1
|
Kulkarni V, Parthiban J, Singh SK. Nanosilica polyamidoamine dendrimers for enhanced direct air CO 2 capture. NANOSCALE 2024; 16:16571-16581. [PMID: 39158470 DOI: 10.1039/d4nr01744g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Exploring efficient systems to recover CO2 from the atmosphere could be a way to address the global carbon emissions issue. Herein, we report the synthesis of nanosilica (NS) functionalized with polyamidoamine (PAMAM) dendrimers (NS-PAMAM) as efficient adsorbents for CO2 capture under simulated direct air capture (DAC) (400 ppm CO2 in helium at 30 °C) and indoor air (≥400 ppm, 50 ± 3% RH at 30 °C) conditions. The results inferred that the 1st (NS-G1.0), 2nd (NS-G2.0), 3rd (NS-G3.0), and 4th (NS-G4.0) generations of the NS-PAMAM dendrimers exhibited excellent performance for CO2 capture. Compared to the other generations, NS-G3.0 demonstrated superior CO2 adsorption capacities of 0.50 mmol g-1 under simulated dry CO2 conditions (400 ppm in He), 1.02 mmol g-1 under indoor air (dry) CO2 conditions (≥400 ppm, 26 ± 3% RH), and 1.54 mmol g-1 under indoor air (humid) CO2 conditions (≥400 ppm, 50 ± 3% RH). The study included the evaluation of CO2 adsorption-desorption performance of the NS-PAMAM dendrimers under varying structural and chemical parameters, kinetics, regeneration at low temperature (80 °C), as well as CO2 adsorption under humid conditions. Additionally, NS-G3.0 displayed a substantially superior performance with stable CO2 capture displayed during ten short temperature swing adsorption (TSA) cycles, making it a promising candidate for CO2 capture from ambient air. Finally, we demonstrated the recovery and reutilization of the captured CO2 for both the synthesis of formate via carbonate hydrogenation and for the production of calcium carbonate pellets.
Collapse
Affiliation(s)
- Vaishnavi Kulkarni
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| | - Jayashree Parthiban
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| | - Sanjay Kumar Singh
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| |
Collapse
|
2
|
Miyazaki S, Chen D, Jiacheng B, Toyao T, Kanda Y, Shimizu KI. In Situ Spectroscopic Study of CO 2 Capture and Methanation over Ni-Ca Based Dual Functional Materials. Chem Asian J 2024; 19:e202301003. [PMID: 38116894 DOI: 10.1002/asia.202301003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Carbon dioxide capture and reduction (CCR) to CH4 using dual-functional materials (DFMs) have recently attracted significant attention as a promising strategy for carbon capture and utilization. In this study, we investigate the mechanism of CCR to CH4 over Al2O3-supported Ni-Ca DFMs (Ni-Ca/Al2O3) under cyclic feeds of model combustion exhaust (2.5 % CO2+0 or 10 % O2/N2) and H2 at 500 °C. Various spectroscopic analyses, including time-resolved in situ X-ray diffraction and X-ray absorption spectroscopy, were conducted during CO2 capture and the subsequent H2-reduction steps. Based on these analyses, we propose a mechanism of CCR to CH4 over Ni-Ca based DFMs. During the CO2 capture step, the Ni0 species underwent complete oxidation in the presence of O2 to yield NiO. Subsequently, CO2 was captured through the interaction between the CaO surface and CO2, resulting in the formation of CaCO3 layers on the CaO particles. When the gas flow was switched to H2, NiO was partially to provide Ni0 sites, which acted as active sites for H2-reduction of the adjacent CaCO3 layers to yield CaO and gas-phase products, CH4 and H2O.
Collapse
Affiliation(s)
- Shinta Miyazaki
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Duotian Chen
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Bao Jiacheng
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Yasuharu Kanda
- Chemical and Biological Engineering Research Unit, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido, 050-8585, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| |
Collapse
|
3
|
Bhaskaran A, Singh SA, Reddy BM, Roy S. Integrated CO 2 Capture and Dry Reforming of CH 4 to Syngas: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14766-14778. [PMID: 38978485 DOI: 10.1021/acs.langmuir.4c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Integrating carbon capture with dry reforming of methane offers a promising approach to addressing greenhouse gas emissions while producing valuable syngas. This review examines the complexities and progress made in this integrated process, wherein catalysts play a critical role in adsorbing carbon dioxide and facilitating the conversion of methane to syngas. The chemical process entails the concurrent capture of CO2 emissions and their usage in dry reforming, a reaction in which CH4 interacts with CO2 to generate syngas, an essential precursor for various industrial applications. The dual-functional materials can adsorb carbon dioxide and actively reform to an end-use application. The much-studied Ca-based sorbents exhibit a theoretical carbon capture capacity of 17.8 mmol g-1. However, during practical exploration of these materials as a dual-functional catalyst for integrated carbon capture and the dry reforming of methane, the uptake reduces to ∼13 mmol g-1 carbon capacity with 96.5 and 96% conversions of CO2 and CH4, respectively. Therefore, a thorough analysis of the complex relationship between CO2 capture and CH4 reforming catalysis is attempted herein based on various reported materials. Design concepts, structural optimization, and performance evaluation analysis of the dual-functional materials reveal their importance in carbon capture and reformation technology. Additionally, this review covers the field difficulties, future perspectives, and attractive commercial implementation predictions. This scrutiny illustrates the significance of dual-functional materials for sustainable energy production and environmental protection.
