1
|
Adame-Pereira M, Durán-Valle CJ, Fernández-González C. Hydrothermal Carbon Coating of an Activated Carbon-A New Adsorbent. Molecules 2023; 28:4769. [PMID: 37375324 DOI: 10.3390/molecules28124769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
A new adsorbent material was prepared by coating an activated carbon with hydrothermal carbon obtained from sucrose. The material obtained has different properties from the sum of the properties of the activated carbon and the hydrothermal carbon, which shows that a new material was obtained. It has a high specific surface area (1051.9 m2 g-1) and is slightly more acidic than the starting activated carbon (p.z.c.-point of zero charge 8.71 vs. 9.09). The adsorptive properties of a commercial carbon (Norit RX-3 Extra) were improved over a wide pH and temperature range. The capacity values of the monolayer according to Langmuir's model reached 588 mg g-1 for the commercial product and 769 mg g-1 for the new adsorbent.
Collapse
Affiliation(s)
- Marta Adame-Pereira
- Departamento de Química Orgánica e Inorgánica, Universidad de Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| | | | - Carmen Fernández-González
- Departamento de Química Orgánica e Inorgánica, Universidad de Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| |
Collapse
|
2
|
Chen M, Wang Y, Jiang L, Cheng Y, Liu Y, Wei Z. Highly Efficient Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over CoRe/TiO 2 Catalyst. Molecules 2023; 28:molecules28083336. [PMID: 37110570 PMCID: PMC10142762 DOI: 10.3390/molecules28083336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Allylic alcohols typically produced through selective hydrogenation of α,β-unsaturated aldehydes are important intermediates in fine chemical industry, but it is still a challenge to achieve its high selectivity transformation. Herein, we report a series of TiO2-supported CoRe bimetallic catalysts for the selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL) using formic acid (FA) as a hydrogen donor. The resultant catalyst with the optimized Co/Re ratio of 1:1 can achieve an exceptional COL selectivity of 89% with a CAL conversion of 99% under mild conditions of 140 °C for 4 h, and the catalyst can be reused four times without loss of activity. Meanwhile, the Co1Re1/TiO2/FA system was efficient for the selective hydrogenation of various α,β-unsaturated aldehydes to the corresponding α,β-unsaturated alcohols. The presence of ReOx on the Co1Re1/TiO2 catalyst surface was advantageous to the adsorption of C=O, and the ultrafine Co nanoparticles provided abundant hydrogenation active sites for the selective hydrogenation. Moreover, FA as a hydrogen donor improved the selectivity to α,β-unsaturated alcohols.
Collapse
Affiliation(s)
- Mengting Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yun Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Limin Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuran Cheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingxin Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zuojun Wei
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Balda M, Mackenzie K, Kopinke FD, Georgi A. Uniform and dispersible carbonaceous microspheres as quasi-liquid sorbent. CHEMOSPHERE 2022; 307:136079. [PMID: 35995183 DOI: 10.1016/j.chemosphere.2022.136079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Functional colloidal carbon materials find various applications, including the remediation of contaminated water and soil in so-called particle-based in-situ remediation processes. In this study, uniform and highly dispersible micro-sized carbonaceous spheres (CS) were generated by hydrothermal carbonization (HTC) of sucrose in the presence of carboxymethyl cellulose (CMC) as environmentally friendly polyelectrolyte stabilizer. In order to ensure their optimal subsurface delivery and formation of a self-contained treatment zone, a narrow size distribution and low agglomeration tendency of the particles is desired. Therefore, the obtained CS were thoroughly characterized and optimized with respect to their colloidal properties which are a crucial factor for their application as quasi-liquid sorbent. The as-prepared uniform CS are readily dispersible into single particles in water as confirmed by digital microscopy and form stable suspensions. Due to their perfectly spherical shape, particle sedimentation in aqueous suspensions is well predicted by Stokes' law. High sorption coefficients on the synthesized CS KD,CS were determined for phenanthrene (up to log (KD,CS/[L kg-1]) = 5) and other hydrophobic groundwater contaminants. This confirms the application potential of the CS, which were prepared by an economic low-temperature process using sucrose as bio-based precursor, for generating in-situ sorption barriers for groundwater and soil remediation.
