1
|
Li Y, Leng X, Zhang Z, Niu X, Zhu Y. Modulating NH 3 oxidation and inhibiting sulfate deposition to improve NH 3-SCR denitration performance by controlling Mn/Nb ratio over Mn aNbTi 2O x (a = 0.6-0.9) catalysts. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136568. [PMID: 39577284 DOI: 10.1016/j.jhazmat.2024.136568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
The MnaNbTi2Ox (a = 0.6-0.9) catalysts for NH3 selective catalytic reduction denitration were prepared using the co-precipitation method. Among them, Mn0.7NbTi2Ox exhibits well low-temperature catalytic performance, wide activity temperature range (180-480 ℃), and worthy resistance to SO2 even with H2O. XRD was used to investigate the structure of MnaNbTi2Ox, in which Mn and Nb oxides highly dispersed in the MnaNbTi2Ox catalysts and Nb can dope into the crystal lattice of TiO2. XRF and XPS results show Nb can affect the transfer of electrons to Mn4+, and changing the Mn/Nb ratio can regulate the Mn4+ content on the MnaNbTi2Ox catalysts. H2-TPR, NH3 and NO oxidation results verify that Nb inhibits the oxidation capacity of MnaNbTi2Ox, and altering the Mn/Nb ratio can get appropriate oxidation property, which facilitates low-temperature NH3 activation and limit non-selective oxidation for NH3. In-situ DRIFTS results show Nb-OH bonds can provide new Brønsted acid sites, and both Lewis and Brønsted acid sites are active. Furthermore, Nb addition prevents sulphate deposition on the catalyst. The effect of Mn/Nb on catalytic performance, N2O formation and inhibition, SO2 poisoning, SO2 effect on NH3-SCR, and the enhancement of SO2 tolerance are also analyzed.
Collapse
Affiliation(s)
- Yushi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials, Heilongjiang University, No.74 Xuefu Road, Harbin 150080, PR China
| | - Xuesong Leng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials, Heilongjiang University, No.74 Xuefu Road, Harbin 150080, PR China
| | - Zhiping Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials, Heilongjiang University, No.74 Xuefu Road, Harbin 150080, PR China
| | - Xiaoyu Niu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials, Heilongjiang University, No.74 Xuefu Road, Harbin 150080, PR China
| | - Yujun Zhu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials, Heilongjiang University, No.74 Xuefu Road, Harbin 150080, PR China.
| |
Collapse
|
2
|
Namdari M, Haghighat F, Lee CS. Ce-doped MnO x mixed with polyvinylidene fluoride as an amplified ozone decomposition filter medium in humid conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65371-65384. [PMID: 39579188 DOI: 10.1007/s11356-024-35588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Ozone is a hazardous air pollutant with significant adverse effects on human health and the environment. With the growing industrial use of ozone, effective ozone removal systems have become essential, especially to protect workers' health. MnOx-based catalysts offer substantial promise for ozone decomposition; however, a major challenge in their application is water molecule poisoning, particularly in high humidity conditions. This study addresses this limitation by developing a hybrid filtration medium that combines an enhanced MnOx catalyst with hydrophobic polymer particles. In bench-scale tests simulating ozone filtration scenarios, MnOx-based catalysts synthesized using solid interface reaction method demonstrated higher efficiency than those produced by co-precipitation method. Among the synthesized catalysts, Ce(0.1)Mn-S catalyst (a Cerium doped catalyst prepared by solid interface reaction) achieved the highest efficiency, notably under high humidity (47.5% efficiency after1 h at 10 ppm and RH = 80%, which is 1.6 times higher than other catalysts). The catalyst, however, experienced efficiency loss under prolonged exposure to humidity (22% after 6 h). To counteract this, poly(vinylidene fluoride) particles-a hydrophobic, ozone-compatible polymer-were integrated into the catalytic medium, resulting a dramatic performance boost (91.5% efficiency after 1 h and 50% after 6 h, under the aforementioned conditions) by hindering interparticle water condensation. The proposed hybrid medium is expected to offer considerable utility in diverse ozone removal settings.
Collapse
Affiliation(s)
- Marzieh Namdari
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada.
| | - Chang-Seo Lee
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
3
|
Yang X, Ma Z, Wang D, Yu X, Zhu X, Wang T, Yuan Y, Guo Y, Shi B, Ge M, Ru G. Oxygen vacancy-mediated Mn 2O 3 catalyst with high efficiency and stability for toluene oxidation. J Colloid Interface Sci 2024; 675:815-824. [PMID: 39002232 DOI: 10.1016/j.jcis.2024.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Oxygen vacancy engineering in transition metal oxides is an effective strategy for improving catalytic performance. Herein, defect-enriched Mn2O3 catalysts were constructed by controlling the calcination temperature. The high content of oxygen vacancies and accompanying Mn4+ ions were generated in Mn2O3 catalysts calcined at low temperature, which could greatly improve the low-temperature reducibility and migration of surface oxygen species. DFT theoretical calculations further confirmed that molecular oxygen and toluene were easily adsorbed over defective α-Mn2O3 (222) facets with an energy of -0.29 and -0.48 eV, respectively, and corresponding OO bond length is stretched to 1.43 Å, resulting in the highly reactive oxygen species. Mn2O3-300 catalyst with abundant oxygen vacancies exhibited the highest specific reaction rate and lowest activation energy. Furthermore, the optimized catalyst possessed the outstanding stability, water tolerance and CO2 yield. In comparison with the fresh Mn2O3-300 catalyst, the physical structure and surface property of the used catalyst remained almost unchanged regardless of whether undergoing the stability test at consecutive catalytic runs as well as high temperature, and water resistance test. In situ DRIFTS spectra further elucidated that introducing the water vapor had little effect on the reaction intermediates, indicating the excellent durability of the defect-enriched catalyst.
Collapse
Affiliation(s)
- Xueqin Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ziqing Ma
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Dadao Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Xiaolin Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Xiuhong Zhu
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ting Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yuan Yuan
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yucong Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Bo Shi
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guangxin Ru
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
4
|
Yang S, Cheng S, Xu F, Liu X, Zhu X, Liu H, Liu F, Chen DZ, Sun C. Strikingly Facile Cleavage of N-H/N-O Bonds Induced by Surface Frustrated Lewis Pair on CeO 2(110) to Boost NO Reduction by NH 3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19027-19037. [PMID: 39387477 DOI: 10.1021/acs.est.4c05249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Ceria with surface solid frustrated Lewis pairs (FLPs), formed by regulating oxygen vacancies, demonstrate remarkable ability in activating small molecules. In this work, we extended the application of FLPs on CeO2(110) to the selective catalytic reduction of NO by NH3 (NH3-SCR), finding a notable enhancement in performance compared to ordinary CeO2(110). Additionally, an innovative approach involving H2 treatment was discovered to increase the number of FLPs, thereby further boosting the NH3-SCR efficiency. Typically, NH3-SCR on regular CeO2 follows the Eley-Rideal (E-R) mechanism. However, density functional theory (DFT) calculations revealed a significant reduction in the energy barriers for the activation of N-O and N-H bonds under the Langmuir-Hinshelwood (L-H) mechanism with FLPs present. This transition shifted the reaction mechanism from the E-R pathway on regular R-CeO2 to the L-H pathway on FLP-rich FR-CeO2, as corroborated by the experimental findings. The practical application of FLPs was realized by loading MoO3 onto FLP-rich FR-CeO2, leveraging the synergistic effects of acidic sites and FLPs. This study provides profound insights into how FLPs facilitate N-H/N-O bond activation in small molecules, such as NH3 and NO, offering a new paradigm for catalyst design based on catalytic mechanism research.
