1
|
Li GQ, Li ZQ, Jiang M, Zhang Z, Qian Y, Xiao WJ, Chen JR. Photoinduced Copper-Catalyzed Asymmetric Three-Component Radical 1,2-Azidooxygenation of 1,3-Dienes. Angew Chem Int Ed Engl 2024; 63:e202405560. [PMID: 38787342 DOI: 10.1002/anie.202405560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Radical-involved multicomponent difunctionalization of 1,3-dienes has recently emerged as a promising strategy for rapid synthesis of valuable allylic compounds in one-pot operation. However, the expansion of radical scope and enantiocontrol remain two major challenges. Herein, we describe an unprecedented photoinduced copper-catalyzed highly enantioselective three-component radical 1,2-azidooxygenation of 1,3-dienes with readily available azidobenziodazolone reagent and carboxylic acids. This mild protocol exhibits a broad substrate scope, high functional group tolerance, and exceptional control over chemo-, regio- and enantioselectivity, providing practical access to diverse valuable azidated chiral allylic esters. Mechanistic studies imply that the chiral copper complex is implicated as a bifunctional catalyst in both the photoredox catalyzed azidyl radical generation and enantioselective radical C-O cross-coupling.
Collapse
Affiliation(s)
- Guo-Qing Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zi-Qing Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Yu Qian
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
2
|
Xia CX, Li Z, Ye R, Wu ZJ, Ren Y, Wang K, Meng LG. Photochemical Mn-Mediated Generation of Azide Radicals for Improvement of Alkene Hydroxyazidation. Org Lett 2024; 26:3530-3535. [PMID: 38656165 DOI: 10.1021/acs.orglett.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
State-of-the-art strategies for alkene-hydroxyazidation, which yield a mixture of β-azido alcohol and β-azido peroxide, must rely on phosphine reagents to improve the chemoselectivity. To overcome the above problems, we present a photochemical hydroxyazidation of alkenes via Mn-mediated ligand-to-metal charge transfer (LMCT) in O2, which activates N3- to •N3 and incorporates O2 to be used as an oxygen source in the hydroxyazidation products. Broad alkene range and step-economy chemistry for the hydroxyazidation transformation were also demonstrated.
Collapse
Affiliation(s)
- Chen-Xi Xia
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Ziyang Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Ruyi Ye
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Zhao-Juan Wu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yue Ren
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Kuai Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Ling-Guo Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China
| |
Collapse
|
3
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Jiao RQ, Li M, Chen X, Zhang Z, Gong XP, Yue H, Liu XY, Liang YM. Copper-Catalyzed Selective Three-Component 1,2-Phosphonoazidation of 1,3-Dienes. Org Lett 2024; 26:1387-1392. [PMID: 38341862 DOI: 10.1021/acs.orglett.3c04308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
We report a copper-catalyzed selective 1,2-phosphonoazidation of conjugated dienes. This three-component reaction is achieved by using readily available P(O)-H compounds and bench-stable NaN3. Salient features of this strategy include its mild reaction conditions, broad functional group tolerance, and high chemoselectivity and regioselectivity. Moreover, the compatibility with the late-stage functionalization of drug molecules, the potential for scalable production, and the feasibility of further modifications of the products underscore the practical utility of this protocol in synthetic applications.
Collapse
Affiliation(s)
- Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Heng Yue
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Sheng W, Huang X, Cai J, Zheng Y, Wen Y, Song C, Li J. Electrochemical Oxidation Enables Regioselective 1,3-Hydroxyfunctionalization of Cyclopropanes. Org Lett 2023; 25:6178-6183. [PMID: 37584476 DOI: 10.1021/acs.orglett.3c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The direct construction of 1,3-hydroxyfunctionalized molecules is still a significant challenge, as they can currently be obtained through multiple synthetic steps. Herein, we report a general and efficient 1,3-hydroxyfunctionalization of arylcyclopropanes by electrochemical oxidation with a strategic choice of nucleophiles and H2O. 1,3-Amino alcohols, 1,3-alkynyl alcohols, 1,3-hydroxyesters, and 1,3-halo alcohols are achieved with high levels of chemo- and regio-selectivity, opening a new dimension for 1,3-difunctionalization reaction.
