anode was achieved by the quantitative doping of La3+ into the SnO2 crystal structure of the anode for high-performance electrochemical wastewater treatment. The resultant SnOx/La-Sb anode degraded nearly 100% moxifloxacin (MOX, 10 mg L-1) in 30 min, with a low energy consumption of 0.09 kWh m-3. The SnOx/La-Sb anode with an OV density of 1.09% had the highest degradation rate constant (0.226 min-1), 8 times higher than that of the SnO2-Sb anode and 16 times higher than that of the state-of-the-art boron-doped diamond anode. La3+ doping-induced OV activated the anode surface for electrochemical reactions by boosting the interfacial electron transfer and •OH generation (103% increase). The novel 3D permeable SnOx/La-Sb anode also exhibited remarkable stability (predicted service life of 59 years) and high-rate performance (>98%) in a continuous flow-through treatment system (<1 min through the anode).
Collapse
Affiliation(s)
- Chao Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shanshan Shang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiao-Yan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
26
|
Li J, Li J, Ren J, Hong H, Liu D, Liu L, Wang D. Electric-Field-Treated Ni/Co 3O 4 Film as High-Performance Bifunctional Electrocatalysts for Efficient Overall Water Splitting. NANO-MICRO LETTERS 2022; 14:148. [PMID: 35869313 PMCID: PMC9307702 DOI: 10.1007/s40820-022-00889-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/11/2022] [Indexed: 05/25/2023]
Abstract
HIGHLIGHTS A novel physical approach is proposed to enhance the electrocatalytic performance by electric field. Under the action of electric field, some stable conductive filaments consisting of oxygen vacancies are formed in the Ni/Co3O4 film, which remarkably reduces the system resistivity. The electric-field-treated Ni/Co3O4 material exhibits significantly superior activity and stability as a bifunctional electrocatalyst for overall water splitting, and its performance exceeds the state-of-the-art electrocatalysts. ABSTRACT Rational design of bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with excellent activity and stability is of great significance, since overall water splitting is a promising technology for sustainable conversion of clean energy. However, most electrocatalysts do not simultaneously possess optimal HER/OER activities and their electrical conductivities are intrinsically low, which limit the development of overall water splitting. In this paper, a strategy of electric field treatment is proposed and applied to Ni/Co3O4 film to develop a novel bifunctional electrocatalyst. After treated by electric field, the conductive channels consisting of oxygen vacancies are formed in the Co3O4 film, which remarkably reduces the resistance of the system by almost 2 × 104 times. Meanwhile, the surface Ni metal electrode is partially oxidized to nickel oxide, which enhances the catalytic activity. The electric-field-treated Ni/Co3O4 material exhibits super outstanding performance of HER, OER, and overall water splitting, and the catalytic activity is significantly superior to the state-of-the-art noble metal catalysts (Pt/C, RuO2, and RuO2 ǁ Pt/C couple). This work provides an effective and feasible method for the development of novel and efficient bifunctional electrocatalyst, which is also promising for wide use in the field of catalysis. [Image: see text] SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40820-022-00889-3.
Collapse
Affiliation(s)
- Junming Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Jun Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Jun Ren
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Hong Hong
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Dongxue Liu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Lizhe Liu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Dunhui Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing, 210093, People's Republic of China.
- Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
27
|
Zhang S, Qiu J, Zhang Y, Lin Y, Liu R, Yuan M, Sun G, Nan C. Crystal Phase Conversion on Cobalt Oxide: Stable Adsorption toward LiO 2 for Film-Like Discharge Products Generation in Li-O 2 Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201150. [PMID: 35638481 DOI: 10.1002/smll.202201150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Regulating the structure and morphology of discharge product is one of the key points for developing high performance Li-O2 batteries (LOBs). In this study, the reaction mechanism of LOB is successfully controlled by the regulated fine structure of cobalt oxide through tuning the crystallization process. It is demonstrated that the cobalt oxide with lower crystallinity shows stronger affinity toward LiO2 , inducing the growth of film-like LiO2 on the electrode surface and inhibiting the further conversion to Li2 O2 . The batteries catalyzed by the lower crystallinity cobalt oxide hollow spheres which pyrolyzed from ZIF-67 at 260 °C (ZIF-67-260), go through the generation and decomposition of amorphous film-like LiO2 , which significantly reduces the charge overpotential and improves the cycle life. By contrast, the ZIF-67 hollow spheres pyrolyzed at 320 °C (ZIF-67-320) with better crystallinity are more likely to go through the solution-mediated mechanism and induce the aggregation of discharge product, resulting in the sluggish kinetics and limited performance. The combined density functional theory data also directly support the strong relationship between the adsorption toward LiO2 by the electrocatalyst and the battery performance. This work provides an important way for tuning the intermediate and constructing the high-performance battery system.