Collapse
Affiliation(s)
- Aathira Bhaskaran
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Satyapaul A Singh
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Benjaram M Reddy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| |
Collapse
|
4
|
Papalas T, Antzaras AN, Lemonidou AA. Integrated CO 2 Capture and Utilization by Combining Calcium Looping with CH 4 Reforming Processes: A Thermodynamic and Exergetic Approach. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2024; 38:11966-11979. [PMID: 38984063 PMCID: PMC11232036 DOI: 10.1021/acs.energyfuels.4c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024]
Abstract
This study investigates a novel concept to coproduce high-purity H2 and syngas, which couples steam methane reforming with CaO carbonation to capture the generated CO2 and dry reforming of methane with CaCO3 calcination to directly utilize the captured CO2. The thermodynamic equilibrium of the reactive calcination stage was evaluated using Aspen Plus via a parametric analysis of various operating conditions, including the temperature, pressure, and CH4/CaCO3 molar ratio. Introducing a CH4 feed in the calcination stage promoted the driving force and completion of CaCO3 decomposition at lower temperatures (∼700 °C) compared to applying an inert flow, as a result of in situ CO2 conversion. A conceptual process design was investigated that employs a system of two moving bed reactors to produce nearly equivalent volumetric flows of pure H2 and a syngas stream with a H2/CO molar ratio close to 1. A solar reactor was examined for the reactive calcination step to cover the energy requirements of endothermic CaCO3 decomposition and dry reforming. The overall exergy efficiency of the process was found equal to ∼75.9%, a value ∼4.0 and ∼8.0% higher compared to sorption-enhanced reforming with oxy-fuel and solar calciner, respectively, without direct utilization of the captured CO2.
Collapse
Affiliation(s)
- Theodoros Papalas
- Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, U.K
| | - Andy N Antzaras
- Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Angeliki A Lemonidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
- Chemical Process & Energy Resource Institute, CPERI/CERTH, Thermi, Thessaloniki 57001, Greece
| |
Collapse
|
5
|
Hegarty J, Shindel B, Sukhareva D, Barsoum ML, Farha OK, Dravid V. Expanding the Library of Ions for Moisture-Swing Carbon Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21080-21091. [PMID: 37788016 DOI: 10.1021/acs.est.3c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Developing materials that can more efficiently and cheaply capture carbon dioxide from ambient atmospheric conditions is essential for improving negative emission technologies. This study builds on the promising moisture-swing modality for direct air capture of carbon dioxide by investigating the use of several new anions─orthosilicate, borate, pyrophosphate, tripolyphosphate, and dibasic phosphate─that when introduced into ion-exchange resins allow for the cyclable capture of CO2 under dry conditions and its release under wet conditions. These ions, as well as many others that failed to show moisture-swing performance, are tested and directly compared thermodynamically and kinetically to understand their differences. This includes the use of analytical approaches new to the carbon capture field, such as the correlation of adsorption isotherms to moisture-swing performance, the use of phase lag kinetics, the examination of the humidity-carbon capture hysteresis of the sorbents, and the precise quantification of ion loading using inductively coupled plasma-optical emission spectroscopy. Phosphate dibasic was found to have the largest mass-normalized CO2 moisture-swing capacity, whereas phosphate tribasic had the best performance when factoring in kinetics, and pyrophosphate had the highest swing capacity when normalizing on a per-ion or per-unit-charge basis. This work not only sheds light on ways to improve DAC but also provides insights pertinent to the advancement of gas separation, negative emission technologies, and sorbent materials.
Collapse
Affiliation(s)
- John Hegarty
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin Shindel
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Daria Sukhareva
- International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael L Barsoum
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Xu H, Jin R, O'Brien CP. Multi-Functional Polymer Membranes Enable Integrated CO 2 Capture and Conversion in a Single, Continuous-Flow Membrane Reactor under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56305-56313. [PMID: 38011911 DOI: 10.1021/acsami.3c13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein, we present a membrane-based system designed to capture CO2 from dilute mixtures and convert the captured CO2 into value-added products in a single integrated process operated continuously under mild conditions. Specifically, we demonstrate that quaternized poly(4-vinylpyridine) (P4VP) membranes are selective CO2 separation membranes that are also catalytically active for cyclic carbonate synthesis from the cycloaddition of CO2 to epichlorohydrin. We further demonstrate that quaternized P4VP membranes can integrate CO2 capture, including from dilute mixtures down to 0.1 kPa of CO2, with CO2 conversion to cyclic carbonates at 57 °C and atmospheric pressure. The catalytic membrane acts as both the CO2 capture and conversion medium, providing an energy-efficient alternative to sorbent-based capture, compression, transport, and storage. The membrane is also potentially tunable for the conversion of CO2 to a variety of products, including chemicals and fuels not limited to cyclic carbonates, which would be a transformative shift in carbon capture and utilization technology.
Collapse
Affiliation(s)
- Hui Xu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United Sates
| | - Renxi Jin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United Sates
| | - Casey P O'Brien
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United Sates
| |
Collapse
|
7
|
Law ZX, Tsai DH. Exploring the Challenges of Calcium Looping Integrated with Methane Bireforming for Enhanced Carbon Capture and Utilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14782-14790. [PMID: 37788018 DOI: 10.1021/acs.langmuir.3c02217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The urgent need to mitigate greenhouse gas emissions and combat climate change has driven research in carbon capture and utilization (CCU) technologies. Among these, calcium looping (CaL) has emerged as a prominent candidate for CO2 capture. This study aimed to explore the novel integration of CaL with methane bireforming (BRM) using CaO-Ni/CeO2 as dual-function material (DFM) and investigated the challenges and opportunities associated with the process. Implementing a calcium looping-bireforming (CaL-BRM) process revealed distinct differences compared to methane dry reforming (DRM). Notably, methane conversion occurred at higher temperatures, likely due to competition with the formation of Ca(OH)2. Meanwhile, the conversion of CO2 was delayed, possibly because hydroxide species on the CaO surfaces hindered the availability of CO2 for methane reforming. To address these challenges, Ni/CeO2 and CaO-Ni/CeO2 catalysts were employed in conventional catalytic gas-phase BRM and methane steam reforming (SRM) reactions. The results demonstrated that the presence of CaO significantly influenced BRM efficiency due to the Ca(OH)2 formation, as was evident by the results of the characterization on the postreaction catalysts and the parallel study of SRM. This study contributes valuable insights into the feasibility and potential of CaL-BRM, advancing the development of sustainable CCU technologies.