Collapse
Affiliation(s)
- Shan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Siqing Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Fang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Xueqing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Xuechen Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Hao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Fudong Liu
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, California 92521, United States
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
5
|
Zhang J, Ma Z, Cao A, Yan J, Wang Y, Yu M, Hu L, Pan S. Research progress of Mn-based low-temperature SCR denitrification catalysts. RSC Adv 2024; 14:32583-32601. [PMID: 39421682 PMCID: PMC11483454 DOI: 10.1039/d4ra05140h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Selective catalytic reduction (SCR) is a efficiently nitrogen oxides removal technology from stationary source flue gases. Catalysts are key component in the technology, but currently face problems including poor low-temperature activity, narrow temperature windows, low selectivity, and susceptibility to water passivation and sulphur dioxide poisoning. To develop high-efficiency low-temperature denitrification activity catalyst, manganese-based catalysts have become a focal point of research globally for low-temperature SCR denitrification catalysts. This article investigates the denitrification efficiency of unsupported manganese-based catalysts, exploring the influence of oxidation valence, preparation method, crystallinity, crystal form, and morphology structure. It examines the catalytic performance of binary and multicomponent unsupported manganese-based catalysts, focusing on the use of transition metals and rare earth metals to modify manganese oxide. Furthermore, the synergistic effect of supported manganese-based catalysts is studied, considering metal oxides, molecular sieves, carbon materials, and other materials (composite carriers and inorganic non-metallic minerals) as supports. The reaction mechanism of low-temperature denitrification by manganese-based catalysts and the mechanism of sulphur dioxide/water poisoning are analysed in detail, and the development of practical and efficient manganese-based catalysts is considered.
Collapse
Affiliation(s)
- Jiadong Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou 310027 China +86 0571 87952822
- Institute for Carbon Neutrality, Ningbo Innovation Center, Zhejiang University Ningbo 315100 China
| | - Zengyi Ma
- State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou 310027 China +86 0571 87952822
- Institute for Carbon Neutrality, Ningbo Innovation Center, Zhejiang University Ningbo 315100 China
| | - Ang Cao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou 310027 China +86 0571 87952822
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou 310027 China +86 0571 87952822
- Institute for Carbon Neutrality, Ningbo Innovation Center, Zhejiang University Ningbo 315100 China
| | - Yuelan Wang
- Shenyang Environmental Resources Exchange Shenyang 110000 China
| | - Miao Yu
- Xizi Clean Energy Equipment Manufacturing Co., Ltd Hangzhou 311500 China
| | - Linlin Hu
- Xizi Clean Energy Equipment Manufacturing Co., Ltd Hangzhou 311500 China
| | - Shaojing Pan
- Xizi Clean Energy Equipment Manufacturing Co., Ltd Hangzhou 311500 China
| |
Collapse
|
6
|
Park ED. Recent Progress on Low-Temperature Selective Catalytic Reduction of NO x with Ammonia. Molecules 2024; 29:4506. [PMID: 39339501 PMCID: PMC11434452 DOI: 10.3390/molecules29184506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) has been implemented in response to the regulation of NOx emissions from stationary and mobile sources above 300 °C. However, the development of NH3-SCR catalysts active at low temperatures below 200 °C is still needed to improve the energy efficiency and to cope with various fuels. In this review article, recent reports on low-temperature NH3-SCR catalysts are systematically summarized. The redox property as well as the surface acidity are two main factors that affect the catalytic activity. The strong redox property is beneficial for the low-temperature NH3-SCR activity but is responsible for N2O formation. The multiple electron transfer system is more plausible for controlling redox properties. H2O and SOx, which are often found with NOx in flue gas, have a detrimental effect on NH3-SCR activity, especially at low temperatures. The competitive adsorption of H2O can be minimized by enhancing the hydrophobic property of the catalyst. Various strategies to improve the resistance to SOx poisoning are also discussed.
Collapse
Affiliation(s)
- Eun Duck Park
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
7
|
Xiao Y, Peng T, Luo Y, Jiao L, Huang T, Li H. Facile, green and scalable synthesis of single-layer manganese dioxide nanosheets and its application for GSH and cTnI colorimetric detection. Analyst 2024; 149:3961-3970. [PMID: 38980709 DOI: 10.1039/d4an00689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Manganese dioxide (MnO2) nanosheets possess unique physical and chemical properties, making them widely applicable in various fields, such as chemistry and biomedicine. Although MnO2 nanosheets are produced using bottom-up wet chemistry synthesis methods, their scale is below the gram level and requires a long processing time, restricting their effective scale-up from laboratory to market. We report a facile, green and scalable synthesis of MnO2 nanosheets by mixing Shiranui mandarin orange juice and KMnO4 for 30 minutes. We produced more than one gram (1.095) of MnO2 nanosheets with a 0.65 nm mean thickness and a 50 nm mean lateral size. Furthermore, we established a visual colorimetric biosensing strategy based on MnO2 nanosheets for the assay of glutathione (GSH) and cardiac troponin I (cTnI), offering high sensitivity and feasibility in clinical samples. For GSH, the limit of detection was 0.08 nM, and for cTnI, it was 0.70 pg mL-1. Meanwhile, the strategy can be used for real-time analysis by applying a smartphone-enabled biosensing strategy, which can provide point-of-care testing in remote areas.
Collapse
Affiliation(s)
- Yao Xiao
- College of Optoelectronics Technology, Shuangliu Industry College, Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China.
| | - TaoMei Peng
- College of Optoelectronics Technology, Shuangliu Industry College, Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China.
| | - YuXiao Luo
- College of Optoelectronics Technology, Shuangliu Industry College, Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China.
| | - Lei Jiao
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - TaiXing Huang
- College of Optoelectronics Technology, Shuangliu Industry College, Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China.
| | - He Li
- College of Optoelectronics Technology, Shuangliu Industry College, Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China.
| |
Collapse
|
8
|
Li S, Zhang B, Yang Y, Zhu F, Zhao D, Shi S, Wang S, Ding S, Chen C. Insights into the Acidic Site in Manganese Oxide in Terms of the Sulfur and Water Tolerance of Low-Temperature NH 3 Selective Catalytic Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14504-14514. [PMID: 38951117 DOI: 10.1021/acs.langmuir.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
A critical constraint impeding the utilization of Mn-based oxide catalysts in NH3 selective catalytic reduction (NH3-SCR) is their inadequate resistance to water and sulfur. This vulnerability primarily arises from the propensity of SO2 to bind to the acidic site in manganese oxide, resulting in the formation of metal sulfate and leading to the irreversible deactivation of the catalyst. Therefore, gaining a comprehensive understanding of the detrimental impact of SO2 on the acidic sites and elucidating the underlying mechanism of this toxicity are of paramount importance for the effective application of Mn-based catalysts in NH3-SCR. Herein, we strategically modulate the acidity of the manganese oxide catalyst surface through the incorporation of Ce and Nb. Comprehensive analyses, including thermogravimetry, NH3 temperature-programmed desorption, in situ diffused reflectance infrared Fourier transform spectroscopy, and density functional theory calculations, reveal that SO2 exhibits a propensity for adsorption at strongly acidic sites. This mechanistic understanding underscores the pivotal role of surface acidity in governing the sulfur resistance of manganese oxide.