Collapse
Affiliation(s)
- Wei Sheng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuejin Huang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jianhua Cai
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Ye Zheng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yuxi Wen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jiakun Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Li H, Fu J, Fu J, Li X, Wei D, Chen H, Bai L, Yang L, Yang H, Wang W. Regioselective and Diastereoselective Halofunctionalization of Alkenes Promoted by Organophotocatalytic Solar Catalysis. J Org Chem 2023. [PMID: 37154472 DOI: 10.1021/acs.joc.3c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A visible-light metal-free photocatalytic regioselective and enantioselective alkene halofunctionalization reaction under mild conditions is reported. Various terminal and internal alkenes were transformed to their α-halogenated and α,β-dibrominated derivatives in good to excellent yields within reaction time as short as 5 min. Water can be used as the "green" nucleophile and solvent in the halohydroxylation and halo-oxidation reactions. Different types of products can be obtained by adjusting the reaction conditions. In addition, sunlight is proved to produce products with similar yields, representing a practical example of solar synthesis and providing an opportunity for solar energy utilization.
Collapse
Affiliation(s)
- Huili Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jianmin Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jundong Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xueji Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
7
|
Homolya Á, Jedlóczki I, Kónya-Ábrahám A, Somsák L, Tóth M, Juhász L. Behaviour of some 1-C-acceptor-substituted glycals under azidohydroxylation conditions. Carbohydr Res 2023; 529:108825. [PMID: 37253301 DOI: 10.1016/j.carres.2023.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023]
Abstract
Azidohydroxylation of 1-carbamoyl, 1-methoxycarbonyl and 1-cyano substituted d-lyxo and d-arabino configured O-peracylated glycals was studied and the reaction conditions were optimized. Under these conditions (3 equiv. NaN3/2 equiv. PIFA/0.3 equiv. TEMPO/50 equiv. H2O/dry DCM/0 °C/Ar) the expected 3-azido-3-deoxy ulopyranosonic acid derivatives were isolated in good yield with α-d-galacto configuration exclusively from the reaction of the 1-carbamoyl and 1-methoxycarbonyl substituted d-lyxo configured O-peracetylated glycals, while the transformation of the 1-cyano derivative gave a 2,3-vicinal diazide in low yield. The 1-carbamoyl d-arabino configured O-perbenzoylated glycal gave a mixture of α-d-gluco and α-d-manno configured azidohydroxylated products with d-gluco preference. The analogous 1-methoxycarbonyl derivative gave an inseparable product mixture and no transformation was detected with the respective 1-cyano glycal.
Collapse
Affiliation(s)
- Ágnes Homolya
- Department of Organic Chemistry, University of Debrecen, PO Box 400, H-4002, Debrecen, Hungary; University of Debrecen, Doctoral School of Chemistry, PO Box 400, H-4002, Debrecen, Hungary
| | - Ivett Jedlóczki
- Department of Organic Chemistry, University of Debrecen, PO Box 400, H-4002, Debrecen, Hungary
| | - Anita Kónya-Ábrahám
- Department of Organic Chemistry, University of Debrecen, PO Box 400, H-4002, Debrecen, Hungary
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, PO Box 400, H-4002, Debrecen, Hungary
| | - Marietta Tóth
- Department of Organic Chemistry, University of Debrecen, PO Box 400, H-4002, Debrecen, Hungary
| | - László Juhász
- Department of Organic Chemistry, University of Debrecen, PO Box 400, H-4002, Debrecen, Hungary.
| |
Collapse
|
8
|
Shen J, Yue X, Xu J, Li W. α-Amino Radical-Mediated Difunctionalization of Alkenes with Polyhaloalkanes and N-Heteroarenes. Org Lett 2023; 25:1994-1998. [PMID: 36920106 DOI: 10.1021/acs.orglett.3c00647] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Herein, we report a mild and practical protocol for the α-perchloroalkyl β-heteroarylation of alkenes using available chloroform as the dichloromethyl source via α-amino radical-mediated halogen-atom transfer. Various substrates are compatible under mild reaction conditions, providing the corresponding products in moderate to good yields. This strategy gives an efficient and convenient method for the introduction of chloroalkyl motifs into N-heteroarenes. The control experiment demonstrates that the α-amino radical generated in situ is a key intermediate in the transformation.
Collapse
Affiliation(s)
- Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Xiaoguang Yue
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
9
|
Shen J, Li L, Xu J, Shen C, Zhang P. Recent advances in the application of Langlois' reagent in olefin difunctionalization. Org Biomol Chem 2023; 21:2046-2058. [PMID: 36448510 DOI: 10.1039/d2ob01875f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this review, we summarise the recent applications of Langlois' reagent in the radical-mediated difunctionalization of alkenes. Among the various trifluoromethylation reagents, Langlois' reagent is an exceptional compound, and many important organic transformations have been realized by employing such reagents. Various organic transformations of Langlois' reagent, especially in radical chemistry, have been developed in recent years. This review describes several key activation methods for Langlois' reagent in the difunctionalization of alkenes by showcasing selected cornerstone research areas and related mechanisms to stimulate the interest of readers in promoting the wider development and application of Langlois' reagent.