Collapse
Affiliation(s)
- Zhi Xuan Law
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
| |
Collapse
|
8
|
Merkouri LP, Paksoy AI, Ramirez Reina T, Duyar MS. The Need for Flexible Chemical Synthesis and How Dual-Function Materials Can Pave the Way. ACS Catal 2023; 13:7230-7242. [PMID: 37288092 PMCID: PMC10242687 DOI: 10.1021/acscatal.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Since climate change keeps escalating, it is imperative that the increasing CO2 emissions be combated. Over recent years, research efforts have been aiming for the design and optimization of materials for CO2 capture and conversion to enable a circular economy. The uncertainties in the energy sector and the variations in supply and demand place an additional burden on the commercialization and implementation of these carbon capture and utilization technologies. Therefore, the scientific community needs to think out of the box if it is to find solutions to mitigate the effects of climate change. Flexible chemical synthesis can pave the way for tackling market uncertainties. The materials for flexible chemical synthesis function under a dynamic operation, and thus, they need to be studied as such. Dual-function materials are an emerging group of dynamic catalytic materials that integrate the CO2 capture and conversion steps. Hence, they can be used to allow some flexibility in the production of chemicals as a response to the changing energy sector. This Perspective highlights the necessity of flexible chemical synthesis by focusing on understanding the catalytic characteristics under a dynamic operation and by discussing the requirements for the optimization of materials at the nanoscale.
Collapse
Affiliation(s)
| | - Aysun Ipek Paksoy
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, United
Kingdom
| | - Tomas Ramirez Reina
- Inorganic
Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Melis S. Duyar
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, United
Kingdom
| |
Collapse
|
9
|
Ning H, Li Y, Zhang C. Recent Progress in the Integration of CO 2 Capture and Utilization. Molecules 2023; 28:molecules28114500. [PMID: 37298975 DOI: 10.3390/molecules28114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
CO2 emission is deemed to be mainly responsible for global warming. To reduce CO2 emissions into the atmosphere and to use it as a carbon source, CO2 capture and its conversion into valuable chemicals is greatly desirable. To reduce the transportation cost, the integration of the capture and utilization processes is a feasible option. Here, the recent progress in the integration of CO2 capture and conversion is reviewed. The absorption, adsorption, and electrochemical separation capture processes integrated with several utilization processes, such as CO2 hydrogenation, reverse water-gas shift reaction, or dry methane reforming, is discussed in detail. The integration of capture and conversion over dual functional materials is also discussed. This review is aimed to encourage more efforts devoted to the integration of CO2 capture and utilization, and thus contribute to carbon neutrality around the world.
Collapse
Affiliation(s)
- Huanghao Ning
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yongdan Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, P.O. Box 16100, FI-00076 Espoo, Finland
| | - Cuijuan Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
10
|
Chen J, Yang J, Wu Q, Shi D, Chen K, Zhang Y, Zheng X, Li H. Intramolecular Synergistic Catalysis of Ternary Active Sites of Imidazole Ionic-liquid Polymers Immobilized on Nanosized CoFe2O4@polystyrene Composites for CO2 Cycloaddition. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Eltayeb A, Klaas L, Kölz L, Vieten J, Roeb M, Sattler C. Thermochemical process and compact apparatus for concentrating oxygen in extraterrestrial atmospheres: a feasibility study. Sci Rep 2023; 13:5148. [PMID: 36990997 DOI: 10.1038/s41598-023-31120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractThe Martian atmosphere contains 0.16% oxygen, which is an example of an in-situ resource that can be used as precursor or oxidant for propellants, for life support systems and potentially for scientific experiments. Thus, the present work is related to the invention of a process to concentrate oxygen in the oxygen-deficient extraterrestrial atmosphere by means of a thermochemical process and the determination of a suitable best-case apparatus design to carry out the process. The perovskite oxygen pumping (POP) system uses the underlying chemical process, which is based on the temperature-dependent chemical potential of oxygen on multivalent metal oxide, to release and absorb oxygen in response to temperature swings. The primary goal of this work is therefore to identify suitable materials for the oxygen pumping system and to optimize the oxidation–reduction temperature and time, required to operate the system, to produce 2.25 kg of oxygen per hour under the Martian most-extreme environmental conditions and based on the thermochemical process concept. Radioactive materials such as 244Cm, 238Pu and 90Sr are analyzed as a heating source for the operation of the POP system, and critical aspects of the technology as well as weaknesses and uncertainties related to the operational concept are identified.