Collapse
Affiliation(s)
- Shengchen Li
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yanping Yang
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Fangyu Zhu
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Dan Zhao
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shunmin Ding
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
9
|
Huang L, Qin S, Wen C, Xu Y, Lin Z, Wang Y. An off-on fluorescence method for acid phosphatase assay based on the inner filter effect of MnO 2 nanosheets on vitamin B 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124263. [PMID: 38593539 DOI: 10.1016/j.saa.2024.124263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Fluorescence analysis has attracted much attention due to its rapidity and sensitivity. The present work describes a novel fluorescence detection method for acid phosphatase (ACP) on the basis of inner-filter effect (IFE), where MnO2 nanosheets (MnO2 NSs) and vitamin B2 (VB2) are served as absorbers and fluorophores, respectively. In the absence of ACP, the absorption band of MnO2 NSs overlaps well with the excitation band of VB2, resulting in effective IFE and inhibition of VB2 fluorescence. In the presence of ACP, 2-phospho-L-ascorbic acid trisodium salt (AAP) is hydrolyzed to generate ascorbic acid (AA), which efficiently trigger the reduction of MnO2 NSs into Mn2+ ions, causing the weakening of the MnO2 NSs absorption band and the recovery of VB2 fluorescence. Further investigation indicates that the fluorescence recovery degree of VB2 increases with the increase of ACP concentration. Under selected experimental conditions, the proposed method can achieve sensitive detection of ACP in the ranges of 0.5-4.0 mU/mL and 4.0-15 mU/mL along with a limit of detection (LOD) as low as 0.14 mU/mL. Finally, this method was successfully applied for the detection of ACP in human serum samples with satisfactory recoveries in the range of 95.0 %-108 %.
Collapse
Affiliation(s)
- Li Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530003, China
| | - Shangying Qin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530003, China
| | - Chuang Wen
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530003, China
| | - Yuanjin Xu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530003, China.
| | - Zhongwei Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530003, China
| | - Yilin Wang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530003, China.
| |
Collapse
|
10
|
Zhu TT, Zhao Y, Li QK, Gao SS, Chi CL, Tang SL, Chen XB. High-Throughput Screening Strategy for Electrocatalysts for Selective Catalytic Oxidation of Formaldehyde to Formic Acid. J Phys Chem Lett 2024; 15:6183-6189. [PMID: 38836642 DOI: 10.1021/acs.jpclett.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Electrocatalytic oxidation of formaldehyde (FOR) is an effective way to prevent the damage caused by formaldehyde and produce high-value products. A screening strategy of a single-layer MnO2-supported transition metal catalyst for the selective oxidation of formaldehyde to formic acid was designed by high-throughput density functional calculation. N-MnO2@Cu and MnO2@Cu are predicted to be potential FOR electrocatalysts with potential-limiting steps (PDS) of 0.008 and -0.009 eV, respectively. Electronic structure analysis of single-atom catalysts (SACs) shows that single-layer MnO2 can regulate the spin density of loaded transition metal and thus regulate the adsorption of HCHO (Ead), and Ead is volcanically distributed with the magnetic moment descriptor -|mM - mH|. In addition, the formula quantifies Ead and |mM - mH| to construct a volcano-type descriptor α describing the PDS [ΔG(*CHO)]. Other electronic and structural properties of SACs and α are used as input features for the GBR method to construct machine learning models predicting the PDS (R2 = 0.97). This study hopes to provide some insights into FOR electrocatalysts.
Collapse
Affiliation(s)
| | - Ying Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Qing-Kai Li
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Shuai-Shuai Gao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Chun-Lei Chi
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Shuang-Ling Tang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Xue-Bo Chen
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100091, P. R. China
| |
Collapse
|
11
|
Li X, Ren S, Chen Z, Wang M, Chen L, Chen H, Yin X. A Review of Mn-Based Catalysts for Abating NO x and CO in Low-Temperature Flue Gas: Performance and Mechanisms. Molecules 2023; 28:6885. [PMID: 37836730 PMCID: PMC10574052 DOI: 10.3390/molecules28196885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Mn-based catalysts have attracted significant attention in the field of catalytic research, particularly in NOx catalytic reductions and CO catalytic oxidation, owing to their good catalytic activity at low temperatures. In this review, we summarize the recent progress of Mn-based catalysts for the removal of NOx and CO. The effects of crystallinity, valence states, morphology, and active component dispersion on the catalytic performance of Mn-based catalysts are thoroughly reviewed. This review delves into the reaction mechanisms of Mn-based catalysts for NOx reduction, CO oxidation, and the simultaneous removal of NOx and CO. Finally, according to the catalytic performance of Mn-based catalysts and the challenges faced, a possible perspective and direction for Mn-based catalysts for abating NOx and CO is proposed. And we expect that this review can serve as a reference for the catalytic treatment of NOx and CO in future studies and applications.
Collapse
Affiliation(s)
- Xiaodi Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; (X.L.); (Z.C.); (M.W.); (L.C.); (X.Y.)
| | - Shan Ren
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; (X.L.); (Z.C.); (M.W.); (L.C.); (X.Y.)
| | - Zhichao Chen
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; (X.L.); (Z.C.); (M.W.); (L.C.); (X.Y.)
| | - Mingming Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; (X.L.); (Z.C.); (M.W.); (L.C.); (X.Y.)
| | - Lin Chen
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; (X.L.); (Z.C.); (M.W.); (L.C.); (X.Y.)
| | - Hongsheng Chen
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; (X.L.); (Z.C.); (M.W.); (L.C.); (X.Y.)
| | - Xitao Yin
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, China
| |
Collapse
|
12
|
Gold nanoclusters-manganese dioxide composite-based fluorescence immunoassay for sensitive monitoring of fenitrothion degradation in Chinese cabbage. Food Chem 2023; 412:135551. [PMID: 36738532 DOI: 10.1016/j.foodchem.2023.135551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Understanding the residues and degradation of organophosphorus pesticides (OPs) in crops has attracted increasing attention. Herein, we designed a sensitive fluorescence immunoassay (FIA) by employing nanobody-linked alkaline phosphatase (Nb-ALP) and gold nanoclusters anchored manganese dioxide (AuNCs-MnO2) composite. In immunoassay protocol, Nb-ALP is used to competitively recognize the coating antigen and pesticide. After competitive immunoreaction, alkaline phosphatase catalyzes l-ascorbic acid-2-phosphate to produce ascorbic acid that can trigger the decomposition of the AuNCs-MnO2 composite, regulating the fluorescence response. As a proof-of-concept, fenitrothion (FNT) is chosen as the target analyte. As a result, the developed FIA exhibits high detection sensitivity (IC10 = 5.78 pg/mL), which is about 56-times higher than that of the conventional enzyme-linked immunosorbent assay. The developed FIA has been successfully applied for precisely monitoring the degradation of FNT in Chinese cabbage with excellent anti-interference ability and reproducibility, paving the way for the determination of pesticide residues in real food samples.
Collapse
|
13
|
Che Y, Liu X, Shen Z, Zhang K, Hu X, Chen A, Zhang D. Improved N 2 Selectivity of MnO x Catalysts for NO x Reduction by Engineering Bridged Mn 3+ Sites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7434-7443. [PMID: 37200447 DOI: 10.1021/acs.langmuir.3c00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mn-based catalysts are promising for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures due to their excellent redox capacity. However, the N2 selectivity of Mn-based catalysts is an urgent problem for practical application owing to excessive oxidizability. To solve this issue, we report a Mn-based catalyst using amorphous ZrTiOx as the support (Mn/ZrTi-A) with both excellent low-temperature NOx conversion and N2 selectivity. It is found that the amorphous structure of ZrTiOx modulates the metal-support interaction for anchoring the highly dispersed active MnOx species and constructs a uniquely bridged Mn3+ bonded with the support through oxygen linked to Ti4+ and Zr4+, respectively, which regulates the optimal oxidizability of the MnOx species. As a result, Mn/ZrTi-A is not conducive to the formation of ammonium nitrate that readily decomposes to N2O, thus further increasing N2 selectivity. This work investigates the role of an amorphous support in promoting the N2 selectivity of a manganese-based catalyst and sheds light on the design of efficient low-temperature deNOx catalysts.