Collapse
Affiliation(s)
- Shuting Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jiachen Qiu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yu Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuran Lin
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Rong Liu
- X-ray diffraction Lab, Analytical and Testing Center, Beijing Normal University, Beijing, 100875, China
| | - Mengwei Yuan
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Caiyun Nan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
28
|
Zhang W, Gao R, Chen J, Wang J, Zheng J, Huang L, Liu X. Water-Induced Surface Reconstruction of Co 3O 4 on the (111) Plane for High-Efficiency Li-O 2 Batteries in a Hybrid Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28965-28976. [PMID: 35708256 DOI: 10.1021/acsami.2c06990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The crystal plane effect of cobalt oxide has attracted much attention in Li-O2 batteries (LOBs) and other electrocatalytic fields. However, boosting the catalytic activity of a specific plane still faces significant challenges. Herein, a strategy of adding water into the electrolyte is developed to construct a LiOH-based Li-O2 battery system using the (111) plane-exposed Co3O4 as a cathode catalyst. The electrochemical performance shows that on the (111) plane, in the presence of water, the overpotential is largely reduced from 1.5 to 1.0 V and the cycling performance is enhanced. It is confirmed that during the discharge process, water reacts to form LiOH and induce the phase transformation of Co3O4 to amorphous CoOx(OH)y. At the recharge stage, LiOH is first decomposed and then CoOx(OH)y is reduced to Co3O4. Compared with pristine (111), the newly formed Co3O4 surface exhibits more active sites, which accelerates the following oxygen reduction and oxygen evolution processes. This work not only reveals the reaction mechanism of water-induced reaction on the (111) plane of Co3O4 but also provides a new perspective for further design of hybrid Li-O2 batteries with a low polarization and a longer cycle life.
Collapse
Affiliation(s)
- Wenjing Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rui Gao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jundong Chen
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junkai Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian Zheng
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Huang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
29
|
Zhou Y, Gu Q, Yin K, Li Y, Tao L, Tan H, Yang Y, Guo S. Engineering e
g
Orbital Occupancy of Pt with Au Alloying Enables Reversible Li−O
2
Batteries. Angew Chem Int Ed Engl 2022; 61:e202201416. [DOI: 10.1002/anie.202201416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yin Zhou
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Qianfeng Gu
- Department of Materials Science and Engineering City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong 999077 China
| | - Kun Yin
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering, Beijing Institute of Technology Beijing 10081 China
| | - Yiju Li
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Yong Yang
- State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials Northwestern Polytechnical University Xi'an 710072 China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| |
Collapse
|
30
|
Yao J, Dong F, Xu X, Wen M, Ji Z, Feng H, Wang X, Tang Z. Rational Design and Construction of Monolithic Ordered Mesoporous Co 3O 4@SiO 2 Catalyst by a Novel 3D Printed Technology for Catalytic Oxidation of Toluene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22170-22185. [PMID: 35507642 DOI: 10.1021/acsami.2c03850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we report a novel 3D printed layered ordered mesoporous template that can encapsulate active Co-MOFs species in a confined way to achieve the goal of monolithic catalyst. The monolithic OM-Co3O4@SiO2-S catalyst can maintain a macroscopic porous layered structure and a microscopic ordered mesoporous structure. This monolithic OM-Co3O4@SiO2-S catalyst has excellent catalytic performance (T90 = 236 °C), water resistance, and thermal stability in the catalytic combustion of toluene. The catalytic performance of the monolithic OM-Co3O4@SiO2-S catalyst is much better than that of many monolithic catalysts reported in the former. Among them, the introduction of binder aluminum phosphate (AP) can effectively enhance the rheological properties of the printing ink, achieve the purpose of ink writing monolithic layered porous material, enrich the acidic point of the monolithic catalyst, and increase the number of reactive oxygen species. This work reveals a novel monolithic catalyst forming strategy that can combine the advantages of ordered mesoporous materials with active species to form macro-layered porous materials and provide ideas and an experimental basis for the elimination of VOCs in industrial applications.