Collapse
|
12
|
Theofanidis SA, Antzaras AN, Lemonidou AA. CO2 as a building block: from capture to utilization. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
13
|
Dott A, Gavrilis DG, Drews A, Werner A. Preparation, Characterization and Experimental Investigation of the Separation Performance of a Novel CaO‐based CO
2
Sorbent for Direct Air Capture. Chem Eng Technol 2023. [DOI: 10.1002/ceat.202200430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Anton Dott
- Arcus Technologie GmbH & Co GTL Projekt KG Kleine Präsidentenstr. 1 10178 Berlin Germany
- HTW Berlin Dept. 2, Process Engineering in Life Science Engineering Wilhelminenhofstr. 75A 12459 Berlin Germany
| | | | - Anja Drews
- HTW Berlin Dept. 2, Process Engineering in Life Science Engineering Wilhelminenhofstr. 75A 12459 Berlin Germany
| | - Andre Werner
- Arcus Technologie GmbH & Co GTL Projekt KG Kleine Präsidentenstr. 1 10178 Berlin Germany
| |
Collapse
|
14
|
Dong J, Peng Y, Li J, Liu ZW, Hu R. CO 2 capture and conversion to syngas via dry reforming of C 3H 8 over a Pt/ZrO 2–CaO catalyst. Catal Sci Technol 2023. [DOI: 10.1039/d3cy00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Pt/ZrO2–5CaO could capture 10.3 mmol CO2 g−1 and convert it to syngas completely in C3H8 with little intensive energy swing.
Collapse
Affiliation(s)
- Jingjing Dong
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yang Peng
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Juanting Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zhong-wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Rongrong Hu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| |
Collapse
|
15
|
Guo Y, Wang G, Yu J, Huang P, Sun J, Wang R, Wang T, Zhao C. Tailoring the performance of Ni-CaO dual function materials for integrated CO2 capture and conversion by doping transition metal oxides. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Sun S, Zhang Y, Li C, Wang Y, Zhang C, Zhao X, Sun H, Wu C. Upgrading CO2 from simulated power plant flue gas via integrated CO2 capture and dry reforming of methane using Ni-CaO. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Lawson S, Baamran K, Newport K, Garcia E, Jacobs G, Rezaei F, Rownaghi AA. Adsorption-Enhanced Bifunctional Catalysts for In Situ CO 2 Capture and Utilization in Propylene Production: A Proof-Of-Concept Study. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shane Lawson
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri65409-1230, United States
| | - Khaled Baamran
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri65409-1230, United States
| | - Kyle Newport
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri65409-1230, United States
| | - Elijah Garcia
- Department of Chemical Engineering and Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas78249-0669, United States
| | - Gary Jacobs
- Department of Chemical Engineering and Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas78249-0669, United States
| | - Fateme Rezaei
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri65409-1230, United States
| | - Ali A. Rownaghi
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio44115, United States
| |
Collapse
|
18
|
Zurrer T, Lovell E, Han Z, Liang K, Scott J, Amal R. Bimetallic RuNi-decorated Mg-CUK-1 for oxygen-tolerant carbon dioxide capture and conversion to methane. NANOSCALE 2022; 14:15669-15678. [PMID: 36227160 DOI: 10.1039/d2nr03338k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of hybrid sorbent/catalysts for carbon capture and conversion to chemical fuels involves several material and engineering design considerations. Herein, a metal-organic framework (MOF), known as Mg-CUK-1, is loaded with Ru and Ni nanoparticles and assessed as a hybrid material for the sequential capture and conversion of carbon dioxide (CO2) to methane (CH4). Low nanocatalyst loadings led to enhanced overall performance by preserving more CO2 uptake within the Mg-CUK-1 sorbent. Low temperature CO2 desorption from Mg-CUK-1 facilitated complete CO2 release and subsequent conversion to CH4. The influence of oxygen exposure on catalyst performance was assessed, with Ru-loaded Mg-CUK-1 exhibiting oxygen tolerance through sustained CH4 generation of 1.40 mmol g-1 over ten cycles. In contrast, Ni-loaded Mg-CUK-1 was unable to retain initial catalytic performance, reflected in an 11.4% decrease in CH4 generation over ten cycles. When combined, 0.3Ru2.7Ni Mg-CUK-1 yielded comparable overall performance to 3Ru Mg-CUK-1, indicating that Ru aids the re-reduction of NiO to Ni after O2 exposure. By combining multiple catalyst species within one hybrid sorbent/catalyst material, greater catalyst stability is achieved, resulting in sustained overall performance. The introduced strategy provides an approach for fostering resilient hydrogenation catalysts upon exposure to reactive species often found in real-world point source CO2 emissions.
Collapse
Affiliation(s)
- Timothy Zurrer
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Emma Lovell
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Zhaojun Han
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW 2070, Australia
| | - Kang Liang
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- Graduate School of Biomedical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jason Scott
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
19
|
Two birds with one stone: MgO promoted Ni-CaO as stable and coke-resistant bifunctional materials for integrated CO2 capture and conversion. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
20
|
Sun H, Wang C, Sun S, Lopez AT, Wang Y, Zeng J, Liu Z, Yan Z, Parlett CM, Wu C. XAS/DRIFTS/MS spectroscopy for time-resolved operando study of integrated carbon capture and utilisation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Merkouri LP, Ramirez Reina T, Duyar MS. Feasibility of switchable dual function materials as a flexible technology for CO 2 capture and utilisation and evidence of passive direct air capture. NANOSCALE 2022; 14:12620-12637. [PMID: 35975753 DOI: 10.1039/d2nr02688k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The feasibility of a Dual Function Material (DFM) with a versatile catalyst offering switchable chemical synthesis from carbon dioxide (CO2) was demonstrated for the first time, showing evidence of the ability of these DFMs to passively capture CO2 directly from the air as well. These DFMs open up possibilities in flexible chemical production from dilute sources of CO2, through a combination of CO2 adsorption and subsequent chemical transformation (methanation, reverse water gas shift or dry reforming of methane). Combinations of Ni Ru bimetallic catalyst with Na2O, K2O or CaO adsorbent were supported on CeO2-Al2O3 to develop flexible DFMs. The designed multicomponent materials were shown to reversibly adsorb CO2 between the 350 and 650 °C temperature range and were easily regenerated by an inert gas purge stream. The components of the flexible DFMs showed a high degree of interaction with each other, which evidently enhanced their CO2 capture performance ranging from 0.14 to 0.49 mol kg-1. It was shown that captured CO2 could be converted into useful products through either CO2 methanation, reverse water-gas shift (RWGS) or dry reforming of methane (DRM), which provides flexibility in terms of co-reactant (hydrogen vs. methane) and end product (synthetic natural gas, syngas or CO) by adjusting reaction conditions. The best DFM was the one containing CaO, producing 104 μmol of CH4 per kgDFM in CO2 methanation, 58 μmol of CO per kgDFM in RWGS and 338 μmol of CO per kgDFM in DRM.