Collapse
Affiliation(s)
- Yue Che
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhi Shen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Kai Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aling Chen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Wang Y, Chen L, Wang W, Wang X, Li B, Zhang S, Li W, Li S. Revealing the Excellent Low-Temperature Activity of the Fe 1-xCe xO δ-S Catalyst for NH 3-SCR: Improvement of the Lattice Oxygen Mobility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17834-17847. [PMID: 37000486 DOI: 10.1021/acsami.3c00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The development of selective catalytic reduction catalysts by NH3(NH3-SCR) with excellent low-temperature activity and a wide temperature window is highly demanded but is still very challenging for the elimination of NOx emission from vehicle exhaust. Herein, a series of sulfated modified iron-cerium composite oxide Fe1-xCexOδ-S catalysts were synthesized. Among them, the Fe0.79Ce0.21Oδ-S catalyst achieved the highest NOx conversion of more than 80% at temperatures of 175-375 °C under a gas hourly space velocity of 100000 h-1. Sulfation formed a large amount of sulfate on the surface of the catalyst and provided rich Brønsted acid sites, thus enhancing its NH3 adsorption capacity and improving the overall NOx conversion efficiency. The introduction of Ce is the main determining factor in regulating the low-temperature activity of the catalyst by modulating its redox ability. Further investigation found that there is a strong interaction between Fe and Ce, which changed the electron density around the Fe ions in the Fe0.79Ce0.21Oδ-S catalyst. This weakened the strength of the Fe-O bond and improved the lattice oxygen mobility of the catalyst. During the reaction, the iron-cerium composite oxide catalyst showed higher surface lattice oxygen activity and a faster replenishment rate of bulk lattice oxygen. This significantly improved the adsorption and activation of NOx species and the activation of NH3 species on the catalyst surface, thus leading to the superior low-temperature activity of the catalyst.
Collapse
Affiliation(s)
- Yaqing Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Weijia Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoxiang Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Beilei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Huang L, Qin S, Xu Y, Cheng S, Yang J, Wang Y. Enzyme-free colorimetric detection of uric acid on the basis of MnO2 nanosheets - mediated oxidation of 3, 3', 5, 5'- tetramethylbenzidine. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Chen W, Zou R, Wang X. Toward an Atomic-Level Understanding of the Catalytic Mechanism of Selective Catalytic Reduction of NO x with NH 3. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weibin Chen
- School of Materials Science and Engineering, Peking University, Beijing100871, People’s Republic of China
| | - Ruqiang Zou
- School of Materials Science and Engineering, Peking University, Beijing100871, People’s Republic of China
| | - Xidong Wang
- School of Materials Science and Engineering, Peking University, Beijing100871, People’s Republic of China
| |
Collapse
|
17
|
Wang T, Fu Q, Wang S, Xing D, Bai Y, Wang S. Enhanced water-resistance of Mn-based catalysts for ambient temperature ozone elimination: Roles of N and Pd modification. CHEMOSPHERE 2022; 303:135014. [PMID: 35598789 DOI: 10.1016/j.chemosphere.2022.135014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Cryptomelane-type MnO2 catalysts own excellent ozone (O3) decomposition performance. However, it is urgent to improve their long-term stability at ambient temperature, especially under the presence of water. In the present study, a modification strategy was proposed by N-doping and the successive Pd introduction. The N-doping of MnO2 by NH4Cl (NH4-MnO2) can increase its activity for O3 decomposition. And almost 100% O3 decomposition was achieved within 24 h under water-free atmosphere at ambient temperature (25 °C). Successive Pd addition further promoted the water-resistance of NH4-MnO2 catalyst under high humidity (RH > 90%). In combination with detailed characterizations, it indicated that the enhancements on stability and water-resistance were attributed to synergistic effect among acid sites, oxygen defects and Pd clusters. Finally, the decomposition mechanism of gaseous O3 was proposed based on three decisive active sites above.
Collapse
Affiliation(s)
- Ting Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qijun Fu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sheng Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, China.
| | - Defeng Xing
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuting Bai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Shudong Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
18
|
Lin D, Zhang L, Liu Z, Wang B, Han Y. Progress of selective catalytic reduction denitrification catalysts at wide temperature in carbon neutralization. Front Chem 2022; 10:946133. [PMID: 36059869 PMCID: PMC9428681 DOI: 10.3389/fchem.2022.946133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
With the looming goal of carbon neutrality and increasingly stringent environmental protection policies, gas purification in coal-fired power plants is becoming more and more intense. To achieve the NOx emission standard when coal-fired power plants are operating at full load, wide-temperature denitrification catalysts that can operate for a long time in the range of 260–420°C are worthy of study. This review focuses on the research progress and deactivation mechanism of selective catalytic reduction (SCR) denitration catalysts applied to a wide temperature range. With the increasing application of SCR catalysts, it also means that a large amount of spent catalysts is generated every year due to deactivation. Therefore, it is necessary to recycle the wide temperature SCR denitration catalyst. The challenges faced by wide-temperature SCR denitration catalysts are summarized by comparing their regeneration processes. Finally, its future development is prospected.