Collapse
Affiliation(s)
- Maria Balda
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, D-04318 Leipzig, Germany.
| | - Katrin Mackenzie
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, D-04318 Leipzig, Germany
| | - Frank-Dieter Kopinke
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, D-04318 Leipzig, Germany
| | - Anett Georgi
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, D-04318 Leipzig, Germany
| |
Collapse
|
4
|
Lin T, An Y, Yu F, Gong K, Yu H, Wang C, Sun Y, Zhong L. Advances in Selectivity Control for Fischer–Tropsch Synthesis to Fuels and Chemicals with High Carbon Efficiency. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yunlei An
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Fei Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Kun Gong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hailing Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caiqi Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
5
|
Suo Y, Yao Y, Zhang Y, Xing S, Yuan ZY. Recent advances in cobalt-based Fischer-Tropsch synthesis catalysts. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Mishra S, Sangma SW, Poddar MK, Bal R, Singh GP, Dey RK. TiO 2 supported cobalt oxide for olefin epoxidation reaction - characterization, catalytic activities and mechanism - using a DFT model. Dalton Trans 2022; 51:10486-10500. [PMID: 35766149 DOI: 10.1039/d2dt01118b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal oxide catalysts are known to trigger C-H bond activation selectively, indicating their suitability for olefin epoxidation. Nano-structured Co3O4 supported on TiO2 was prepared for selective epoxidation of a number of olefins under optimized reaction conditions. An appropriate synthetic procedure yielded a catalytic material (Co-Ti (NP)HT) with desired crystal size and interface conditions. Incorporation of Co into the Ti matrix resulted in an enhancement in the specific surface of Ti-Co nanoparticles (77.93 m2 g-1). XPS measurements evaluated the surface cobalt atom concentration (5.77%) in Ti-Co(NP)HT, indicating more dispersion of cobalt oxide species. Catalytic application of the material, using various olefins (under optimized reaction conditions) shows higher conversion (>85%) in a 6-h time interval. The substrate : oxidant (H2O2) concentration in an optimized molar ratio of 1 : 2 shows high olefin conversion for the formation of olefin oxide. The reactivity of olefins was found to be in the order: cyclohexene > methylstyrene > styrene > chlorostyrene > p-nitrostyrene. A DFT model compared the HOMO-LUMO energies of styrene and its substituted forms. The reusability of Ti-Co (NP)HT tested up to four continuous cycles of batch operations indicates a negligible loss (0.25-0.30%) of catalytic activity.
Collapse
Affiliation(s)
- Subhashree Mishra
- Department of Chemistry, Central University of Jharkhand (CUJ), Ranchi - 835 205, India.
| | - Simon Watre Sangma
- Department of Chemistry, Central University of Jharkhand (CUJ), Ranchi - 835 205, India.
| | - Mukesh Kumar Poddar
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
| | - Rajaram Bal
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - G P Singh
- Department of Nanoscience & Technology, Central University of Jharkhand (CUJ), Ranchi - 835 205, India
| | - Ratan Kumar Dey
- Department of Chemistry, Central University of Jharkhand (CUJ), Ranchi - 835 205, India.
| |
Collapse
|
7
|
Oxidative Dehydrogenation of Ethane with CO2 over Mo/LDO Catalyst: The Active Species of Mo Controlled by LDO. Catalysts 2022. [DOI: 10.3390/catal12050493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
A series of the layered double oxides supported molybdenum oxide catalysts were synthesized and evaluated in the oxidative dehydrogenation of ethane with CO2 (CO2-ODHE). The 22.3 wt% Mo/LDO catalyst delivered a 92.3%selectivity to ethylene and a 7.9% ethane conversion at relatively low temperatures. The molybdenum oxide catalysts were fully characterized by XRD, BET, SEM, TEM, UV–vis, Raman TG, and XPS. Isolated [MoO4]2− dominated on the surface of the fresh 12.5 wt% Mo/LDO catalyst. With the increase of the Mo content, the Mo species transformed from [MoO4]2− to [Mo7O24]6− and [Mo8O26]4− on the 22.3 wt% and 30.1 wt% Mo/LDO catalysts, respectively. The redox mechanism was proposed and three Mo species including [MoO4]2−, [Mo7O24]6−, and [Mo8O26]4− showed quite different functions in the CO2-ODHE reaction: [MoO4]2−, with tetrahedral structure, preferred the non-selective pathway; [Mo7O24]6−, with an octahedral construction, promoted the selective pathway; and the existence of [Mo8O26]4− reduced the ability to activate ethane. This work provides detailed insights to further understand the relationship between structure–activity and the role of surface Mo species as well as their aggregation state in CO2-ODHE.