Collapse
Affiliation(s)
- Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Wang X, Shu S, Wang X, Luo R, Ming X, Wang T, Zhang Z. Access to Saturated Oxygen Heterocycles and Lactones via Electrochemical Sulfonylative Oxycyclization of Alkenes with Sulfonyl Hydrazides. J Org Chem 2023; 88:2505-2520. [PMID: 36751026 DOI: 10.1021/acs.joc.2c02966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A facile electrochemical sulfonylative cycloetherification of linear unsaturated alcohols with sulfonyl hydrazides under mild conditions has been accomplished. This catalyst- and oxidant-free protocol proceeds via electro-oxidation, followed by radical addition, as well as an intramolecular oxygen nucleophilic process. This methodology is compatible with a broad substrate scope and good functional group compatibility, which provides a valuable and convenient synthetic tool for the synthesis of saturated five-, six-, seven-, and eight-membered ring oxygen heterocycles. Furthermore, sulfonylative cycloesterification of linear unsaturated acids toward the lactone products has also been established under this electrochemical system. In addition, control experiments indicated that the N-H bonds of the sulfonyl hydrazide molecule are non-essential.
Collapse
Affiliation(s)
- Xiaoshuo Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Shubing Shu
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Xiaojing Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Renshi Luo
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, P. R. China
| | - Xiayi Ming
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Tao Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Zhenming Zhang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
11
|
He XX, Chang HH, Zhao YX, Li XJ, Liu SA, Zang ZL, Zhou CH, Cai GX. CuCl 2 -Catalyzed α-Chloroketonation of Aromatic Alkenes via Visible-Light-Induced LMCT. Chem Asian J 2023; 18:e202200954. [PMID: 36378015 DOI: 10.1002/asia.202200954] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Here we report a copper-catalyzed protocol for the synthesis of α-chloroketones from aromatic alkenes including electron-deficient olefins under visible-light irradiation. Preliminary mechanistic studies show that the peroxo Cu(II) species is the key intermediate and hydroperoxyl (HOO⋅) and chlorine (Cl⋅) radicals can be generated by ligand-to-metal charge transfer (LMCT).
Collapse
Affiliation(s)
- Xing-Xian He
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Huan-Huan Chang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Ying-Xue Zhao
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Xiang-Jie Li
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Sheng-An Liu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
12
|
Lavit K, Sapegin A, Linnik S, Ryazantsev M, Krasavin M. Steric Push Towards the [n+3] Hydrated Imidazoline Ring Expansion (HIRE) of Dibenzo[1.4]oxazepines and Thiazepines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ksenia Lavit
- Saint Petersburg State University: Sankt-peterburgskij gosudarstvennyj universitet Chemistry RUSSIAN FEDERATION
| | - Alexander Sapegin
- Saint Petersburg State University Institute of Chemistry: Sankt-Peterburgskij gosudarstvennyj universitet Institut himii Chemistry RUSSIAN FEDERATION
| | - Stanislav Linnik
- Saint Petersburg Academic University: Sankt-Peterburgskij nacional'nyj issledovatel'skij Akademiceskij universitet Rossijskoj akademii nauk Nanobiotechnology RUSSIAN FEDERATION
| | - Mikhail Ryazantsev
- Saint Petersburg Academic University: Sankt-Peterburgskij nacional'nyj issledovatel'skij Akademiceskij universitet Rossijskoj akademii nauk Nanobiotechnology RUSSIAN FEDERATION
| | - Mikhail Krasavin
- Saint Petersburg State University Chemistry 26 Universitetskyi Prospekt 198504 Peterhof RUSSIAN FEDERATION
| |
Collapse
|
13
|
Li YL, Shi Z, Shen T, Ye KY. Electrochemical vicinal oxyazidation of α-arylvinyl acetates. Beilstein J Org Chem 2022; 18:1026-1031. [PMID: 36051561 PMCID: PMC9379640 DOI: 10.3762/bjoc.18.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
α-Azidoketones are valuable and versatile building blocks in the synthesis of various bioactive small molecules. Herein, we describe an environmentally friendly and efficient electrochemical vicinal oxyazidation protocol of α-arylvinyl acetates to afford diverse α-azidoketones in good yields without the use of a stoichiometric amount of chemical oxidant. A range of functionality is shown to be compatible with this transformation, and further applications are demonstrated.
Collapse
Affiliation(s)
- Yi-Lun Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tao Shen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
14
|
Luo MJ, Xiao Q, Li JH. Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chem Soc Rev 2022; 51:7206-7237. [PMID: 35880555 DOI: 10.1039/d2cs00013j] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
15
|
Pan J, Li H, Sun K, Tang S, Yu B. Visible-Light-Induced Decarboxylation of Dioxazolones to Phosphinimidic Amides and Ureas. Molecules 2022; 27:3648. [PMID: 35744775 PMCID: PMC9229220 DOI: 10.3390/molecules27123648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023] Open
Abstract
A visible-light-induced external catalyst-free decarboxylation of dioxazolones was realized for the bond formation of N=P and N-C bonds to access phosphinimidic amides and ureas. Various phosphinimidic amides and ureas (47 examples) were synthesized with high yields (up to 98%) by this practical strategy in the presence of the system's ppm Fe.