Collapse
Affiliation(s)
- Dehai Lin
- National Institute of Clean and Low Carbon Energy, Beijing, China
- College of Chemical Esngineering, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Dehai Lin,
| | - Longhui Zhang
- National Institute of Clean and Low Carbon Energy, Beijing, China
| | - Zilin Liu
- National Institute of Clean and Low Carbon Energy, Beijing, China
| | - Baodong Wang
- National Institute of Clean and Low Carbon Energy, Beijing, China
| | - Yifan Han
- College of Chemical Esngineering, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Doping effect of rare earth metal ions Sm3+, Nd3+ and Ce4+ on denitration performance of MnO catalyst in low temperature NH3-SCR reaction. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Wang F, Wang P, Lan T, Shen Y, Ren W, Zhang D. Ultralow-Temperature NO x Reduction over SmMn 2O 5 Mullite Catalysts Via Modulating the Superficial Dual-Functional Active Sites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fuli Wang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tianwei Lan
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
21
|
Wang Y, Wang Y, Kong Z, Kang Y, Zhan L. Manganese oxide nanorod catalysts for low-temperature selective catalytic reduction of NO with NH 3. RSC Adv 2022; 12:17182-17189. [PMID: 35755592 PMCID: PMC9180140 DOI: 10.1039/d1ra06758c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
MnOx nanorod catalysts were successfully synthesized by two different preparation methods using porous SiO2 nanorods as the template and investigated for the low-temperature selective catalytic reduction (SCR) of NO with NH3. The catalysts were characterized by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption, X-ray diffraction, X-ray photoelectron spectroscopy, and NH3 temperature-programmed desorption. The results show that the obtained MnOx-P nanorod catalyst prepared by redox precipitation method exhibits higher NO removal activity than that prepared by the solvent evaporation method in the low temperature range of 100–180 °C, where about 98% NO conversion is achieved over MnOx(0.36)-P nanorods. The reason is mainly attributed to MnOx(0.36)-P nanorods possessing unique flower-like morphology and mesoporous structures with high pore volume, which facilitates the exposure of more active sites of MnOx and the adsorption of reactant gas molecules. Furthermore, there is a lower crystallinity of MnOx, higher percentage of Mn4+ species and a large amount of strong acid sites on the surface. These factors contribute to the excellent low-temperature SCR activity of MnOx(0.36)-P nanorods. Compared with MnOx(0.36)-E nanorods, MnOx(0.36)-P nanorods possess unique flower-like morphology and mesoporous structures with high pore volume, contributing to the excellent low-temperature SCR activity of MnOx(0.36)-P nanorods.![]()
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Chemical Engineering, Key Laboratory for Specially Functional Polymers and Related Technology of Ministry of Education, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology Shanghai 200237 China +86 21 64252914 +86 21 64252924
| | - Yanli Wang
- State Key Laboratory of Chemical Engineering, Key Laboratory for Specially Functional Polymers and Related Technology of Ministry of Education, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology Shanghai 200237 China +86 21 64252914 +86 21 64252924
| | - Zhenkai Kong
- State Key Laboratory of Chemical Engineering, Key Laboratory for Specially Functional Polymers and Related Technology of Ministry of Education, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology Shanghai 200237 China +86 21 64252914 +86 21 64252924
| | - Ying Kang
- State Key Laboratory of Chemical Engineering, Key Laboratory for Specially Functional Polymers and Related Technology of Ministry of Education, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology Shanghai 200237 China +86 21 64252914 +86 21 64252924
| | - Liang Zhan
- State Key Laboratory of Chemical Engineering, Key Laboratory for Specially Functional Polymers and Related Technology of Ministry of Education, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology Shanghai 200237 China +86 21 64252914 +86 21 64252924
| |
Collapse
|
22
|
Bai Y, Hou Y, Guo Y, Xiang N, Han X, Wang H, Wu Z, Huang Z. Structure–activity relationship and the inhibitory effect of sulfur dioxide and water on nitrous oxide formation in selective catalytic reduction of nitrogen oxides by ammonia over hollow Co3O4@CoMn2O4 catalyst. J Colloid Interface Sci 2022; 616:55-66. [DOI: 10.1016/j.jcis.2022.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
|
23
|
Abstract
Selective catalytic reduction of NO with CO (CO-SCR) has been suggested as an attractive and promising technology for removing NO and CO simultaneously from flue gas. Manganese-copper spinels are a promising CO−SCR material because of the high stability and redox properties of the spinel structure. Here, we synthesized CuxMn3-xO4 spinel by a citrate-based modified pechini method combining CuO and MnOx, controlling the molar Cu/Mn concentrations. All the samples were characterized by SEM, EDX, XRD, TEM, H2−TPR, XPS and nitrogen adsorption measurements. The Cu1.5Mn1.5O4 catalyst exhibits 100% NO conversion and 53.3% CO conversion at 200 °C. The CuxMn3-xO4 catalyst with Cu-O-Mn structure has a high content of high valence Mn, and the high mass transfer characteristics of the foam-like structure together promoted the reaction performance. The CO-SCR catalytic performance of Cu was related to the spinel structure with the high ratio of Mn4+/Mn, the synergistic effect between the two kinds of metal oxides and the multistage porous structure.
Collapse
|
24
|
Chen L, Shen Y, Wang Q, Wang X, Wang Y, Li B, Li S, Zhang S, Li W. Phosphate on ceria with controlled active sites distribution for wide temperature NH 3-SCR. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128148. [PMID: 34973577 DOI: 10.1016/j.jhazmat.2021.128148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Practical catalysts that work well at a wide operation window for selective catalytic reduction of NOx by NH3 (NH3-SCR) are essential for the purification of non-isothermal emission such as vehicle exhaust. However, NH3-SCR catalyst with high low-temperature performance has excellent NO activation and oxidation ability, leading inevitably to NH3-intermediates over-oxidation and N2 selectivity deterioration at high operation temperatures. By far the best performance ceria-based catalyst with a super-wide temperature window of 175-400 oC for 90% NOx conversion in ideal environment and 225-475 oC for 90% NOx conversion by addition of 50 ppm SO2 and 5% H2O is obtained via distributing phosphate over the outer of ceria. NH3 protection strategy is the key for keeping high-temperature activity. Brønsted acidity surged as the formation of P-OH network via a charge compensatory mechanism of phosphate. NH3 was prone to be captured by the surface P-OH network, forming NH4+ species, avoiding being oxidized and contributing to both low and high temperature activity. NO can also be readily absorbed and oxidized to the absorbed NO2(ad) species over phosphate as reflected by in situ DRIFTS and DFT calculation, providing a facile pathway for 'fast SCR' by reacting with NH4+ species to form N2 and H2O. The reaction followed the L-H mechanism and contributed to catalytic activity under 300 oC. This directional structure fabricate strategy helps to increases the NOx conversion and N2 selectivity under a broaden temperature window. The enriched Brønsted acid sites over phosphate treated ceria were also demonstrated to have largely suppressed SO2 adsorption, which significantly slowed down the catalyst poisoning. A dynamic equilibrium between the poisoning and regeneration process can be achieved according to the shrinking-core model for each nanosphere, leading to the excellent resistance.
Collapse
Affiliation(s)
- Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yao Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiaoli Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoxiang Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yaqing Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Beilei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
25
|
Jin Q, Shen Y, Mei C, Zhang Y, Zeng Y. Catalytic removal of NO and dioxins over W-Zr-Ox/Ti-Ce-Mn-Ox from flue gas: Performance and mechanism study. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.05.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Mechanistic insight into the promoting effect of partial substitution of Mn by Ce on N2 selectivity of MnTiO catalyst for NH3-SCR of NO. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Gao F, Yang C, Tang X, Yi H, Wang C. One-step synthesis by redox co-precipitation method for low-dimensional Me-Mn bi-metal oxides (Me=Co, Ni, Sn) as SCR DeNOx catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21210-21220. [PMID: 34755296 DOI: 10.1007/s11356-021-14644-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
In this research, one-step synthesis of redox co-precipitation method (using sodium lauryl sulfate, KMnO4, and metal precursor) was well applicable in universally preparing low-dimensional Me-MnOx nanosheet catalysts with different metal doping (Me=Co, Ni, or Sn). NH3-SCR activity was explored to the relationship with structure morphology and physio-chemical properties via the characterization techniques of SEM, XRD, XPS, H2-TPR, and NH3-TPD. It was found that Ni-MnOx has a relatively poor activity at low-down temperature but was improved as the reaction temperature rising. Co-MnOx presented a relatively stable catalytic activity of which the NOx conversion rate can be maintained 80~90% in a wide temperature window of 100-250 °C with relatively better N2 selectivity. Compared with Co- or Ni-modified MnOx, Sn-MnOx catalyst has an excellent low-temperature catalytic activity (93% NOx conversion at 100 °C) that was maintained > 80% before 200 °C but with poor selectivity to N2. Due to its nanosheet-structured solid solution structure, Sn-MnOx promoted the interaction between MnOx and SnO2 with the increased contents of adsorbed oxygen and also the numbers of surface Lewis acid sites, which integrally promoted the NH3-SCR reaction at low temperature and also contributed to an acceptable resistances to water and sulfur. High content of adsorbed oxygen was beneficial to improve the catalytic activity at lower temperatures, while the electron cycle interaction of different metal valence ions will play a more important role with the increase of reaction temperature.