Collapse
|
8
|
Recent advances in application of iron-based catalysts for CO hydrogenation to value-added hydrocarbons. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63802-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Bai J, Song M, Pang J, Wang L, Zhang J, Jiang X, Ni Z, Wang Z, Zhou Q. Highly Dispersed CoO Embedded on Graphitized Ordered Mesoporous Carbon as an Effective Catalyst for Selective Fischer–Tropsch Synthesis of C5+ Hydrocarbons. Front Chem 2022; 10:849505. [PMID: 35223776 PMCID: PMC8866306 DOI: 10.3389/fchem.2022.849505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Herein, we report the high Fischer–Tropsch synthesis performance of the Co-based catalysts supported on graphitized ordered mesoporous carbon (GMC-900) by using a facile strategy. Compared with CMK-3 and active carbon (AC), the obtained GMC-900 by using pollution-free soybean oil as a carbon source exhibited enhanced catalytic performance after loading Co species due to its highly crystallized graphitic structure and uniform dispersion of CoO. As a result, Co/GMC-900 was an effective catalyst with the maximum C5+ selectivity of 52.6%, which much outperformed Co/CMK-3 and Co/AC. This research provides an approach to produce advanced Co-based catalysts with satisfactory performance for efficient Fischer–Tropsch synthesis.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, China
| | - Mingyao Song
- Department of Wood Science, The University of British Columbia, Vancouver, BC, Canada
| | - Jiazheng Pang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, China
| | - Lingling Wang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, China
| | - Jianping Zhang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, China
| | - Xiankai Jiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, China
| | - Zhijiang Ni
- School of Mechanical Engineering and Urban Rail Transit, Changzhou University, Changzhou, China
| | - Zhilei Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- *Correspondence: Zhilei Wang, ; Quanfa Zhou,
| | - Quanfa Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, China
- *Correspondence: Zhilei Wang, ; Quanfa Zhou,
| |
Collapse
|
10
|
Yue X, Liu X, Wang K, Yang Z, Chen X, Dai W, Fu X. Photo-assisted thermal catalytic Fischer-Tropsch Synthesis over Co-Cu/CeO2. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00004k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Generally, the increase in temperature in the Fischer-Tropsch synthesis accelerates the conversion of CO but reduces the selectivity of high value-added products due to the increase in the percentage of...
Collapse
|
11
|
Chen K, Li Y, Wang M, Wang Y, Cheng K, Zhang Q, Kang J, Wang Y. Functionalized Carbon Materials in Syngas Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007527. [PMID: 33667030 DOI: 10.1002/smll.202007527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Functionalized carbon materials are widely used in heterogeneous catalysis due to their unique properties such as adjustable surface properties, excellent thermal conductivity, high surface areas, tunable porosity, and moderate interactions with guest metals. The transformation of syngas into hydrocarbons (known as the Fischer-Tropsch synthesis) or oxygenates is an exothermic reaction and is typically catalyzed by transition metals dispersed on functionalized supports. Various carbon materials have been employed in syngas conversions not only for improving the performance or decreasing the dosage of expensive active metals but also for building model catalysts for fundamental research. This article provides a critical review on recent advances in the utilization of carbon materials, in particular the recently developed functionalized nanocarbon materials, for syngas conversions to either hydrocarbons or oxygenates. The unique features of carbon materials in dispersing metal nanoparticles, heteroatom doping, surface modification, and building special nanoarchitectures are highlighted. The key factors that control the reaction course and the reaction mechanism are discussed to gain insights for the rational design of efficient carbon-supported catalysts for syngas conversions. The challenges and future opportunities in developing functionalized carbon materials for syngas conversions are briefly analyzed.