Collapse
Affiliation(s)
- Jie Pan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
| | - Haocong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
- College of Chemistry & Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China;
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
| |
Collapse
|
16
|
Photoinitiated multicomponent cascade reaction of Nheteroarenes with unactivated alkenes and trimethylsilyl azide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Coppola GA, Pillitteri S, Van der Eycken EV, You SL, Sharma UK. Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency. Chem Soc Rev 2022; 51:2313-2382. [PMID: 35244107 DOI: 10.1039/d1cs00510c] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.
Collapse
Affiliation(s)
- Guglielmo A Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Upendra K Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| |
Collapse
|
18
|
Shee M, Singh NDP. Chemical versatility of azide radical: journey from a transient species to synthetic accessibility in organic transformations. Chem Soc Rev 2022; 51:2255-2312. [PMID: 35229836 DOI: 10.1039/d1cs00494h] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of azide radical (N3˙) occurs from its precursors primarily via a single electron transfer (SET) process or homolytic cleavage by chemical methods or advanced photoredox/electrochemical methods. This in situ generated transient open-shell species has unique characteristic features that set its reactivity. In the past, the azide radical was widely used for various studies in radiation chemistry as a 1e- oxidant of biologically important molecules, but now it is being exploited for synthetic applications based on its addition and intermolecular hydrogen atom transfer (HAT) abilities. Due to the significant role of nitrogen-containing molecules in synthesis, drug discovery, biological, and material sciences, the direct addition onto unsaturated bonds for the simultaneous construction of C-N bond with other (C-X) bonds are indeed worth highlighting. Moreover, the ability to generate O- or C-centered radicals by N3˙ via electron transfer (ET) and intermolecular HAT processes is also well documented. The purpose of controlling the reactivity of this short-lived intermediate in organic transformations drives us to survey: (i) the history of azide radical and its structural properties (thermodynamic, spectroscopic, etc.), (ii) chemical reactivities and kinetics, (iii) methods to produce N3˙ from various precursors, (iv) several significant azide radical-mediated transformations in the field of functionalization with unsaturated bonds, C-H functionalization via HAT, tandem, and multicomponent reaction with a critical analysis of underlying mechanistic approaches and outcomes, (v) concept of taming the reactivity of azide radicals for potential opportunities, in this review.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
19
|
Zhao D, Pan Y, Chen X, Han Y, Yan C, Shi Y, Hou H, Zhu S. Three‐Component Acylation/Peroxidation of Alkenes through Visible‐Light Photocatalysis. ChemistrySelect 2021. [DOI: 10.1002/slct.202103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dengyang Zhao
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212005 China
| | - Ying Han
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Hong Hou
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| |
Collapse
|
20
|
Gurawa A, Kumar M, Kashyap S. Selective Azidooxygenation of Alkenes Enabled by Photo-induced Radical Transfer Using Aryl-λ 3-azidoiodane Species. ACS OMEGA 2021; 6:26623-26639. [PMID: 34661016 PMCID: PMC8515593 DOI: 10.1021/acsomega.1c03991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The photolytic radical-induced vicinal azidooxygenation of synthetically important and diverse functionalized substrates including unactivated alkenes is reported. The photoredox-catalyst/additive-free protocol enables intermolecular oxyazidation by simultaneously incorporating two new functionalities; C-O and C-N across the C=C double bond in a selective manner. Mechanistic investigations reveal the intermediacy of the azidyl radical facilitated via the photolysis of λ3-azidoiodane species and cascade proceeding to generate an active carbon-centered radical. The late-stage transformations of azido- and oxy-moieties were amply highlighted by assembling high-value drug analogs and bioactive skeletons.