Collapse
Affiliation(s)
- Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Chen Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Chengzhi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| |
Collapse
|
28
|
Gao F, Yang C, Tang X, Yi H, Wang C. Co- or Ni-modified Sn-MnOx low-dimensional multi-oxides for high-efficient NH 3-SCR De-NOx: Performance optimization and reaction mechanism. J Environ Sci (China) 2022; 113:204-218. [PMID: 34963529 DOI: 10.1016/j.jes.2021.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 06/14/2023]
Abstract
NH3-SCR performances were explored to the relationship between structure morphology and physio-chemical properties over low-dimensional ternary Mn-based catalysts prepared by one-step synthesis method. Due to its strong oxidation performance, Sn-MnOx was prone to side reactions between NO, NH3 and O2, resulting in the generation of more NO2 and N2O, here most of N2O was driven from the non-selective oxidation of NH3, while a small part generated from the side reaction between NH3 and NO2. Co or Ni doping into Sn-MnOx as solid solution components obviously stronged the electronic interaction for actively mobilization and weakened the oxidation performance for signally reducing the selective tendency of side reactions to N2O. The optimal modification resulted in improving the surface area and enhancing the strong interaction between polyvalent cations in Co/Ni-Mn-SnO2 to provide more surface adsorbed oxygen, active sites of Mn3+ and Mn4+, high-content Sn4+ and plentiful Lewis-acidity for more active intermediates, which significantly broadened the activity window of Sn-MnOx, improved the N2 selectivity by inhibiting N2O formation, and also contributed to an acceptable resistances to water and sulfur. At low reaction temperatures, the SCR reactions over three catalysts mainly obeyed the typical Elye-rideal (E-R) routs via the reactions of adsorbed l-NHx (x = 3, 2, 1) and B-NH4+ with the gaseous NO to generate N2 but also N2O by-products. Except for the above basic E-R reactions, as increasing the reaction temperature, the main adsorbed NOx-species were bidentate nitrates that were also active in the Langmuir-Hinshelwood reactions with adsorbed l-NHx species over Co/Ni modified Mn-SnO2 catalyst.
Collapse
Affiliation(s)
- Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Chen Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengzhi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
29
|
Guo RT, Qin B, Wei LG, Yin TY, Zhou J, Pan WG. Recent progress of low-temperature selective catalytic reduction of NOx with NH3 over manganese oxide-based catalysts. Phys Chem Chem Phys 2022; 24:6363-6382. [DOI: 10.1039/d1cp05557g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective catalytic reduction with NH3 (NH3−SCR) was the most efficient approach to mitigate the emission of nitrogen oxides (NOx). Although the conventional manganese oxide-based catalyst had gradually become a kind...
Collapse
|
30
|
Xu Q, Li Z, Wang L, Zhan W, Guo Y, Guo Y. Understand the role of redox property and NO adsorption over MnFeOx for NH3-SCR. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02203b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Widening the operation temperature window of selective catalytic reduction NO by NH3 (NH3-SCR) is a challenge to meet the increasingly stringent emission control regulations of NOx. Hence, MnFeOx with different...
Collapse
|
31
|
Zhou Z, Zheng X, Huang H, Wu Y, Han S, Cai W, Lan B, Sun M, Yu L. The synergistically enhanced activity and stability of layered manganese oxide via engineering of defects and K+ ions for oxygen electrocatalysis. CrystEngComm 2022. [DOI: 10.1039/d2ce00124a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural defects and interlayered ions are two classic architectures that regulate the electrochemical activity of layered manganese oxides. However, the synergistic effect of defects and interlayered ions and how it...
Collapse
|
32
|
Kang H, Wu M, Li S, Wei C, Chen X, Chen J, Jing F, Chu W, Liu Y. Converting Poisonous Sulfate Species to an Active Promoter on TiO 2 Predecorated MnO x Catalysts for the NH 3-SCR Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61237-61247. [PMID: 34927431 DOI: 10.1021/acsami.1c19625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MnOx-based catalysts possess excellent low-temperature NH3 selective catalytic reduction (NH3-SCR) activity, but the poor SO2/sulfate poisoning resistance and the narrow active-temperature window limit their application for NOx removal. Herein, TiO2 nanoparticles and sulfate were successively introduced into MnOx-based catalysts to modulate the NH3-SCR activity, and the active-temperature window (NO conversion above 80%, T80) was significantly broadened to 100-350 °C (SO42--TiO2@MnOx) compared to that of the pristine MnOx catalyst (ca. T80: 100-268 °C). Combined with advanced characterizations and control experiments, it was clearly shown that the poisonous effects of sulfate on the MnOx catalyst could be efficiently inhibited in the presence of TiO2 species due to the interaction between sulfate and TiO2 to form a solid superacid (SO42--TiO2) species as NH3 adsorption sites for the low-temperature process. Furthermore, such solid superacid (SO42--TiO2) species could weaken the redox ability to inhibit the excessive oxidation of NH3 and thus enhance the high-temperature activity significantly. This work not only puts forward the TiO2 predecoration strategy that converts sulfate to a promoter to broaden the active temperature window but also experimentally proves that the requirement of redox ability and acidity in the MnOx-based NH3-SCR catalyst was dependent on the reaction temperature range.
Collapse
Affiliation(s)
- Hui Kang
- Department of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
| | - Mengxia Wu
- Department of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shiyan Li
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhong Wei
- Department of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
| | - Xiaoping Chen
- Department of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jianjun Chen
- Department of Environment, Tsinghua University, Beijing 100084, PR China
| | - Fangli Jing
- Department of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Chu
- Department of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
33
|
Xu D, Ding T, Sun Y, Li S, Jing W. Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for efficient water purification. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2110-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Yang R, Gao Z, Sun M, Fu G, Cheng G, Liu W, Yang X, Zhao X, Yu L. A highly active VO -MnO /CeO2 for selective catalytic reduction of NO: The balance between redox property and surface acidity. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Wang Y, Shu S, Peng M, Hu L, Lv X, Shen Y, Gong H, Jiang G. Dual-site electrocatalytic nitrate reduction to ammonia on oxygen vacancy-enriched and Pd-decorated MnO 2 nanosheets. NANOSCALE 2021; 13:17504-17511. [PMID: 34651160 DOI: 10.1039/d1nr04962c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrocatalytic nitrate reduction (NRR) represents one promising alternative to the Haber-Bosch process for NH3 production due to the lower reaction energy barrier compared to N2 reduction and the potential recycling of nitrogen source from nitrate wastewater. The metal oxides with oxygen vacancy (Ov) display high NH3 selectivities in NRR (NO2-/N2 as side products), but the complexity in Ov enrichment and the inferior hydrogen adsorption on oxides make NRR an inefficient process. Herein, one superior dual-site NRR electrocatalyst that is composed of Ov-enriched MnO2 nanosheets (MnO2-Ov) and Pd nanoparticles (deposited on MnO2) is constructed over the three-dimensional porous nickel foam (Pd-MnO2-Ov/Ni foam). In a continuous-flow reaction cell, this electrode delivers a NO3--N conversion rate of 642 mg N m-2electrode h-1 and a NH3 selectivity of 87.64% at -0.85 V vs. Ag/AgCl when feeding 22.5 mg L-1 of NO3--N (0.875 mL min-1), outperforming the Pd/Ni foam (369 mg N m-2electrode h-1, 85.02%) and MnO2-Ov/Ni foam (118 mg N m-2electrode h-1, 32.25%). Increasing the feeding NO3--N concentration and flow rate to 180.0 mg L-1 and 2.81 mL min-1 can further lift the conversion rate to 1933 and 1171 mg N m-2electrode h-1, respectively. The combination of experimental characterizations and theoretical calculations reveal that the MnO2-Ov adsorbs, immobilizes, and activates the NO3- and N-intermediates, while the Pd supplies the Ov sites with sufficient adsorbed hydrogen (H*) for both the NRR and Ov refreshment. Our work presents a good example of utilizing dual-site catalysis in the highly selective conversion of NO3- to NH3 that is important for nitrate pollution abatement, nitrogen resource recycling, as well as sustainable NH3 production.