Collapse
Affiliation(s)
- Kuo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yubing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mengheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jincan Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
12
|
Ma C, Yun Y, Zhang T, Suo H, Yan L, Shen X, Li Y, Yang Y. Insight into the Structural Evolution of the Cobalt Oxides Nanoparticles upon Reduction Process: An
In Situ
Transmission Electron Microscopy Study. ChemCatChem 2021. [DOI: 10.1002/cctc.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenwei Ma
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yifeng Yun
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Tianfu Zhang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Haiyun Suo
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Lai Yan
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Xianfeng Shen
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Yong Yang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| |
Collapse
|
13
|
Effect of support modification and precursor decomposition method on the properties of CoPt/ZrO2 Fischer–Tropsch catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Smarzaro JL, Baldanza MAS, de Almeida AJ, Caytuero A, Salim VMM, Passos FB, Teixeira da Silva V. Effect of Silica Encapsulation on Cobalt-Based Catalysts for Fischer–Tropsch Synthesis under Different Reaction Conditions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juliana L. Smarzaro
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria A. S. Baldanza
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio J. de Almeida
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexander Caytuero
- Departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, Rua Passo da Pátria 156, 24210-240 Niterói, Rio de Janeiro, Brazil
| | - Vera M. M. Salim
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio B. Passos
- Departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, Rua Passo da Pátria 156, 24210-240 Niterói, Rio de Janeiro, Brazil
| | - Victor Teixeira da Silva
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Qin H, Li Y, Dong R, Yuan J, Zhou Y, Hu Y, Jia H, Bai J, Gong J, Jiang J, Zhou Q. An Efficient Catalyst Derived from Carboxylated Lignin-Anchored Iron Nanoparticle Compounds for Carbon Monoxide Hydrogenation Application. ACS OMEGA 2021; 6:16592-16599. [PMID: 34235331 PMCID: PMC8246691 DOI: 10.1021/acsomega.1c01935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Catalytic activity and target product selectivity are strongly correlated to the size, crystallographic phase, and morphology of nanoparticles. In this study, waste lignin from paper pulp industry is employed as the carbon source, which is modified with carboxyl groups at the molecular level to facilitate anchoring of metals, and a new type of carbon-based catalyst was obtained after carbonization. As a result, the size of the metal particles is effectively controlled by the chelation between -COO- and Fe3+. Furthermore, Fe/CM-CL with a particle size of 1.5-2.5 nm shows excellent catalytic performance, the conversion of carbon monoxide reaches 82.3%, and the selectivity of methane reaches 73.2%.
Collapse
Affiliation(s)
- Hengfei Qin
- School
of Chemistry and Environmental Engineering, Jiangsu University of Technology, No. 1801, Zhongwu Road, Changzhou City 213001, China
- Jiangsu
Key Laboratory of E-Waste Recycling, Jiangsu
University of Technology, No. 1801, Zhongwu Road, Changzhou City 213001, China
| | - Yan Li
- School
of Chemistry and Environmental Engineering, Jiangsu University of Technology, No. 1801, Zhongwu Road, Changzhou City 213001, China
| | - Ruoyu Dong
- School
of Chemistry and Environmental Engineering, Jiangsu University of Technology, No. 1801, Zhongwu Road, Changzhou City 213001, China
| | - Jiafeng Yuan
- School
of Chemistry and Environmental Engineering, Jiangsu University of Technology, No. 1801, Zhongwu Road, Changzhou City 213001, China
| | - Yue Zhou
- School
of Chemistry and Environmental Engineering, Jiangsu University of Technology, No. 1801, Zhongwu Road, Changzhou City 213001, China
| | - Yaxin Hu
- School
of Chemistry and Environmental Engineering, Jiangsu University of Technology, No. 1801, Zhongwu Road, Changzhou City 213001, China
| | - Hailang Jia
- School
of Chemistry and Environmental Engineering, Jiangsu University of Technology, No. 1801, Zhongwu Road, Changzhou City 213001, China
| | - Jirong Bai
- Research
Center of secondary Resources and Environment, Changzhou Institute of Technology, No.666, Liaohe Road, Changzhou
City 213022, China
| | - Jie Gong
- School
of Chemistry and Environmental Engineering, Jiangsu University of Technology, No. 1801, Zhongwu Road, Changzhou City 213001, China
| | - Jinlong Jiang
- Faculty
of Chemical Engineering, Key Laboratory for Palygorskite Science and
Applied Technology of Jiangsu Province, National & Local Joint
Engineering Research Center for Deep Utilization Technology of Rock-salt
Resource, Huaiyin Institute of Technology, Huaian 223003, P. R. China
| | - Quanfa Zhou
- Research
Center of secondary Resources and Environment, Changzhou Institute of Technology, No.666, Liaohe Road, Changzhou
City 213022, China
| |
Collapse
|
16
|
Xu H, Shen Z, Zhang S, Chen G, Pan H, Ge Z, Zheng Z, Wang Y, Wang Y, Li X. Arming wood carbon with carbon-coated mesoporous nickel-silica nanolayer as monolithic composite catalyst for steam reforming of toluene. J Colloid Interface Sci 2021; 599:650-660. [PMID: 33979747 DOI: 10.1016/j.jcis.2021.04.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Steam reforming is an effective measure for biomass tar elimination as well as H2-rich syngas (H2 + CO) production. However, the granular or powdery Ni-based catalysts are prone to deactivation, which is caused by inappropriate mass transfer and clogging of catalyst bed. Herein, monolithic wood carbon (WC) with low-tortuosity microchannels is armed with a carbon-coated mesoporous nickel-silica nanocomposite (Ni-SiO2@C) layer via an evaporation-induced self-assembly and calcination procedure for toluene (tar model compound) steam reforming. The quality of the Ni-SiO2@C layer growing on the surface of WC microchannel is affected by the molar ratios of Si/Ni feed. A uniform thin-layer coverage is obtained on the Ni-15SiO2@C/WC (Si/Ni = 15) catalyst, where highly dispersed Ni nanoparticles (average size of 6.6 nm) with appropriate metal-support interaction and remarkable mechanical strength are achieved. The mass transfer, coke resistance, and hydrothermal stability of the Ni-15SiO2@C/WC catalyst were significantly improved by the multilevel structure assembled from the WC microchannels and the secondary ordered SiO2 mesopores. A stable toluene conversion over 97% with an H2 yield of 135 μmol/min was obtained at 600 °C on the Ni-15SiO2@C/WC catalyst. This work opens a new window for facilely constructing high-performance wood carbon-based monolithic tar reforming catalyst.