Collapse
|
21
|
Chen F, Tang Y, Li X, Duan Y, Chen C, Zheng Y. Oxoammonium Salt‐Mediated Vicinal Oxyazidation of Alkenes with NaN
3
: Access to
β
‐Aminooxy Azides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fei Chen
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Yu‐Ting Tang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Xin‐Ru Li
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Yan‐Yan Duan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Chao‐Xing Chen
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Yang Zheng
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| |
Collapse
|
22
|
Wu JF, Wan NW, Li YN, Wang QP, Cui BD, Han WY, Chen YZ. Regiodivergent and stereoselective hydroxyazidation of alkenes by biocatalytic cascades. iScience 2021; 24:102883. [PMID: 34401667 PMCID: PMC8353479 DOI: 10.1016/j.isci.2021.102883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Asymmetric functionalization of alkenes allows the direct synthesis of a wide range of chiral compounds. Vicinal hydroxyazidation of alkenes provides a desirable path to 1,2-azidoalcohols; however, existing methods are limited by the control of stereoselectivity and regioselectivity. Herein, we describe a dual-enzyme cascade strategy for regiodivergent and stereoselective hydroxyazidation of alkenes, affording various enantiomerically pure 1,2-azidoalcohols. The biocatalytic cascade process is designed by combining styrene monooxygenase-catalyzed asymmetric epoxidation of alkenes and halohydrin dehalogenase-catalyzed regioselective ring opening of epoxides with azide. Additionally, a one-pot chemo-enzymatic route to chiral β-hydroxytriazoles from alkenes is developed via combining the biocatalytic cascades and Cu-catalyzed azide-alkyne cycloaddition.
Collapse
Affiliation(s)
- Jing-Fei Wu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Ying-Na Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Qing-Ping Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| |
Collapse
|
23
|
Tang C, Qiu X, Cheng Z, Jiao N. Molecular oxygen-mediated oxygenation reactions involving radicals. Chem Soc Rev 2021; 50:8067-8101. [PMID: 34095935 DOI: 10.1039/d1cs00242b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular oxygen as a green, non-toxic and inexpensive oxidant has displayed lots of advantages compared with other oxidants towards more selective, sustainable, and environmentally benign organic transformations. The oxygenation reactions which employ molecular oxygen or ambient air as both an oxidant and an oxygen source provide an efficient route to the synthesis of oxygen-containing compounds, and have been demonstrated in practical applications such as pharmaceutical synthesis and late-stage functionalization of complex molecules. This review article introduces the recent advances of radical processes in molecular oxygen-mediated oxygenation reactions. Reaction scopes, limitations and mechanisms are discussed based on reaction types and catalytic systems. Conclusions and perspectives are also given in the end.
Collapse
Affiliation(s)
- Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. and State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
24
|
Qiao L, Zhang K, Wang Z, Li H, Lu P, Wang Y. Visible-Light-Induced Photocatalyst-Free Aerobic Hydroxyazidations of Indoles: A Highly Regioselective and Stereoselective Synthesis of trans-2-Azidoindolin-3-ols. J Org Chem 2021; 86:7955-7962. [PMID: 34061526 DOI: 10.1021/acs.joc.1c00186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible-light-promoted aerobic hydroxyazidation of indole derivatives with TMSN3 is described. The reaction proceeded under photocatalyst-free conditions to furnish trans-2-azidoindolin-3-ols with high regioselectivity and stereoselectivity. The protocol is operationally simple, and the starting materials (e.g., 1-(pyrimidin-2-yl) indoles, azidotrimethylsilane, and air) are readily available. The proposed mechanism in which substrates act as photocatalysts upon excitation using blue light-emitting diodes (LEDs) was supported by experimental studies.
Collapse
Affiliation(s)
- Li Qiao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ke Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhichao Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hanjie Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
25
|
Zhang LW, Deng XJ, Zhang DX, Tian QQ, He W. Aminolactonization of Unactivated Alkenes Catalyzed by Aryl Iodine. J Org Chem 2021; 86:5152-5165. [PMID: 33760610 DOI: 10.1021/acs.joc.1c00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A one-step protocol of the aryl iodine-catalyzed aminolactonization of unactivated alkenes under oxidation conditions was first reported to efficiently construct diverse amino lactones in a short time using HNTs2 as the compatible nitrogen source. In addition, we investigated the influence of the reaction rate based on the structure of the iodoarene precatalyst, which revealed the selective adjustment effect on aminolactonization and oxylactonization. Finally, preliminary experiments verified the feasibility of asymmetric aminolactonization catalyzed by a chiral iodoarene precatalyst.
Collapse
Affiliation(s)
- Lu-Wen Zhang
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Jun Deng
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dong-Xu Zhang
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qin-Qin Tian
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei He
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
26
|
Shen J, Xu J, Zhu Q, Zhang P. Hypervalent iodine(iii)-promoted rapid cascade reaction for the synthesis of unsymmetric azo compounds. Org Biomol Chem 2021; 19:3119-3123. [PMID: 33885564 DOI: 10.1039/d1ob00219h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid three-component cascade reaction for the synthesis of unsymmetric azo compounds via a radical activation strategy has been reported. Various aryldiazonium salts and unactivated alkenes are well compatible, providing the corresponding products in good to excellent yields. This strategy gives an efficient and practical solution for the synthesis of unsymmetric azo compounds with two C-N bond formation. A free radical pathway mechanism is advised for this transformation.