Collapse
Affiliation(s)
- Yan Wang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Song Shu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Peng
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Lin Hu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Yu Shen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Haifeng Gong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| |
Collapse
|
36
|
Yang R, Peng S, Lan B, Sun M, Zhou Z, Sun C, Gao Z, Xing G, Yu L. Oxygen Defect Engineering of β-MnO 2 Catalysts via Phase Transformation for Selective Catalytic Reduction of NO. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102408. [PMID: 34337868 DOI: 10.1002/smll.202102408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The catalysts for low-temperature selective catalytic reduction of NO with NH3 (NH3 -SCR) are highly desired due to the large demand in industrial furnaces. The characteristic of low-temperature requires the catalyst with rich active sites especially the redox sites. Herein, the authors obtain oxygen defect-rich β-MnO2 from a crystal phase transformation process during air calcination, by which the as-prepared γ-MnO2 nanosheet and nanorod can be conformally transformed into the corresponding β-MnO2 . Simultaneously, this transformation accompanies oxygen defects modulation resulted from lattice rearrangement. The most active β-MnO2 nanosheet with plentiful oxygen defects shows a high efficiency of > 90% NO conversion in an extremely wide operation window of ≈120-350 °C. The detailed characterizations and density functional theory (DFT) calculations reveal that the introduction of oxygen defects enhances the adsorption properties for reactants and decreases the energy barriers of *NH2 formation more than 0.3 eV (≈0.32-0.37 eV), which contributes to a high efficiency of low-temperature SCR activity. The authors finding provides a feasible approach to achieve the oxygen defect engineering and gains insight into manganese-based catalysts for low-temperature NO removal or pre-oxidation.
Collapse
Affiliation(s)
- Runnong Yang
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light IndustryGuangdong University of Technology, Guangzhou, 510006, China
| | - Shaomin Peng
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light IndustryGuangdong University of Technology, Guangzhou, 510006, China
| | - Bang Lan
- School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China
| | - Ming Sun
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light IndustryGuangdong University of Technology, Guangzhou, 510006, China
| | - Zihao Zhou
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light IndustryGuangdong University of Technology, Guangzhou, 510006, China
| | - Changyong Sun
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light IndustryGuangdong University of Technology, Guangzhou, 510006, China
| | - Zihan Gao
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light IndustryGuangdong University of Technology, Guangzhou, 510006, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Lin Yu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light IndustryGuangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
37
|
Shan W, Yu Y, Zhang Y, He G, Peng Y, Li J, He H. Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO with NH3. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Chen L, Zhang C, Li Y, Chang CR, He C, Lu Q, Yu Y, Duan P, Zhang Z, Luque R. Hierarchically Hollow MnO 2@CeO 2 Heterostructures for NO Oxidation: Remarkably Promoted Activity and SO 2 Tolerance. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Chen
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Chen Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Yuxin Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Chun-Ran Chang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Qiang Lu
- National Engineering Laboratory for biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, People’s Republic of China
| | - Yunsong Yu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Zaoxiao Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales,
Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Córdoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation
| |
Collapse
|
39
|
Zhang W, Shi X, Yan Z, Shan Y, Zhu Y, Yu Y, He H. Design of High-Performance Iron–Niobium Composite Oxide Catalysts for NH 3-SCR: Insights into the Interaction between Fe and Nb. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01619] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenshuo Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zidi Yan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
40
|
Zhao Q, Shen T, Liu Y, Hu X, Zhao W, Ma Z, Li P, Zhu X, Zhang Y, Liu M, Yao S. Universal Nanoplatform for Formaldehyde Detection Based on the Oxidase-Mimicking Activity of MnO 2 Nanosheets and the In Situ Catalysis-Produced Fluorescence Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7303-7312. [PMID: 34160203 DOI: 10.1021/acs.jafc.1c01174] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formaldehyde (HCHO) pollution is a scientific problem of general concern and has aroused wide attention. In this work, a fluorometric method for sensitive detection of formaldehyde was developed based on the oxidase-mimicking activity of MnO2 nanosheets in the presence of o-phenylenediamine (OPD). The MnO2 nanosheets were prepared by the bottom-up approach using manganese salt as the precursor, followed by the exfoliation with bovine serum albumin. The as-prepared MnO2 nanosheets displayed excellent oxidase-mimicking activity, and can be used as the nanoplatform for sensing in fluorometric analysis. OPD was used as a typical substrate because MnO2 nanosheets can catalyze the oxidation of OPD to generate yellow 2,3-diaminophenazine (DAP), which can emit bright yellow fluorescence at the wavelength of 560 nm. While in the presence of formaldehyde, the fluorescence was greatly quenched because formaldehyde can react with OPD to form Schiff bases that decreased the oxidation reaction of OPD to DAP. The main mechanism and the selectivity of the platform were studied. As a result, formaldehyde can be sensitively detected in a wide linear range of 0.8-100 μM with the detection limit as low as 6.2 × 10-8 M. The platform can be used for the detection of formaldehyde in air, beer, and various food samples with good performance. This work not only expands the application of MnO2 nanosheets in fluorescence sensing, but also provides a sensitive and selective method for the detection of formaldehyde in various samples via a new mechanism.