Collapse
Affiliation(s)
- Haiyang Xu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhangfeng Shen
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Siqian Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Gang Chen
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Hu Pan
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhigang Ge
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yangang Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| |
Collapse
|
17
|
Ghogia AC, Machado BF, Cayez S, Nzihou A, Serp P, Soulantica K, Pham Minh D. Beyond confinement effects in Fischer-Tropsch Co/CNT catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Rajkumar T, Sápi A, Ábel M, Kiss J, Szenti I, Baán K, Gómez-Pérez JF, Kukovecz Á, Kónya Z. Surface Engineering of CeO2 Catalysts: Differences Between Solid Solution Based and Interfacially Designed Ce1−xMxO2 and MO/CeO2 (M = Zn, Mn) in CO2 Hydrogenation Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03591-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Qin H, Zhou Y, Huang Q, Yang Z, Dong R, Li L, Tang J, Zhang C, Jiang F. Metal Organic Framework (MOF)/Wood Derived Multi-cylinders High-Power 3D Reactor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5460-5468. [PMID: 33471497 DOI: 10.1021/acsami.0c21664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
3D monolithic reactor has shown great promise for varied heterogeneous catalysis reactions including water treatment, energy generation and storage, and clean fuel production. As a natural porous material, macroporous wood is regarded as an excellent support for inorganic catalyst due to its abundant polar functional groups and channels. On the other hand, a metal organic framework (MOF) has been widely used as heterogeneous catalyst due to its high specific surface area and large amount of microporosities. Combining macroporous wood and a microporous MOF is expected to produce a high-performance 3D reactor and is demonstrated here for Fischer-Tropsch synthesis. The carbonized MOF/wood reactor retains the original cellular structure with over 180 000 channels/cm2. When being decorated with hexagonal-shaped core-shell Co@C nanoparticles aggregates derived from Co-MOF, the MOF/wood reactor resembles a multi-cylinders reactor for Fischer-Tropsch synthesis. Because of the unique combination of macro- and microporous hierarchical structure, the 3D MOF/wood reactor demonstrates exceptional performance under high gas hourly space velocity (81.2% CO conversion and 48.5% C5+ selectivity at 50 L·h-1·gcat-1 GHSV). This validates that MOF/wood can serve as a multi-cylinders and high-power reactor for catalytic reactions, which is expected to be applicable for environmental and energy applications.