Collapse
Affiliation(s)
- Jiabin Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
28
|
Hosseinzadeh N, Mousavi SR, Ahmadi Y, Batooei N, Sotoudehnia Korrani Z, Mahdavi M. An Efficient and Convenient Approach for Synthesizing Iodohydrin and Iodoether from Aromatic Alkenes Using Hg(BF 4) 2.SiO 2 and I 2. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1878247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nouraddin Hosseinzadeh
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, Tehran, Iran
| | | | - Yavar Ahmadi
- Department of Basic Sciences, Farhangian University, Tehran, Iran
| | - Nasim Batooei
- Medical Biology Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Mahdavi
- Endocrinology & Metabolism Research Institute (EMRI), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Guo Y, Wang K, Wang R, Song H, Liu Y, Wang Q. Visible‐Light‐Induced Three‐Component Intermolecular Trifluoromethyl‐Alkenylation Reactions of Unactivated Alkenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuan‐Qiang Guo
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Kaihua Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Ruiguo Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 People's Republic of China
| |
Collapse
|
30
|
Shen J, Xu J, He L, Ouyang Y, Huang L, Li W, Zhu Q, Zhang P. Photoinduced Rapid Multicomponent Cascade Reaction of Aryldiazonium Salts with Unactivated Alkenes and TMSN3. Org Lett 2021; 23:1204-1208. [DOI: 10.1021/acs.orglett.0c04148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lei He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yani Ouyang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lin Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qing Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 311121, China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
31
|
Hemric BN. Beyond osmium: progress in 1,2-amino oxygenation of alkenes, 1,3-dienes, alkynes, and allenes. Org Biomol Chem 2021; 19:46-81. [PMID: 33174579 DOI: 10.1039/d0ob01938k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olefin 1,2-difunctionalization has emerged as a popular strategy within modern synthetic chemistry for the synthesis of vicinal amino alcohols and derivatives. The advantage of this approach is the single-step simplicity for rapid diversification, feedstock nature of the olefin starting materials, and the possible modularity of the components. Although there is a vast number of possible iterations of 1,2-olefin difunctionalization, 1,2-amino oxygenation is of particular interest due to the prevalence of both oxygen and nitrogen within pharmaceuticals, natural products, agrochemicals, and synthetic ligands. The Sharpless amino hydroxylation provided seminal results in this field and displayed the value in achieving methods of this nature. However, a vast number of new and novel methods have emerged in recent decades. This review provides a comprehensive review of modern advances in accomplishing 1,2-amino oxygenation of alkenes, 1,3-dienes, alkynes, and allenes that move beyond osmium to a range of other transition metals and more modern strategies such as electrochemical, photochemical, and biochemical reactivity.
Collapse
Affiliation(s)
- Brett N Hemric
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
32
|
Liu J, Wei Y, Shi M. Visible light mediated synthesis of 4-aryl-1,2-dihydronaphthalene derivatives via single-electron oxidation or MHAT from methylenecyclopropanes. Org Chem Front 2021. [DOI: 10.1039/d0qo00853b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new synthetic strategy of a single-electron oxidation and MHAT of methylenecyclopropanes (MCPs) for the rapid construction of 4-aryl-1,2-dihydronaphthalene derivatives by merging photoredox catalysis and cobalt catalysis has been developed.
Collapse
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
33
|
Hua J, Bian M, Ma T, Yang M, He W, Yang Z, Liu C, Fang Z, Guo K. The sunlight-promoted aerobic selective cyclization of olefinic amides and diselenides. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02273j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel sunlight-promoted approach for the selective synthesis of selenated iminoisobenzofurans or isoindolinones via the aerobic O-cyclization or N-cyclization of olefinic amides with diselenides has been developed.