Collapse
Affiliation(s)
- Jianfei Yao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Fang Dong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xin Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China
| | - Meng Wen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhongying Ji
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hua Feng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xiaolong Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| |
Collapse
|
31
|
Zhou Y, Gu Q, Yin K, Li Y, Tao L, Tan H, Yang Y, Guo S. Engineering e
g
Orbital Occupancy of Pt with Au Alloying Enables Reversible Li−O
2
Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yin Zhou
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Qianfeng Gu
- Department of Materials Science and Engineering City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong 999077 China
| | - Kun Yin
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering, Beijing Institute of Technology Beijing 10081 China
| | - Yiju Li
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Yong Yang
- State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials Northwestern Polytechnical University Xi'an 710072 China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| |
Collapse
|
32
|
Kim NW, Yu H, Oh J. Mesoporous K-doped NiCo 2O 4 derived from a Prussian blue analog: high-yielding synthesis and assessment as oxygen evolution reaction catalyst. RSC Adv 2022; 12:12371-12376. [PMID: 35480370 PMCID: PMC9037640 DOI: 10.1039/d2ra01235a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
The conversion and storage of clean renewable energy can be achieved using water splitting. However, water splitting exhibits sluggish kinetics because of the high overpotentials of the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) and should therefore be promoted by OER and/or HER electrocatalysts. As the kinetic barrier of the former reaction exceeds that of the latter, high-performance OER catalysts are highly sought after. Herein, K-doped NiCo2O4 (HK-NCO) was hydrothermally prepared from a Prussian blue analog with a metal–organic framework structure and assessed as an OER catalyst. Extensive K doping increased the number of active oxygen vacancies and changed their intrinsic properties (e.g., binding energy), thus increasing conductivity. As a result, HK-NCO exhibited a Tafel slope of 49.9 mV dec−1 and a low overpotential of 292 mV at 10 mA cm−2, outperforming a commercial OER catalyst (Ir) and thus holding great promise as a component of high-performance electrode materials for metal-oxide batteries and supercapacitors. OER characteristics of K-doped NiCo2O4 catalyst and K doping control through simple hydrothermal synthesis.![]()
Collapse
Affiliation(s)
- Nam Woon Kim
- Department of Nature-Inspired Nano Convergence Systems, Korea Institute of Machinery and Materials (KIMM) Daejeon 34103 Republic of Korea
| | - Hyunung Yu
- Surface Analysis Team, Korea Research Institute of Standards and Science (KRISS) Daejeon 34113 Republic of Korea
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
33
|
Li Y, Chen T, Zhao S, Wu P, Chong Y, Li A, Zhao Y, Chen G, Jin X, Qiu Y, Ye D. Engineering Cobalt Oxide with Coexisting Cobalt Defects and Oxygen Vacancies for Enhanced Catalytic Oxidation of Toluene. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00296] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yifei Li
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tingyu Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuaiqi Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peng Wu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yanan Chong
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Anqi Li
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yun Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Guangxu Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510006, China
| | - Xiaojing Jin
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongcai Qiu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
34
|
Song C, Zhan Q, Liu F, Wang C, Li H, Wang X, Guo X, Cheng Y, Sun W, Wang L, Qian J, Pan B. Overturned Loading of Inert CeO 2 to Active Co 3 O 4 for Unusually Improved Catalytic Activity in Fenton-Like Reactions. Angew Chem Int Ed Engl 2022; 61:e202200406. [PMID: 35128779 DOI: 10.1002/anie.202200406] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 11/09/2022]
Abstract
In the past decades, numerous efforts have been devoted to improving the catalytic activity of nanocomposites by either exposing more active sites or regulating the interaction between the support and nanoparticles while keeping the structure of the active sites unchanged. Here, we report the fabrication of a Co3 O4 -CeO2 nanocomposite via overturning the loading direction, i.e., loading an inert CeO2 support onto active Co3 O4 nanoparticles. The resultant catalyst exhibits unexpectedly higher activity and stability in peroxymonosulfate-based Fenton-like reactions than its analog prepared by the traditional impregnation method. Abundant oxygen vacancies (Ov with a Co⋅⋅⋅Ov ⋅⋅⋅Ce structure instead of Co⋅⋅⋅Ov ) are generated as new active sites to facilitate the cleavage of the peroxide bond to produce SO4 .- and accelerate the rate-limiting step, i.e., the desorption of SO4 .- , affording improved activity. This strategy is a new direction for boosting the catalytic activity of nanocomposite catalysts in various scenarios, including environmental remediation and energy applications.