Collapse
Affiliation(s)
- Hengfei Qin
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yue Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Qianyu Huang
- Department of Life Science, Imperial College London, Ascot, Berks, London, SL5 7PY, England
| | - Zhou Yang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Ruoyu Dong
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Long Li
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jianghong Tang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Chunyong Zhang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
20
|
Atsbha TA, Yoon T, Seongho P, Lee CJ. A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol, and hydrocarbons. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101413] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Qiu C, Odarchenko Y, Meng Q, Cong P, Schoen MAW, Kleibert A, Forrest T, Beale AM. Direct observation of the evolving metal-support interaction of individual cobalt nanoparticles at the titania and silica interface. Chem Sci 2020; 11:13060-13070. [PMID: 34123242 PMCID: PMC8163327 DOI: 10.1039/d0sc03113e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Understanding the metal–support interaction (MSI) is crucial to comprehend how the catalyst support affects performance and whether this interaction can be exploited in order to design new catalysts with enhanced properties. Spatially resolved soft X-ray absorption spectroscopy (XAS) in combination with Atomic Force Microscopy (AFM) and Scanning Helium Ion-Milling Microscopy (SHIM) has been applied to visualise and characterise the behaviour of individual cobalt nanoparticles (CoNPs) supported on two-dimensional substrates (SiOxSi(100) (x < 2) and rutile TiO2(110)) after undergoing reduction–oxidation–reduction (ROR). The behaviour of the Co species is observed to be strongly dependent on the type of support. For SiOxSi a weaker MSI between Co and the support allows a complete reduction of CoNPs although they migrate and agglomerate. In contrast, a stronger MSI of CoNPs on TiO2 leads to only a partial reduction under H2 at 773 K (as observed from Co L3-edge XAS data) due to enhanced TiO2 binding of surface-exposed cobalt. SHIM data revealed that the interaction of the CoNPs is so strong on TiO2, that they are seen to spread at and below the surface and even to migrate up to ∼40 nm away. These results allow us to better understand deactivation phenomena and additionally demonstrate a new understanding concerning the nature of the MSI for Co/TiO2 and suggest that there is scope for careful control of the post-synthetic thermal treatment for the tuning of this interaction and ultimately the catalytic performance. Understanding the metal–support interaction (MSI) is crucial to comprehend how the catalyst support affects performance and whether this interaction can be exploited in order to design new catalysts with enhanced properties.![]()
Collapse
Affiliation(s)
- Chengwu Qiu
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK .,Research Complex at Harwell (RCaH) Harwell Didcot Oxfordshire OX11 0FA UK
| | - Yaroslav Odarchenko
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK .,Research Complex at Harwell (RCaH) Harwell Didcot Oxfordshire OX11 0FA UK
| | - Qingwei Meng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Peixi Cong
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK .,Research Complex at Harwell (RCaH) Harwell Didcot Oxfordshire OX11 0FA UK
| | - Martin A W Schoen
- Swiss Light Source, Paul Scherrer Institute Villigen 5232 Switzerland
| | - Armin Kleibert
- Swiss Light Source, Paul Scherrer Institute Villigen 5232 Switzerland
| | - Thomas Forrest
- Diamond Light Source Harwell Didcot Oxfordshire OX11 0DE UK
| | - Andrew M Beale
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK .,Research Complex at Harwell (RCaH) Harwell Didcot Oxfordshire OX11 0FA UK
| |
Collapse
|
22
|
Gao T, Yin Y, Zhu G, Cao Q, Fang W. Co3O4 NPs decorated Mn-Co-O solid solution as highly selective catalyst for aerobic base-free oxidation of 5-HMF to 2,5-FDCA in water. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.03.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Yuan F, Zhang G, Zhu J, Ding F, Zhang A, Song C, Guo X. Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.07.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Xiao G, Han Y, Jing F, Chen M, Chen S, Zhao F, Xiao S, Zhang Y, Li J, Hong J. Preparation of Highly Dispersed Nb 2O 5 Supported Cobalt-Based Catalysts for the Fischer–Tropsch Synthesis. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guiqin Xiao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yaoyao Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Fangli Jing
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, China
| | - Muhua Chen
- Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Sufang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430073, China
| | - Fuzhen Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Shaohua Xiao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jingping Hong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
25
|
Hong J, Wang B, Xiao G, Wang N, Zhang Y, Khodakov AY, Li J. Tuning the Metal–Support Interaction and Enhancing the Stability of Titania-Supported Cobalt Fischer–Tropsch Catalysts via Carbon Nitride Coating. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingping Hong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Bo Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Guiqin Xiao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Ning Wang
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Andrei Y. Khodakov
- Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
26
|
Fan S, Wang Y, Li Z, Zeng Z, Guo S, Huang S, Ma X. Carbon layer-coated ordered mesoporous silica supported Co-based catalysts for higher alcohol synthesis: The role of carbon source. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Reddy NR, Bharagav U, Kumari MM, Cheralathan KK, Shankar MV, Reddy KR, Saleh TA, Aminabhavi TM. Highly efficient solar light-driven photocatalytic hydrogen production over Cu/FCNTs-titania quantum dots-based heterostructures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109747. [PMID: 31704644 DOI: 10.1016/j.jenvman.2019.109747] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 05/06/2023]
Abstract
The need for clean and eco-friendly energy sources has increased enormously over the years due to adverse impacts caused by the detrimental fossil fuel energy sources on the environment. This work reports the safest and most efficient route for hydrogen generation using solar light receptive functionalized carbon nanotubes-titania quantum dots (FCNT-TQDs) as photocatalysts under the influence of solar light irradiation. Predominantly, dual capability of CNT as co-catalyst and photo-sensitizer reduced the recombination rate of charge carriers, and facilitated the efficient light harvesting. The bulk production of hydrogen via water harvesting is considered, wherein photocatalyst synthesized was tuned by the optimum addition of copper to achieve higher production rate of hydrogen up to 54.4 mmol h-1g-1, nearly 25-folds higher than that of pristine TiO2 quantum dots. Addition of copper has a crucial role in improving the rate of hydrogen generation. The ternary composite exhibited 5.4-times higher hydrogen production compared to FCNT-TQDs composite.