Collapse
Affiliation(s)
| | - Tomas Ramirez Reina
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH UK.
- Department of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092, Seville, Spain
| | - Melis S Duyar
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH UK.
| |
Collapse
|
22
|
Zhang Z, Zheng Y, Qian L, Luo D, Dou H, Wen G, Yu A, Chen Z. Emerging Trends in Sustainable CO 2 -Management Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201547. [PMID: 35307897 DOI: 10.1002/adma.202201547] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
With the rising level of atmospheric CO2 worsening climate change, a promising global movement toward carbon neutrality is forming. Sustainable CO2 management based on carbon capture and utilization (CCU) has garnered considerable interest due to its critical role in resolving emission-control and energy-supply challenges. Here, a comprehensive review is presented that summarizes the state-of-the-art progress in developing promising materials for sustainable CO2 management in terms of not only capture, catalytic conversion (thermochemistry, electrochemistry, photochemistry, and possible combinations), and direct utilization, but also emerging integrated capture and in situ conversion as well as artificial-intelligence-driven smart material study. In particular, insights that span multiple scopes of material research are offered, ranging from mechanistic comprehension of reactions, rational design and precise manipulation of key materials (e.g., carbon nanomaterials, metal-organic frameworks, covalent organic frameworks, zeolites, ionic liquids), to industrial implementation. This review concludes with a summary and new perspectives, especially from multiple aspects of society, which summarizes major difficulties and future potential for implementing advanced materials and technologies in sustainable CO2 management. This work may serve as a guideline and road map for developing CCU material systems, benefiting both scientists and engineers working in this growing and potentially game-changing area.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yun Zheng
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lanting Qian
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Dan Luo
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Haozhen Dou
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Guobin Wen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
23
|
Jo S, Cruz L, Shah S, Wasantwisut S, Phan A, Gilliard-AbdulAziz KL. Perspective on Sorption Enhanced Bifunctional Catalysts to Produce Hydrocarbons. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seongbin Jo
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Luz Cruz
- Department of Material Science and Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Soham Shah
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Somchate Wasantwisut
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Annette Phan
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Kandis Leslie Gilliard-AbdulAziz
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
- Department of Material Science and Engineering, University of California−Riverside, Riverside, California92521, United States
| |
Collapse
|
24
|
Li X, Phornphimon M, Zhang X, Deng J, Zhang D. Promoting dry reforming of methane catalysed by atomically-dispersed Ni over ceria-upgraded boron nitride. Chem Asian J 2022; 17:e202101428. [PMID: 35246955 DOI: 10.1002/asia.202101428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Indexed: 11/08/2022]
Abstract
Dry reforming of methane (DRM) is a very promising protocol to mitigate the greenhouse gases by making use of CO 2 and CH 4 to produce valuable syngas. Ni-Based catalysts exhibit high activity and low cost for DRM, but suffer from inferior stability because of serious carbon deposition. Herein, we proposed atomically dispersed Ni supported by ceria-upgraded boron nitride whose specific activity exceeds that of boron nitride supported Ni by 3 times. The results of temperature programmed surface reaction show ceria enhanced the adsorption of CO 2 and its surface-active oxygen species would contribute to the activation of CH 4 . Moreover, Ni exhibited a strong metal-support interaction which suppressed the metal sintering during DRM reaction while the incorporation of BN could suppress carbon deposition. The incorporation of active metal oxides into inert support provides a route to adjust the interaction between metal and support and achieve the synergistic promoting in catalytic performance.
Collapse
Affiliation(s)
- Xiaoxu Li
- Shanghai University, Department of chemistry, CHINA
| | | | - Xiaoyu Zhang
- Shanghai University, Department of chemistry, CHINA
| | - Jiang Deng
- Shanghai University, Department of chemistry, CHINA
| | - Dengsong Zhang
- Shanghai University, Department of Chemistry, P.O.Box 111, No. 99 Shangda Road, 200444, Shanghai, CHINA
| |
Collapse
|
25
|
Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Li L, Miyazaki S, Yasumura S, Ting KW, Toyao T, Maeno Z, Shimizu KI. Continuous CO2 Capture and Selective Hydrogenation to CO over Na-Promoted Pt Nanoparticles on Al2O3. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lingcong Li
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shinta Miyazaki
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Kah Wei Ting
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
27
|
Huang H, Samsun RC, Peters R, Stolten D. CFD modeling of a membrane reactor concept for integrated CO 2 capture and conversion. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00282e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of a catalytic membrane reactor concept and investigation of its performance by CFD simulations.