Collapse
Affiliation(s)
- Chunli Song
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Qing Zhan
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Fei Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Chuan Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Xuan Wang
- Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xuefeng Guo
- Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Sun
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China.,Research Center for Environmental Nanotechnology (ReCENT), School of Environment, State Key Laboratory of Environmental Pollution and Resources Reuse, Nanjing University, Nanjing, 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, State Key Laboratory of Environmental Pollution and Resources Reuse, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
35
|
Budiyanto E, Tüysüz H. Cobalt Oxide Nanowires with Controllable Diameter and Crystal Structures for the Oxygen Evolution Reaction. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eko Budiyanto
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
36
|
Metal-organic framework-derived ZrO2/NiCo2O4/graphene mesoporous cake-like structure as enhanced bifunctional electrocatalytic cathodes for long life Li-O2 batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Budiyanto E, Salamon S, Wang Y, Wende H, Tüysüz H. Phase Segregation in Cobalt Iron Oxide Nanowires toward Enhanced Oxygen Evolution Reaction Activity. JACS AU 2022; 2:697-710. [PMID: 35373196 PMCID: PMC8970005 DOI: 10.1021/jacsau.1c00561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The impact of reduction post-treatment and phase segregation of cobalt iron oxide nanowires on their electrochemical oxygen evolution reaction (OER) activity is investigated. A series of cobalt iron oxide spinel nanowires are prepared via the nanocasting route using ordered mesoporous silica as a hard template. The replicated oxides are selectively reduced through a mild reduction that results in phase transformation as well as the formation of grain boundaries. The detailed structural analyses, including the 57Fe isotope-enriched Mössbauer study, validated the formation of iron oxide clusters supported by ordered mesoporous CoO nanowires after the reduction process. This affects the OER activity significantly, whereby the overpotential at 10 mA/cm2 decreases from 378 to 339 mV and the current density at 1.7 V vs RHE increases by twofold from 150 to 315 mA/cm2. In situ Raman microscopy revealed that the surfaces of reduced CoO were oxidized to cobalt with a higher oxidation state upon solvation in the KOH electrolyte. The implementation of external potential bias led to the formation of an oxyhydroxide intermediate and a disordered-spinel phase. The interactions of iron clusters with cobalt oxide at the phase boundaries were found to be beneficial to enhance the charge transfer of the cobalt oxide and boost the overall OER activity by reaching a Faradaic efficiency of up to 96%. All in all, the post-reduction and phase segregation of cobalt iron oxide play an important role as a precatalyst for the OER.