Collapse
Affiliation(s)
- N Ramesh Reddy
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science &Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - U Bharagav
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science &Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - M Mamatha Kumari
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science &Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India.
| | - K K Cheralathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - M V Shankar
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science &Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Kakarla Raghava Reddy
- The School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum & Minerals, B.O. Box: 346, Dhahran, 31261, Saudi Arabia
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad, 580 002, India.
| |
Collapse
|
28
|
Huang L, Lv Y, Liu S, Cui H, Zhao Z, Zhao H, Liu P, Xiong W, Hao F, Luo H. Non-Noble Metal Ni Nanoparticles Supported on Highly Dispersed TiO2-Modified Activated Carbon as an Efficient and Recyclable Catalyst for the Hydrogenation of Halogenated Aromatic Nitro Compounds under Mild Conditions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b04397] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Huang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yang Lv
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Sihua Liu
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412000, China
| | - Haishuai Cui
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zeyong Zhao
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Hao Zhao
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Pingle Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
- Engineering Research Centre for Chemical Process Simulation and Optimization, Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Wei Xiong
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
| | - Fang Hao
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- Engineering Research Centre for Chemical Process Simulation and Optimization, Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - He’an Luo
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
- Engineering Research Centre for Chemical Process Simulation and Optimization, Ministry of Education, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
29
|
Chen S, Qiu Y, Xing X, Wang C, Liu C, Zhang Y, Hong J, Li J, Zhang D. Amino-Ended Hyperbranched Polyamide Modified SBA-15 as Support for Highly Efficient Cobalt Fischer-Tropsch Synthesis Catalyst. Macromol Res 2019. [DOI: 10.1007/s13233-020-8040-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Abrokwah RY, Rahman MM, Deshmane VG, Kuila D. Effect of titania support on Fischer-Tropsch synthesis using cobalt, iron, and ruthenium catalysts in silicon-microchannel microreactor. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Vasiliades M, Kalamaras C, Govender N, Govender A, Efstathiou A. The effect of preparation route of commercial Co/γ-Al2O3 catalyst on important Fischer-Tropsch kinetic parameters studied by SSITKA and CO-DRIFTS transient hydrogenation techniques. J Catal 2019. [DOI: 10.1016/j.jcat.2019.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Han Y, Jin Y, Hong J, Jin S, Zhang Y, Li J. Properties of Carbon Xerogels Supported Cobalt‐Based Catalysts and Their Performance in CO Hydrogenation Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201902502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaoyao Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| | - Yan Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| | - Jingping Hong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| |
Collapse
|
33
|
Jin Y, Xiao G, Han Y, Sun F, Zhang D, Zhang Y, Li J, Hong J. Products selectivity and reaction stability of cobalt-based Fischer-Tropsch catalysts affected by glow discharge plasma treatment and silica structure. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Qin C, Hou B, Wang J, Wang G, Ma Z, Jia L, Li D. Stabilizing Optimal Crystalline Facet of Cobalt Catalysts for Fischer-Tropsch Synthesis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33886-33893. [PMID: 31498584 DOI: 10.1021/acsami.9b10174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing efficient catalysts with a stable optimal crystalline facet is highly promising yet challenging for the Fischer-Tropsch synthesis (FTS). Here, we demonstrate a coating strategy to fabricate a stable optimal cobalt-facet catalyst. The catalyst (Co@C-SiO2) is composed of a single crystalline core, a wrapped carbon layer, and an amorphous silica shell. The moderate metal-support interaction endowed by carbon, combining the confined effect of the silica shell, protects and maintains the single-crystal structure and optimal crystalline facet of the core, that is, Co(10-11). Due to the unique core-shell nanostructure and optimal cobalt facets, our Co@C-SiO2 catalyst shows a remarkable low methane selectivity (5.3%), high activity (TOF = 4.0 × 10-2 s-1), C5+ selectivity (88.9%), and more importantly, excellent stability (TOS = 168 h) in FTS.