Collapse
Affiliation(s)
- Hong Huang
- Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Remzi Can Samsun
- Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ralf Peters
- Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Detlef Stolten
- Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA-ENERGY, 52056 Aachen, Germany
- Chair for Fuel Cells, RWTH Aachen University, 52072, Aachen, Germany
| |
Collapse
|
28
|
Dang C, Luo J, Yang W, Li H, Cai W. Low-Temperature Catalytic Dry Reforming of Methane over Pd Promoted Ni–CaO–Ca 12Al 14O 33 Multifunctional Catalyst. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chengxiong Dang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jinlu Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenwen Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hanke Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
29
|
Lv Z, Qin C, Chen S, Hanak DP, Wu C. Efficient-and-stable CH4 reforming with integrated CO2 capture and utilization using Li4SiO4 sorbent. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119476] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Kim SM, Armutlulu A, Liao WC, Hosseini D, Stoian D, Chen Z, Abdala PM, Copéret C, Müller C. Structural insight into an atomic layer deposition (ALD) grown Al 2O 3 layer on Ni/SiO 2: impact on catalytic activity and stability in dry reforming of methane. Catal Sci Technol 2021; 11:7563-7577. [PMID: 34912540 PMCID: PMC8630620 DOI: 10.1039/d1cy01149a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022]
Abstract
The development of stable Ni-based dry reforming of methane (DRM) catalysts is a key challenge owing to the high operating temperatures of the process and the propensity of Ni for promoting carbon deposition. In this work, Al2O3-coated Ni/SiO2 catalysts have been developed by employing atomic layer deposition (ALD). The structure of the catalyst at each individual preparation step was characterized in detail through a combination of in situ XAS-XRD, ex situ 27Al NMR and Raman spectroscopy. Specifically, in the calcination step, the ALD-grown Al2O3 layer reacts with the SiO2 support and Ni, forming aluminosilicate and NiAl2O4. The Al2O3-coated Ni/SiO2 catalyst exhibits an improved stability for DRM when compared to the benchmark Ni/SiO2 and Ni/Al2O3 catalysts. In situ XAS-XRD during DRM together with ex situ Raman spectroscopy and TEM of the spent catalysts confirm that the ALD-grown Al2O3 layer suppresses the sintering of Ni, in turn reducing also coke formation significantly. In addition, the formation of an amorphous aluminosilicate phase by the reaction of the ALD-grown Al2O3 layer with the SiO2 support inhibited catalysts deactivation via NiAl2O4 formation, in contrast to the reference Ni/Al2O3 system. The in-depth structural characterization of the catalysts provided an insight into the structural dynamics of the ALD-grown Al2O3 layer, which reacts both with the support and the active metal, allowing to rationalize the high stability of the catalyst under the harsh DRM conditions.
Collapse
Affiliation(s)
- Sung Min Kim
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| | - Andac Armutlulu
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| | - Wei-Chih Liao
- Department of Chemistry and Applied Sciences, ETH Zurich Vladimir Prelog Weg 1-5 8093 Zurich Switzerland
| | - Davood Hosseini
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| | - Dragos Stoian
- Swiss-Norwegian Beamlines, ESRF BP 220 Grenoble 38043 France
| | - Zixuan Chen
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Sciences, ETH Zurich Vladimir Prelog Weg 1-5 8093 Zurich Switzerland
| | - Christoph Müller
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| |
Collapse
|
31
|
Ma X, Li X, Cui H, Zhang W, Cheng Z, Zhou Z. Metal oxide‐doped Ni/
CaO
dual‐function materials for integrated
CO
2
capture and conversion: Performance and mechanism. AIChE J 2021. [DOI: 10.1002/aic.17520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoling Ma
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Xinlei Li
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Hongjie Cui
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Wenhui Zhang
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Zhenmin Cheng
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Zhiming Zhou
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
32
|
Sood A, Thakur A, Ahuja SM. Recent advancements in ionic liquid based carbon capture technologies. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1990886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Akash Sood
- Research Laboratory-III, Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Avinash Thakur
- Research Laboratory-III, Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Sandeep Mohan Ahuja
- Research Laboratory-III, Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| |
Collapse
|
33
|
Sabri MA, Al Jitan S, Bahamon D, Vega LF, Palmisano G. Current and future perspectives on catalytic-based integrated carbon capture and utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148081. [PMID: 34091328 DOI: 10.1016/j.scitotenv.2021.148081] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/03/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
There exist several well-known methods with varying maturity for capturing carbon dioxide from emission sources of different concentrations, including absorption, adsorption, cryogenics and membrane separation, among others. The capture and separation steps can produce almost pure CO2, but at substantial cost for being conditioned for transport and final utilization, with high economical risks to be considered. A possible way for the elimination of this conditioning and cost is direct CO2 utilization, whether on-site in a further process but within the same plant, or in-situ, coupling both capture and conversion in the same unit. This approach is usually called integrated carbon capture and utilization (ICCU) or integrated carbon capture and conversion (ICCC), and has lately started receiving considerable attention in many circles. As CO2 is already industrially employed in other sectors, such as food preservation, water treatment and conversion to high added-value chemicals and fuels such as methanol, methane, etc., among others, it is of great interest to explore the global ICCC approach. Catalytic-based processes play a key role in CO2 conversion, and different technologies are gaining great attention from both academia and industry. However, the 'big picture of ICCU' and in which technology the efforts should focus on at large scale is still unclear. This review analyzes some promising concepts of ICCU specifically on CO2 catalytic conversion, highlighting their current commercial relevance as well as challenges that have to be faced today and in the next future.