Collapse
Affiliation(s)
- Eko Budiyanto
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Soma Salamon
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Yue Wang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Heiko Wende
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Harun Tüysüz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
38
|
Overturned Loading of Inert CeO
2
to Active Co
3
O
4
for Unusually Improved Catalytic Activity in Fenton‐Like Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Yuan M, Sun Z, Wu Z, Wang D, Yang H, Nan C, Li H, Zhang W, Sun G. Tuning the oxygen vacancy of mixed multiple oxidation states nanowires for improving Li-air battery performance. J Colloid Interface Sci 2022; 608:1384-1392. [PMID: 34739996 DOI: 10.1016/j.jcis.2021.10.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022]
Abstract
Mixed multiple oxidation states CoMoO4 nanowires (electrocatalysts) with tunable intrinsic oxygen vacancies were fabricated. CoMoO4 with proper oxygen vacancy can be employed to construct a Li-air battery with a high capacity and stable cyclability. This is possible because CoMoO4 contains surface oxygen vacancies, which result in the unit of CoMo bond, that is important for electrocatalysts used in Li-air batteries. Both the experimental and theoretical results demonstrate that the surface oxygen vacancies containing CoMoO4 nanowires have a higher electrocatalytic activity. This shows that the highly efficient electrocatalysts used for Li-air batteries were designed to modify the redox properties of the mixed metal oxide in the catalytic active sites. This successful material design led to an improved strategy for high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities based on the fast formation and extinction of ORR products.
Collapse
Affiliation(s)
- Mengwei Yuan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China; Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Zemin Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhenglong Wu
- Analytical and Testing Center of BNU, Beijing Normal University, Beijing 100875, China
| | - Di Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Han Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Caiyun Nan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huifeng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China.
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
40
|
Lv Q, Zhu Z, Ni Y, Geng J, Li F. Spin‐State Manipulation of Two‐Dimensional Metal–Organic Framework with Enhanced Metal–Oxygen Covalency for Lithium‐Oxygen Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qingliang Lv
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Zhuo Zhu
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Youxuan Ni
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Jiarun Geng
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
41
|
Muthukumar P, Pannipara M, Al-Sehemi AG, Moon D, Anthony SP. Disordered spinel cobalt oxide electrocatalyst for highly enhanced HER activity in an alkaline medium. NEW J CHEM 2022. [DOI: 10.1039/d2nj01879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcination of commercial cobalt salts at 800 °C produced a disordered spinel structure with more crystal strain and exhibited highly enhanced HER activity.
Collapse
Affiliation(s)
- Pandi Muthukumar
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Mehboobali Pannipara
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
- Research center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
- Research center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127beongil, Nam-gu, Pohang, Gyeongbuk, Korea
| | | |
Collapse
|
42
|
Hudy C, Długosz O, Gryboś J, Zasada F, Krasowska A, Janas J, Sojka Z. Catalytic performance of mixed M xCo 3−xO 4 (M = Cr, Fe, Mn, Ni, Cu, Zn) spinels obtained by combustion synthesis for preferential carbon monoxide oxidation (CO-PROX): insights into the factors controlling catalyst selectivity and activity. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00388k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of mixed cobalt spinel catalysts (MxCo3−xO4 (M = Cr, Fe, Mn, Ni, Cu, Zn)) was synthesized and tested in the CO-PROX reaction and in sole CO oxidation and H2 oxidation as references.
Collapse
Affiliation(s)
- Camillo Hudy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Olga Długosz
- Faculty of Engineering and Chemical Technology, Cracow University of Technology, 31-155 Krakow, Poland
| | - Joanna Gryboś
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Filip Zasada
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Aneta Krasowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Janusz Janas
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Zbigniew Sojka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
43
|
Wang J, Zheng J, Liu X. The key to improving the performance of Li-air batteries: Recent progress and challenges of the catalysts. Phys Chem Chem Phys 2022; 24:17920-17940. [DOI: 10.1039/d2cp02212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Li-air batteries are considered to be one of the most promising energy storage devices due to their high energy density and large specific capacity. But the high overpotential, the sluggish...