Collapse
Affiliation(s)
- Chuan Qin
- State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , Shanxi , PR China
- University of Chinese Academy of Sciences , Beijing 100049 , PR China
| | - Bo Hou
- State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , Shanxi , PR China
| | - Jungang Wang
- State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , Shanxi , PR China
| | - Gang Wang
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Zhongyi Ma
- State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , Shanxi , PR China
| | - Litao Jia
- State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , Shanxi , PR China
| | - Debao Li
- State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , Shanxi , PR China
| |
Collapse
|
35
|
Evolution of cobalt species in glow discharge plasma prepared CoRu/SiO2 catalysts with enhanced Fischer-Tropsch synthesis performance. J Catal 2019. [DOI: 10.1016/j.jcat.2019.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Zhong M, Guo Y, Wang J, Ma Z, Xia M, Chen C, Jia L, Hou B, Li D. The Fischer–Tropsch synthesis performance over cobalt supported on silicon-based materials: the effect of thermal conductivity of the support. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00578a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of thermal conductivity of support on the catalytic performance of supported Co-based Fischer–Tropsch catalysts is investigated.
Collapse
Affiliation(s)
- Min Zhong
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- PR China
- University of Chinese Academy of Sciences
| | - Yuanyuan Guo
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- PR China
- University of Chinese Academy of Sciences
| | - Jungang Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Zhancheng Ma
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Ming Xia
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Congbiao Chen
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Litao Jia
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- PR China
- Dalian National Laboratory for Clean Energy
| | - Bo Hou
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Debao Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- PR China
- Dalian National Laboratory for Clean Energy
| |
Collapse
|
37
|
Liu C, He Y, Wei L, Zhao Y, Zhang Y, Zhao F, Lyu S, Chen S, Hong J, Li J. Effect of TiO2 Surface Engineering on the Performance of Cobalt-Based Catalysts for Fischer–Tropsch Synthesis. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b05069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chengchao Liu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yu He
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Liang Wei
- Department College of Chemistry and Materials Science, Institution Guangxi Teachers Education University, Nanning 530001, China
| | - Yanxi Zhao
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Fuzhen Zhao
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Shuai Lyu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Sufang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jingping Hong
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
38
|
Cheng B, Wang X, Lin Q, Zhang X, Meng L, Sun RC, Xin F, Ren J. New Understandings of the Relationship and Initial Formation Mechanism for Pseudo-lignin, Humins, and Acid-Induced Hydrothermal Carbon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11981-11989. [PMID: 30376319 DOI: 10.1021/acs.jafc.8b04754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The generation of pseudo-lignin as byproduct during the lignocellulose acidic pretreatment has been proposed for many years. However, the detailed formation mechanism is still unclear. Moreover, there is a lack of understanding in the initial reaction during the formation of humins (byproducts in furfural production) and acid-induced hydrothermal carbon (carbon material). In this work, the initial formation of these three substances were investigated. We first found the common feature of their formation process was that carbohydrate-hydrolyzed compounds could form black polymers by condensing in acidic media, but the difference was dependent on the reaction degree. Furthermore, the results revealed that oxidation was an accelerator for condensations during producing black polymers because oxidized compounds could enhance the acidity of the reaction system. However, condensations of oxidized compounds were more difficult to proceed. Meanwhile, during the initial stage, the dominating pathway was that furfural condensed with itself and isomerized xylose via aldol-condensation.
Collapse
Affiliation(s)
- Banggui Cheng
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Xiao Zhang
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Ling Meng
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Run-Cang Sun
- Center for Lignocellulose Science and Engineering, and Liaoning Key Laboratory Pulp and Paper Engineering , Dalian Polytechnic University , Dalian 116034 , China
| | - Fengxue Xin
- Biotechnology and Pharmaceutical Engineering , Nanjing University of Technology , Nanjing 211800 , China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
39
|
Liu X, Liu X, Wang X. Splitting of Hydrogen Sulfide by Group 14 Elements (Si, Ge, Sn, Pb) in Excess Argon at Cryogenic Temperatures. J Phys Chem A 2018; 122:7023-7032. [DOI: 10.1021/acs.jpca.8b04428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xing Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaorui Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xuefeng Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
40
|
Hong J, Du J, Wang B, Zhang Y, Liu C, Xiong H, Sun F, Chen S, Li J. Plasma-Assisted Preparation of Highly Dispersed Cobalt Catalysts for Enhanced Fischer–Tropsch Synthesis Performance. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00960] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingping Hong
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan, Hubei 430073, China
| | - Juan Du
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan, Hubei 430073, China
| | - Bo Wang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan, Hubei 430073, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan, Hubei 430073, China
| | - Chengchao Liu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan, Hubei 430073, China
| | - Haifeng Xiong
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Fenglou Sun
- College of Electronics and Information, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Sufang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430073, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan, Hubei 430073, China
| |
Collapse
|