Collapse
Affiliation(s)
- Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Man Yang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- College of Engineering
- China Pharmaceutical University
- Nanjing 210003
- China
| | - ChengKou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
34
|
Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 2020; 50:766-897. [PMID: 33350402 DOI: 10.1039/d0cs00493f] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Ge L, Chiou MF, Li Y, Bao H. Radical azidation as a means of constructing C(sp3)-N3 bonds. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
36
|
Shee M, Shah SS, Singh NDP. Photocatalytic Conversion of Benzyl Alcohols/Methyl Arenes to Aryl Nitriles via H‐Abstraction by Azide Radical. Chemistry 2020; 26:14070-14074. [PMID: 32516474 DOI: 10.1002/chem.202001332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/27/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Maniklal Shee
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Sk. Sheriff Shah
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - N. D. Pradeep Singh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| |
Collapse
|
37
|
Zhang L, Xu M, Cao W, Xu X, Ji S. Visible‐Light‐Enabled Multicomponent Cascade Transformation from Indoles to 2‐Azidoindolin‐3‐yl 2‐Aminobenzoates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ling‐Ling Zhang
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 People's Republic of China
| | - Meng‐Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 People's Republic of China
| | - Wen‐Bin Cao
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 People's Republic of China
| | - Xiao‐Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 People's Republic of China
| | - Shun‐Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 People's Republic of China
| |
Collapse
|
38
|
Wei R, Xiong H, Ye C, Li Y, Bao H. Iron-Catalyzed Alkylazidation of 1,1-Disubstituted Alkenes with Diacylperoxides and TMSN 3. Org Lett 2020; 22:3195-3199. [PMID: 32227900 DOI: 10.1021/acs.orglett.0c00969] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An iron-catalyzed radical alkylazidation of electron-deficient alkenes is reported. Alkyl diacyl peroxides work as the alkyl source, and trimethylsilyl azide acts as the azido reservoir. This method features mild reaction conditions, wide substrate scope, and good functional group tolerance, providing a range of α-azido esters, an α-azido ketone, and an α-azido cyanide in high yields. These azides can be easily transferred into many kinds of amino acid derivatives.
Collapse
Affiliation(s)
- Rongbiao Wei
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China.,College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, Fujian 350108, P. R. of China
| | - Haigen Xiong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| |
Collapse
|
39
|
Petzold D, Giedyk M, Chatterjee A, König B. A Retrosynthetic Approach for Photocatalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901421] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Petzold
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Anamitra Chatterjee
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
40
|
Curle JM, Perieteanu MC, Humphreys PG, Kennedy AR, Tomkinson NCO. Alkene Syn- and Anti-Oxyamination with Malonoyl Peroxides. Org Lett 2020; 22:1659-1664. [PMID: 31999132 PMCID: PMC7146911 DOI: 10.1021/acs.orglett.0c00253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Malonoyl peroxide 6 is an effective reagent for the syn- or anti-oxyamination of alkenes. Reaction
of 6 and an alkene in the presence of O-tert-butyl-N-tosylcarbamate (R3 = CO2tBu) leads to
the anti-oxyaminated product in up to 99% yield.
Use of O-methyl-N-tosyl carbamate
(R3 = CO2Me) as the nitrogen nucleophile followed
by treatment of the product with trifluoroacetic acid leads to the syn-oxyaminated product in up to 77% yield. Mechanisms consistent
with the observed selectivities are proposed.
Collapse
Affiliation(s)
- Jonathan M Curle
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building , University of Strathclyde , 295 Cathedral Street , Glasgow G1 1XL , U.K
| | - Marina C Perieteanu
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building , University of Strathclyde , 295 Cathedral Street , Glasgow G1 1XL , U.K
| | - Philip G Humphreys
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building , University of Strathclyde , 295 Cathedral Street , Glasgow G1 1XL , U.K
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building , University of Strathclyde , 295 Cathedral Street , Glasgow G1 1XL , U.K
| |
Collapse
|
41
|
Xu X, Xia C, Li X, Sun J, Hao L. Visible-light-induced aerobic C3-H fluoroalkoxylation of quinoxalin-2(1 H)-ones with fluoroalkyl alcohols. RSC Adv 2020; 10:2016-2026. [PMID: 35494590 PMCID: PMC9047172 DOI: 10.1039/c9ra10194b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/05/2020] [Indexed: 01/08/2023] Open
Abstract
A novel and efficient method of visible-light-induced C3-H fluoroalkoxylation of quinoxalin-2(1H)-ones with fluoroalkyl alcohols is developed. This approach uses readily available fluoroalkyl alcohols as fluoroalkoxylation reagents and displays a wide substrate scope, providing the fluoroalkoxylated products in moderate to good yields. Compared with the previous method, such a transformation uses oxygen as an oxidant, which avoids the utilization of plenty of PhI(TFA)2. In addition, this strategy also gives a practical tool for the rapid synthesis of histamine-4 receptor antagonist and new N-containing bidentate ligands. A radical mechanism was suggested according to the results of control experiments.