Collapse
|
44
|
Liu L, Liu Y, Wang C, Peng X, Fang W, Hou Y, Wang J, Ye J, Wu Y. Li 2 O 2 Formation Electrochemistry and Its Influence on Oxygen Reduction/Evolution Reaction Kinetics in Aprotic Li-O 2 Batteries. SMALL METHODS 2022; 6:e2101280. [PMID: 35041287 DOI: 10.1002/smtd.202101280] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Aprotic Li-O2 batteries are regarded as the most promising technology to resolve the energy crisis in the near future because of its high theoretical specific energy. The key electrochemistry of a nonaqueous Li-O2 battery highly relies on the formation of Li2 O2 during discharge and its reversible decomposition during charge. The properties of Li2 O2 and its formation mechanisms are of high significance in influencing the battery performance. This review article demonstrates the latest progress in understanding the Li2 O2 electrochemistry and the recent advances in regulating the Li2 O2 growth pathway. The first part of this review elaborates the Li2 O2 formation mechanism and its relationship with the oxygen reduction reaction/oxygen evolution reaction electrochemistry. The following part discusses how the cycling parameters, e.g., current density and discharge depth, influence the Li2 O2 morphology. A comprehensive summary of recent strategies in tailoring Li2 O2 formation including rational design of cathode structure, certain catalyst, and surface engineering is demonstrated. The influence resulted from the electrolyte, e.g., salt, solvent, and some additives on Li2 O2 growth pathway, is finally discussed. Further prospects of the ways in making advanced Li-O2 batteries by control of favorable Li2 O2 formation are highlighted, which are valuable for practical construction of aprotic lithium-oxygen batteries.
Collapse
Affiliation(s)
- Lili Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yihao Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Chen Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Xiaohui Peng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuyang Hou
- CSIRO Mineral Resources, Clayton, VIC, 3168, Australia
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, P. R. China
| | - Jilei Ye
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| |
Collapse
|
45
|
Lv Q, Zhu Z, Ni Y, Geng J, Li F. Spin-State Manipulation of Two-Dimensional Metal-Organic Framework with Enhanced Metal-Oxygen Covalency for Lithium-Oxygen Batteries. Angew Chem Int Ed Engl 2021; 61:e202114293. [PMID: 34921706 DOI: 10.1002/anie.202114293] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/05/2022]
Abstract
Aprotic Li-O 2 battery has attracted extensive attention in the past decade owing to the high theoretical energy density, however it is obstructed by the sluggish reaction kinetics at cathodes and large voltage hysteresis. Herein, we regulate the spin state of partial Ni 2+ metal centers ( t 2g 6 e g 2 ) of conductive nickel catecholate framework (Ni II -NCF) nanowire arrays to high-valence Ni 3+ ( t 2g 6 e g 1 ) for Ni III -NCF. The spin-state modulation enables enhanced nickel-oxygen covalency in Ni III -NCF, which facilitates electron exchange between the Ni sites and oxygen adsorbates and accelerates the oxygen redox kinetics. The high affinity of Ni 3+ sites with the intermediate LiO 2 promotes formation of nanosheet-like Li 2 O 2 in the void space among Ni III -NCF nanowires upon discharging. These merit the Li-O 2 battery based on Ni III -NCF with remarkably reduced discharge/charge voltage gaps, superior rate capability, and long cycling stability of over 200 cycles. This work highlights the domination of electron spin state on the redox kinetics and will shed insights into electronic structure regulation of electrocatalysts for Li-O 2 battery and beyond.