Collapse
Affiliation(s)
- Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Daniel Bahamon
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Lourdes F Vega
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
34
|
The Review of Carbon Capture-Storage Technologies and Developing Fuel Cells for Enhancing Utilization. ENERGIES 2021. [DOI: 10.3390/en14164978] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The amount of CO2 released in the atmosphere has been at a continuous surge in the last decade, and in order to protect the environment from global warming, it is necessary to employ techniques like carbon capture. Developing technologies like Carbon Capture Utilization and Storage aims at mitigating the CO2 content from the air we breathe and has garnered immense research attention. In this review, the authors have aimed to discuss the various technologies that are being used to capture the CO2 from the atmosphere, store it and further utilize it. For utilization, researchers have developed alternatives to make profits from CO2 by converting it into an asset. The development of newer fuel cells that consume CO2 in exchange for electrical power to drive the industries and produce valuable hydrocarbons in the form of fuel has paved the path for more research in the field of carbon utilization. The primary focus on the article is to inspect the environmental and economic feasibility of novel technologies such as fuel cells, different electrochemical processes, and the integration of artificial intelligence and data science in them, which are designed for mitigating the percentage of CO2 in the air.
Collapse
|
35
|
Dunstan MT, Donat F, Bork AH, Grey CP, Müller CR. CO 2 Capture at Medium to High Temperature Using Solid Oxide-Based Sorbents: Fundamental Aspects, Mechanistic Insights, and Recent Advances. Chem Rev 2021; 121:12681-12745. [PMID: 34351127 DOI: 10.1021/acs.chemrev.1c00100] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon dioxide capture and mitigation form a key part of the technological response to combat climate change and reduce CO2 emissions. Solid materials capable of reversibly absorbing CO2 have been the focus of intense research for the past two decades, with promising stability and low energy costs to implement and operate compared to the more widely used liquid amines. In this review, we explore the fundamental aspects underpinning solid CO2 sorbents based on alkali and alkaline earth metal oxides operating at medium to high temperature: how their structure, chemical composition, and morphology impact their performance and long-term use. Various optimization strategies are outlined to improve upon the most promising materials, and we combine recent advances across disparate scientific disciplines, including materials discovery, synthesis, and in situ characterization, to present a coherent understanding of the mechanisms of CO2 absorption both at surfaces and within solid materials.
Collapse
Affiliation(s)
- Matthew T Dunstan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Felix Donat
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Alexander H Bork
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christoph R Müller
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| |
Collapse
|
36
|
Maina JW, Pringle JM, Razal JM, Nunes S, Vega L, Gallucci F, Dumée LF. Strategies for Integrated Capture and Conversion of CO 2 from Dilute Flue Gases and the Atmosphere. CHEMSUSCHEM 2021; 14:1805-1820. [PMID: 33665947 DOI: 10.1002/cssc.202100010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/25/2021] [Indexed: 05/20/2023]
Abstract
The integrated capture and conversion of CO2 has the potential to make valorization of the greenhouse gas more economically competitive, by eliminating energy-intensive regeneration processes. However, integration is hindered by the extremely low concentrations of CO2 present in the atmosphere (0.04 vol.%), and the presence of acidic gas contaminants, such as SOx and NOx , in flue gas streams. This Review summarizes the latest technological progress in the integrated capture and conversion of CO2 from dilute flue gases and atmospheric air. In particular, the Review analyzes the correlation between material properties and their capture and conversion efficiency through hydrogenation, cycloaddition, and solar thermal-mediated electrochemical processes, with a focus on the types and quantities of product generated, in addition to their energy requirements. Prospects for commercialization are also highlighted and suggestions are made for future research.
Collapse
Affiliation(s)
- James W Maina
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, 3216, Victoria, Australia
| | - Jennifer M Pringle
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, 3216, Victoria, Australia
| | - Joselito M Razal
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, 3216, Victoria, Australia
| | - Suzana Nunes
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering, Advanced Membranes and Porous Materials Center, Thuwal, 23955-6900, Saudi Arabia
| | - Lourdes Vega
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fausto Gallucci
- Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
| | - Ludovic F Dumée
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, 3216, Victoria, Australia
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
37
|
Abstract
Chemical looping can be considered a technology platform, which refers to one common basic concept that can be used for various applications. Compared with a traditional catalytic process, the chemical looping concept allows fuels’ conversion and products’ separation without extra processes. In addition, the chemical looping technology has another major advantage: combinability, which enables the integration of different reactions into one process, leading to intensification. This review collects various important state-of-the-art examples, such as integration of chemical looping and catalytic processes. Hereby, we demonstrate that chemical looping can in principle be implemented for any catalytic reaction or at least assist in existing processes, provided that the targeted functional group is transferrable by means of suitable carriers.
Collapse
|
38
|
Pd-promoted Ni-Ca-Al bi-functional catalyst for integrated sorption-enhanced steam reforming of glycerol and methane reforming of carbonate. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Preparation and characterization of Ni–Co/SiO2 nanocomposite catalysts for CO2 methanation. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Nathanael AJ, Kannaiyan K, Kunhiraman AK, Ramakrishna S, Kumaravel V. Global opportunities and challenges on net-zero CO 2 emissions towards a sustainable future. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00233c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artistic representation of CO2 emissions from various sources into the atmosphere, and its consequence on the global climatic conditions.