Collapse
Affiliation(s)
- Xiaobo Xu
- Pharmacy College, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271000 China
- Shanghai Synmedia Chemical Co., Ltd Shanghai 201201 China
| | - Chengcai Xia
- Pharmacy College, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271000 China
| | - Xiaojun Li
- Department of Fundamental Medicine, Xinyu University Xinyu 338004 China
| | - Jian Sun
- Pharmacy College, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271000 China
| | - Liqiang Hao
- Pharmacy College, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271000 China
| |
Collapse
|
42
|
Shen J, Xu J, Huang L, Zhu Q, Zhang P. Hypervalent Iodine(III)‐Promoted Rapid Cascade Reaction of Quinoxalinones with Unactivated Alkenes and TMSN
3. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901314] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiabin Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Jun Xu
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Lin Huang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Qing Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| |
Collapse
|
43
|
Wang P, Luo Y, Zhu S, Lu D, Gong Y. Catalytic Azido‐Hydrazination of Alkenes Enabled by Visible Light: Mechanistic Studies and Synthetic Applications. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Wang
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu Rd. Wuhan, Hubei 430074 People's Republic of China
| | - Yunxuan Luo
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu Rd. Wuhan, Hubei 430074 People's Republic of China
| | - Songsong Zhu
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu Rd. Wuhan, Hubei 430074 People's Republic of China
| | - Dengfu Lu
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu Rd. Wuhan, Hubei 430074 People's Republic of China
| | - Yuefa Gong
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu Rd. Wuhan, Hubei 430074 People's Republic of China
| |
Collapse
|
44
|
Iodine(III) reagent (ABX—N3)-induced intermolecular anti-Markovnikov hydroazidation of unactivated alkenes. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9628-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Yang S, Zhu S, Lu D, Gong Y. Polarity-Reversed Addition of Enol Ethers to Imines under Visible Light: Redox-Neutral Access to Azide-Containing Amino Acids. Org Lett 2019; 21:8464-8468. [DOI: 10.1021/acs.orglett.9b03238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sen Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Shuangyu Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Dengfu Lu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
46
|
Wu D, Cui SS, Lin Y, Li L, Yu W. Visible Light-Driven Azidation/Difunctionalization of Vinyl Arenes with Azidobenziodoxole under Copper Catalysis. J Org Chem 2019; 84:10978-10989. [DOI: 10.1021/acs.joc.9b01569] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Danhua Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Shuang-Shuang Cui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yajun Lin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Lin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
47
|
Zhou Z, Yuan Y, Cao Y, Qiao J, Yao A, Zhao J, Zuo W, Chen W, Lei A. Synergy of Anodic Oxidation and Cathodic Reduction Leads to Electrochemical C—H Halogenation. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900091] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhilin Zhou
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Yong Yuan
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS)Wuhan University Wuhan Hubei 430072 China
| | - Yangmin Cao
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Jin Qiao
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Anjin Yao
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Jing Zhao
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Wanqing Zuo
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Wenjie Chen
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Aiwen Lei
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS)Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
48
|
Chen Y, Li L, Ma Y, Li Z. Cobalt-Catalyzed Three-Component Difluoroalkylation–Peroxidation of Alkenes. J Org Chem 2019; 84:5328-5338. [DOI: 10.1021/acs.joc.9b00339] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuanjin Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Liangkui Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yangyang Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
49
|
Calderini E, Wessel J, Süss P, Schrepfer P, Wardenga R, Schallmey A. Selective Ring‐Opening of Di‐Substituted Epoxides Catalysed by Halohydrin Dehalogenases. ChemCatChem 2019. [DOI: 10.1002/cctc.201900103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elia Calderini
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| | - Julia Wessel
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| | - Philipp Süss
- Enzymicals AG Walther-Rathenau-Straße 49A 17489 Greifswald Germany
| | - Patrick Schrepfer
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| | - Rainer Wardenga
- Enzymicals AG Walther-Rathenau-Straße 49A 17489 Greifswald Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| |
Collapse
|
50
|
Ahn DK, Kang YW, Woo SK. Oxidative Deprotection of p-Methoxybenzyl Ethers via Metal-Free Photoredox Catalysis. J Org Chem 2019; 84:3612-3623. [PMID: 30781954 DOI: 10.1021/acs.joc.8b02951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An efficient and greener deprotection method for p-methoxybenzyl (PMB) ethers using a metal-free visible light photoredox catalyst and air and ammonium persulfate as the terminal oxidants is presented. Various functional groups and protecting groups were tolerated in the developed method to achieve good to excellent yields in short reaction times. Significantly, the developed method was compatible with PMB ethers derived from primary, secondary, and tertiary alcohols and a gram-scale reaction. Mechanistic studies support a proposed reaction mechanism that involves single electron oxidation of the PMB ether.
Collapse
Affiliation(s)
- Deok Kyun Ahn
- Department of Chemistry , University of Ulsan , 93 Daehak-Ro , Nam-Gu, Ulsan 44610 , Korea
| | - Young Woo Kang
- Department of Chemistry , University of Ulsan , 93 Daehak-Ro , Nam-Gu, Ulsan 44610 , Korea
| | - Sang Kook Woo
- Department of Chemistry , University of Ulsan , 93 Daehak-Ro , Nam-Gu, Ulsan 44610 , Korea
| |
Collapse
|