Collapse
Affiliation(s)
- Qingliang Lv
- Nankai University, College of Chemistry, Nankai University, College of Chemistry, 300071, Tianjin, CHINA
| | - Zhuo Zhu
- Nankai University College of Chemistry, College of Chemistry, CHINA
| | - Youxuan Ni
- Nankai University, College of Chemistry, CHINA
| | - Jiarun Geng
- Nankai University College of Chemistry, College of Chemistry, CHINA
| | - Fujun Li
- Nankai University, Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), 94 Weijin Road, 300071, Tianjin, CHINA
| |
Collapse
|
46
|
In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat Catal 2021. [DOI: 10.1038/s41929-021-00703-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Zhou Y, Yin K, Gu Q, Tao L, Li Y, Tan H, Zhou J, Zhang W, Li H, Guo S. Lewis‐Acidic PtIr Multipods Enable High‐Performance Li–O
2
Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin Zhou
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Kun Yin
- School of Materials Science and Engineering Peking University Beijing 100871 China
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering Beijing Institute of Technology Beijing 10081 China
| | - Qianfeng Gu
- Department of Materials Science and Engineering City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong 999077 China
| | - Lu Tao
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Yiju Li
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Hao Tan
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Jinhui Zhou
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Wenshu Zhang
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Hongbo Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering Beijing Institute of Technology Beijing 10081 China
| | - Shaojun Guo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| |
Collapse
|
48
|
Zhou Y, Yin K, Gu Q, Tao L, Li Y, Tan H, Zhou J, Zhang W, Li H, Guo S. Lewis-Acidic PtIr Multipods Enable High-Performance Li-O 2 Batteries. Angew Chem Int Ed Engl 2021; 60:26592-26598. [PMID: 34719865 DOI: 10.1002/anie.202114067] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 11/11/2022]
Abstract
The sluggish oxygen reaction kinetics concomitant with the high overpotentials and parasitic reactions from cathodes and solvents is the major challenge in aprotic lithium-oxygen (Li-O2 ) batteries. Herein, PtIr multipods with a low Lewis acidity of the Pt atoms are reported as an advanced cathode for improving overpotentials and stabilities. DFT calculations disclose that electrons have a strong disposition to transfer from Ir to Pt, since Pt has a higher electronegativity than Ir, resulting in a lower Lewis acidity of the Pt atoms than that on the pure Pt surface. The low Lewis acidity of Pt atoms on the PtIr surface entails a high electron density and a down-shifting of the d-band center, thereby weakening the binding energy towards intermediates (LiO2 ), which is the key in achieving low oxygen-reduction-reaction (ORR) and oxygen-evolution-reaction (OER) overpotentials. The Li-O2 cell based on PtIr electrodes exhibits a very low overall discharge/charge overpotential (0.44 V) and an excellent cycle life (180 cycles), outperforming the bulk of reported noble-metal-based cathodes.
Collapse
Affiliation(s)
- Yin Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kun Yin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.,Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong, 999077, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yiju Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jinhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenshu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hongbo Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
49
|
Miao C, Zhang F, Cai L, Hui T, Feng J, Li D. Identification and Insight into the Role of Ultrathin LDH‐Induced Dual‐Interface Sites for Selective Cinnamaldehyde Hydrogenation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenglin Miao
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| | - Fengyu Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| | - Luoyu Cai
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| | - Tianli Hui
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| | - Junting Feng
- Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| | - Dianqing Li
- Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| |
Collapse
|
50
|
Lian Z, Lu Y, Wang C, Zhu X, Ma S, Li Z, Liu Q, Zang S. Single-Atom Ru Implanted on Co 3 O 4 Nanosheets as Efficient Dual-Catalyst for Li-CO 2 Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102550. [PMID: 34672110 PMCID: PMC8655220 DOI: 10.1002/advs.202102550] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Indexed: 05/19/2023]
Abstract
Li-CO2 battery has attracted extensive attention and research due to its super high theoretical energy density and its ability to fix greenhouse gas CO2 . However, the slow reaction kinetics during discharge/charge seriously limits its development. Hence, a simple cation exchange strategy is developed to introduce Ru atoms onto a Co3 O4 nanosheet array grown on carbon cloth (SA Ru-Co3 O4 /CC) to prepare a single atom site catalyst (SASC) and successfully used in Li-CO2 battery. Li-CO2 batteries based on SA Ru-Co3 O4 /CC cathode exhibit enhanced electrochemical performances including low overpotential, ultra high capacity, and long cycle life. Density functional theory calculations reveal that single atom Ru as the driving force center can significantly enhance the intrinsic affinity for key intermediates, thus enhancing the reaction kinetics of CO2 reduction reaction in Li-CO2 batteries, and ultimately optimizing the growth pathway of discharge products. In addition, the Bader charge analysis indicates that Ru atoms as electron-deficient centers can enhance the catalytic activity of SA Ru-Co3 O4 /CC cathode for the CO2 evolution reaction. It is believed that this work has important implications for the development of new SASCs and the design of efficient catalyst for Li-CO2 batteries.
Collapse
Affiliation(s)
- Zheng Lian
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Youcai Lu
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Chunzhi Wang
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Xiaodan Zhu
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Shiyu Ma
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhongjun Li
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Qingchao Liu
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuangquan Zang
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|