Collapse
Affiliation(s)
- A. Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, India
| | - Kumaran Kannaiyan
- Mechanical Engineering, Guangdong Technion Israel Institute of Technology, China
| | | | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| | - Vignesh Kumaravel
- Department of Environmental Science, School of Science, Institute of Technology Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ireland
| |
Collapse
|
41
|
Krödel M, Landuyt A, Abdala PM, Müller CR. Mechanistic Understanding of CaO-Based Sorbents for High-Temperature CO 2 Capture: Advanced Characterization and Prospects. CHEMSUSCHEM 2020; 13:6259-6272. [PMID: 33052036 PMCID: PMC7984342 DOI: 10.1002/cssc.202002078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Carbon dioxide capture and storage technologies are short to mid-term solutions to reduce anthropogenic CO2 emissions. CaO-based sorbents have emerged as a viable class of cost-efficient CO2 sorbents for high temperature applications. Yet, CaO-based sorbents are prone to deactivation over repeated CO2 capture and regeneration cycles. Various strategies have been proposed to improve their cyclic stability and rate of CO2 uptake including the addition of promoters and stabilizers (e. g., alkali metal salts and metal oxides), as well as nano-structuring approaches. However, our fundamental understanding of the underlying mechanisms through which promoters or stabilizers affect the performance of the sorbents is limited. With the recent application of advanced characterization techniques, new insight into the structural and morphological changes that occur during CO2 uptake and regeneration has been obtained. This review summarizes recent advances that have improved our mechanistic understanding of CaO-based CO2 sorbents with and without the addition of stabilizers and/or promoters, with a specific emphasis on the application of advanced characterization techniques.
Collapse
Affiliation(s)
- Maximilian Krödel
- Department of Mechanical and Process EngineeringLaboratory of Energy Science and Engineering ETH ZürichLeonhardstrasse 218092ZürichSwitzerland
| | - Annelies Landuyt
- Department of Mechanical and Process EngineeringLaboratory of Energy Science and Engineering ETH ZürichLeonhardstrasse 218092ZürichSwitzerland
| | - Paula M. Abdala
- Department of Mechanical and Process EngineeringLaboratory of Energy Science and Engineering ETH ZürichLeonhardstrasse 218092ZürichSwitzerland
| | - Christoph R. Müller
- Department of Mechanical and Process EngineeringLaboratory of Energy Science and Engineering ETH ZürichLeonhardstrasse 218092ZürichSwitzerland
| |
Collapse
|
42
|
Yue C, Wang W, Li F. Building N-Heterocyclic Carbene into Triazine-Linked Polymer for Multiple CO 2 Utilization. CHEMSUSCHEM 2020; 13:5996-6004. [PMID: 32960512 DOI: 10.1002/cssc.202002154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The development of new CO2 detection technologies and CO2 "capture-conversion" materials is of great significance due to the growing environmental crisis. Here, multifunctional triazine-linked polymers with built-in N-heterocyclic carbene (NHC) sites (designated as NHC-triazine@polymer) are presented for simultaneous CO2 detection, capture, activation, and catalytic conversion. NHC-triazine@polymer were readily obtained through polymerization of cyanophenyl-substituted NHC. The obtained film-like polymers exhibited interesting CO2 -triggered fluorescence "turn-on" response and CO2 -sensitive reversible color change. Both NHC and triazine sites could act as efficient binding sites for CO2 , and the CO2 uptake of NHC and triazine reached 1.52 and 1.36 mmol g-1 , respectively. Notably, after being captured by NHC, CO2 was activated into a zwitterionic adduct NHC-CO2 that could be easily transformed into cyclic carbonate in the presence of epoxides. Moreover, NHC-triazine@polymer were stable and active catalysts for the conversion of low-concentration CO2 in a gas mixture (7 vol %) into cyclic carbonates as well as for hydrosilylation of CO2 to formamides.
Collapse
Affiliation(s)
- Chengtao Yue
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Wenlong Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
43
|
Omodolor IS, Otor HO, Andonegui JA, Allen BJ, Alba-Rubio AC. Dual-Function Materials for CO2 Capture and Conversion: A Review. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02218] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ibeh S. Omodolor
- Department of Chemical Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Hope O. Otor
- Department of Chemical Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Joseph A. Andonegui
- Department of Chemical Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Bryan J. Allen
- Department of Chemical Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Ana C. Alba-Rubio
- Department of Chemical Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
44
|
Direct and highly selective conversion of captured CO2 into methane through integrated carbon capture and utilization over dual functional materials. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Yan B, Wang L, Wang B, Chen Q, Liu C, Li J, Jiang T. Carbon material-supported Fe 7C 3@FeO nanoparticles: a highly efficient catalyst for carbon dioxide reduction with 1-butene. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00249f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly dispersed Fe7C3@FeO supported on AC was synthesized and demonstrated as an excellent catalyst for carbon dioxide reduction with 1-butene.
Collapse
Affiliation(s)
- Bing Yan
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Luyi Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Bolong Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Quanxin Chen
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Chunjing Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Jian Li
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Tao Jiang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| |
Collapse
|
46
|
Zhao Y, Jin B, Liang Z. Synergistic Enhanced Ca–Fe Chemical Looping Reforming Process for Integrated CO2 Capture and Conversion. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yunlei Zhao
- Joint International Center for CO2 Capture and Storage (iCCS), College of Chemistry and Chemical Engineering, Hunan University, Lushannan 1, Changsha, Hunan 410082, P. R. China
| | - Bo Jin
- Joint International Center for CO2 Capture and Storage (iCCS), College of Chemistry and Chemical Engineering, Hunan University, Lushannan 1, Changsha, Hunan 410082, P. R. China
| | - Zhiwu Liang
- Joint International Center for CO2 Capture and Storage (iCCS), College of Chemistry and Chemical Engineering, Hunan University, Lushannan 1, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
47
|
Liu F, Gu Y, Zhao P, Xin H, Gao J, Liu M. N-hydroxysuccinimide based deep eutectic catalysts as a promising platform for conversion of CO2 into cyclic carbonates at ambient temperature. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Buelens LC, Poelman H, Marin GB, Galvita VV. 110th Anniversary: Carbon Dioxide and Chemical Looping: Current Research Trends. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02521] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lukas C. Buelens
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Hilde Poelman
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Guy B. Marin
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Vladimir V. Galvita
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| |
Collapse
|
49
|
|