Collapse
Affiliation(s)
- Qixia Zhao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Tong Shen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yujiao Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaojun Hu
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha 410111, PR China
| | - Wenying Zhao
- Hunan Kaimei New Material Technology Co., Ltd, Yueyang 414600, PR China
| | - Zhangyan Ma
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
41
|
Yang R, Fan Y, Ye R, Tang Y, Cao X, Yin Z, Zeng Z. MnO 2 -Based Materials for Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004862. [PMID: 33448089 DOI: 10.1002/adma.202004862] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Manganese dioxide (MnO2 ) is a promising photo-thermo-electric-responsive semiconductor material for environmental applications, owing to its various favorable properties. However, the unsatisfactory environmental purification efficiency of this material has limited its further applications. Fortunately, in the last few years, significant efforts have been undertaken for improving the environmental purification efficiency of this material and understanding its underlying mechanism. Here, the aim is to summarize the recent experimental and computational research progress in the modification of MnO2 single species by morphology control, structure construction, facet engineering, and element doping. Moreover, the design and fabrication of MnO2 -based composites via the construction of homojunctions and MnO2 /semiconductor/conductor binary/ternary heterojunctions is discussed. Their applications in environmental purification systems, either as an adsorbent material for removing heavy metals, dyes, and microwave (MW) pollution, or as a thermal catalyst, photocatalyst, and electrocatalyst for the degradation of pollutants (water and gas, organic and inorganic) are also highlighted. Finally, the research gaps are summarized and a perspective on the challenges and the direction of future research in nanostructured MnO2 -based materials in the field of environmental applications is presented. Therefore, basic guidance for rational design and fabrication of high-efficiency MnO2 -based materials for comprehensive environmental applications is provided.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Yingying Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Ruquan Ye
- Department of Chemistry, State Key Lab of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiehong Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
42
|
Gu S, Gui K, Ren D, Wei Y. The synergy between manganese oxide and iron oxide in NO catalytic removal with MnFeOx/SiO2 catalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-020-01890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Kang H, Wang J, Zheng J, Chu W, Tang C, Ji J, Ren R, Wu M, Jing F. Solvent-free elaboration of Ni-doped MnOx catalysts with high performance for NH3-SCR in low and medium temperature zones. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
|
45
|
A Study on Mn-Fe Catalysts Supported on Coal Fly Ash for Low-Temperature Selective Catalytic Reduction of NOX in Flue Gas. Catalysts 2020. [DOI: 10.3390/catal10121399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of Mn0.15Fe0.05/fly-ash catalysts have been synthesized by the co-precipitation method using coal fly ash (FA) as the catalyst carrier. The catalyst showed high catalytic activity for low-temperature selective catalytic reduction (LTSCR) of NO with NH3. The catalytic reaction experiments were carried out using a lab-scale fixed-bed reactor. De-NOx experimental results showed the use of optimum weight ratio of Mn/FA and Fe/FA, resulted in high NH3-SCR (selective catalytic reduction) activity with a broad operating temperature range (130–300 °C) under 50000 h−1. Various characterization methods were used to understand the role of the physicochemical structure of the synthesized catalysts on their De-NOx capability. The scanning electron microscopy, physical adsorption-desorption, and X-ray photoelectron spectroscopy showed the interaction among the MnOx, FeOx, and the substrate increased the surface area, the amount of high valence metal state (Mn4+, Mn3+, and Fe3+), and the surface adsorbed oxygen. Hence, redox cycles (Fe3+ + Mn2+ ↔ Mn3+ + Fe2+; Fe2+ + Mn4+ ↔ Mn3+ + Fe3+) were co-promoted over the catalyst. The balance between the adsorption ability of the reactants and the redox ability can promote the excellent NOx conversion ability of the catalyst at low temperatures. Furthermore, NH3/NO temperature-programmed desorption, NH3/NO- thermo gravimetric-mass spectrometry (NH3/NO-TG-MS), and in-situ DRIFTs (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) results showed the Mn0.15Fe0.05/FA has relatively high adsorption capacity and activation capability of reactants (NO, O2, and NH3) at low temperatures. These results also showed that the Langmuir–Hinshelwood (L–H) reaction mechanism is the main reaction mechanism through which NH3-SCR reactions took place. This work is important for synthesizing an efficient and environmentally-friendly catalyst and demonstrates a promising waste-utilization strategy.
Collapse
|
46
|
A bifunctional β-MnO2 mesh for expeditious and ambient degradation of dyes in activation of peroxymonosulfate (PMS) and simultaneous oil removal from water. J Colloid Interface Sci 2020; 579:412-424. [DOI: 10.1016/j.jcis.2020.06.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
|
47
|
Peng C, Liu J, Guo L, Bai J, Zhou M. Oxygen vacancy-enhanced photothermal performance and reactive oxygen species generation for synergistic tumour therapy. Chem Commun (Camb) 2020; 56:11259-11262. [PMID: 32820770 DOI: 10.1039/d0cc02536d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vacancy engineering is a robust strategy to tune nanomaterials' electronic structures for physicochemical properties regulation. Here, we report and realize the first oxygen vacancy-enhanced photothermal and oxidation dual-induced synergistic tumour therapy using oxygen vacancies enriched MnO2@Au nanoconstructs as the therapeutic agent with a high photothermal effect, enhanced highly-toxic superoxide radical generation, good biocompatibility and tumour microenvironment regulation capacity. Our work opens up a new route for cancer nanotheranostics by regulating the electronic structure of nanomaterials resulting in enhanced efficacy.
Collapse
Affiliation(s)
- Chengjia Peng
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P. R. China.
| | | | | | | | | |
Collapse
|
48
|
Yan R, Lin S, Li Y, Liu W, Mi Y, Tang C, Wang L, Wu P, Peng H. Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NO x with enhanced SO 2/H 2O tolerance. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122592. [PMID: 32298863 DOI: 10.1016/j.jhazmat.2020.122592] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen oxides (NOx) are a primary source of air pollutants from combustion of fossil fuels. Though Mn-Ce based catalysts exhibit superior low temperature activities, their water and SO2 tolerance is inferior to other metal oxide catalysts, due to their strong water adsorption and sulfate species formation tendency at low reaction temperatures. Herein, a confinement strategy was adopted to design and synthesize a novel Mn-Ce based catalyst for selective catalytic reduction of NOx with NH3. The confined MnCeOx catalyst was assembled with a simple one pot method, using a mesoporous zeolite (ZSM-5) as the shell and Mn-Ce oxides as the active core (MnCeOx@Z5). Owing to the zeolite shell's shielding effect and the synergy between the alumina-silica zeolite shell's acidic properties and the mixed oxide cores' redox properties, the novel MnCeOx@Z5 catalyst displayed enhanced water and SO2 resistance as compared to the MnCeOx supported on ZSM-5 (MnCeOx/Z5) and its precursor (MnCeOx@Al-SiO2). Evidently, the zeolite sheath hinders sulfate species formation, and this phenomenon was further investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (In situ DRIFTS). The novel shielding and acid-redox synergy effect/strategy adopted in this work can be applied to design other high performance deNOx catalysts for air pollution control.
Collapse
Affiliation(s)
- Ran Yan
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Sixue Lin
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Yonglong Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Wenming Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Yangyang Mi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Changjin Tang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, 200062 Shanghai, China
| | - Honggen Peng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
49
|
Yang C, Tang X, Yi H, Gao F, Zhao S, Zhang R, Zhu W. Comparison of Selective Catalytic Reduction Performance of Mn–Co Bi‐Metal Oxides Prepared by Different Methods. ChemistrySelect 2020. [DOI: 10.1002/slct.202001748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chen Yang
- Department of Environmental Engineering School of Energy and Environmental Engineering University of Science and Technology Beijing Beijing 100083 PR China
| | - Xiaolong Tang
- Department of Environmental Engineering School of Energy and Environmental Engineering University of Science and Technology Beijing Beijing 100083 PR China
| | - Honghong Yi
- Department of Environmental Engineering School of Energy and Environmental Engineering University of Science and Technology Beijing Beijing 100083 PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants Beijing 100083 PR China
| | - Fengyu Gao
- Department of Environmental Engineering School of Energy and Environmental Engineering University of Science and Technology Beijing Beijing 100083 PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants Beijing 100083 PR China
| | - Shunzheng Zhao
- Department of Environmental Engineering School of Energy and Environmental Engineering University of Science and Technology Beijing Beijing 100083 PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants Beijing 100083 PR China
| | - Runcao Zhang
- Department of Environmental Engineering School of Energy and Environmental Engineering University of Science and Technology Beijing Beijing 100083 PR China
| | - Wenjuan Zhu
- Department of Environmental Engineering School of Energy and Environmental Engineering University of Science and Technology Beijing Beijing 100083 PR China
| |
Collapse
|
50
|
Wang B, Wang M, Han L, Hou Y, Bao W, Zhang C, Feng G, Chang L, Huang Z, Wang J. Improved Activity and SO2 Resistance by Sm-Modulated Redox of MnCeSmTiOx Mesoporous Amorphous Oxides for Low-Temperature NH3-SCR of NO. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02567] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Bing Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Meixin Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Lina Han
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yaqin Hou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| | - Weiren Bao
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Changming Zhang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Gang Feng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, College of Chemistry, Nanchang University, No. 999Xuefu Road, Nanchang 330031, P. R. China
| | - Liping Chang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zhanggen Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| | - Jiancheng Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|