1
|
Shibuya M, Yuruka S, Yamamoto Y. Generation of Bis(pentafluorophenyl)boron Enolates from Alkynes and Their Catalyst-Free Alkyne Coupling. Angew Chem Int Ed Engl 2024:e202417910. [PMID: 39487096 DOI: 10.1002/anie.202417910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/04/2024]
Abstract
Carbon-carbon bond forming reactions are powerful synthetic tools for constructing organic molecular frameworks. In this study, strongly Lewis acidic bis(pentafluorophenyl)boron enolates were generated from alkynes through oxygen transfer from 2,6-dibromopyridine N-oxide using tris(pentafluorophenyl)borane [B(C6F5)3]. Boron enolates were highly reactive owing to the strong Lewis acidity of the boron centers, and thus immediately coupled with alkynes. N-Ethynylphthalimide reacted as an alkyne with 2,6-dibromopyridine N-oxide and B(C6F5)3 to form a semi-stable bis(pentafluorophenyl)boron enolate through the coordination of the carbonyl group to the boron center. This enolate underwent coupling with another alkyne.
Collapse
Affiliation(s)
- Masatoshi Shibuya
- Department of Chemical and Biological Sciences, Faculty of Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Souta Yuruka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
2
|
Gharpure SJ, Patel RK. Unlocking a reductive hydroalkoxylation cascade for the stereoselective synthesis of cyclic ethers: total synthesis of (±)-isolaurepan and (±)- cis-lauthisan. Chem Commun (Camb) 2024; 60:12441-12444. [PMID: 39380310 DOI: 10.1039/d4cc04461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A Lewis acid-mediated, 5/6/7/8-endo-dig reductive hydroalkoxylation cascade on enynols gives expeditious, diastereoselective access to small and medium ring cyclic ethers with a long aliphatic side chain. The brevity of the approach allowed a 4-step, stereoselective total synthesis of (±)-isolaurepan and (±)-cis-lauthisan.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Raj Kumar Patel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
3
|
Zhang WW, Sha Q. B(C 6F 5) 3-Catalyzed Multicomponent Reactions of 2,3-Diketoesters, Amines, Allenes, and Nucleophiles: Synthesis of 2α-Functionalized Pyrroles. J Org Chem 2024; 89:12286-12297. [PMID: 39146254 DOI: 10.1021/acs.joc.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
An efficient B(C6F5)3-catalyzed multicomponent reaction of 2,3-diketoesters, amines, allenes, and nucleophiles was reported, which afforded 2α-functionalized pyrroles in moderate to good yields. The reaction features low catalyst loading, usage of a small amount of solvent, high atom economy, tunable installation of diverse functional groups at 2α-position, and water being formed as the byproduct. This is the first multicomponent reaction that combines vicinal tricarbonyl compounds with allenes.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang Road, Xuanwu, Nanjing 210095, P. R. China
| | - Qiang Sha
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang Road, Xuanwu, Nanjing 210095, P. R. China
| |
Collapse
|
4
|
Winfrey L, Yun L, Passeri G, Suntharalingam K, Pulis AP. H 2 O ⋅ B(C 6 F 5 ) 3 -Catalyzed para-Alkylation of Anilines with Alkenes Applied to Late-Stage Functionalization of Non-Steroidal Anti-Inflammatory Drugs. Chemistry 2024; 30:e202303130. [PMID: 38224207 DOI: 10.1002/chem.202303130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 01/16/2024]
Abstract
Anilines are core motifs in a variety of important molecules including medicines, materials and agrochemicals. We report a straightforward procedure that allows access to new chemical space of anilines via their para-C-H alkylation. The method utilizes commercially available catalytic H2 O ⋅ B(C6 F5 )3 and is highly selective for para-C-alkylation (over N-alkylation and ortho-C-alkylation) of anilines, with a wide scope in both the aniline substrates and alkene coupling partners. Readily available alkenes are used, and include new classes of alkene for the first time. The mild reaction conditions have allowed the procedure to be applied to the late-stage-functionalization of non-steroidal anti-inflammatory drugs (NSAIDs), including fenamic acids and diclofenac. The formed novel NSAID derivatives display improved anti-inflammatory properties over the parent NSAID structure.
Collapse
Affiliation(s)
- Laura Winfrey
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Lei Yun
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Ginevra Passeri
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | | | - Alexander P Pulis
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
5
|
Thorat SS, Shimpi SP, Sambherao PI, Rama Krishna G, Kontham R. Regioselective Synthesis of Benzannulated [5,6]-Oxaspirolactones via Cu(II)-Catalyzed Cycloisomerization of 2-(5-Hydroxyalkynyl)benzoates. J Org Chem 2023. [PMID: 38010985 DOI: 10.1021/acs.joc.3c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Spiroketals and oxaspirolactones are widely found in biologically active natural products, serving as important structural motifs. In this study, we present a Cu(II)-catalyzed cascade cycloisomerization of 2-(5-hydroxyalkynyl)benzoates, enabling the regioselective synthesis of benzannulated [5,6]-oxaspirolactones containing an isochromen-1-one moiety. This strategy offers a rapid and efficient approach to access a diverse array of benzannulated [5,6]-oxaspirolactones. The methodology presented here showcases a broad substrate scope, delivering good yields and scalability up to gram scale. The structures of the oxaspirolactones were unequivocally confirmed through single-crystal X-ray analysis and by analogy using 1H and 13C{1H} NMR data.
Collapse
Affiliation(s)
- Sagar S Thorat
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar P Shimpi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pooja I Sambherao
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gamidi Rama Krishna
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Center for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Tang J, Bai JF, Zheng J, Li S, Jiang ZJ, Chen J, Gao K, Gao Z. B(C 6F 5) 3-Catalyzed Intramolecular Hydroalkoxylation Deuteration Reactions of Unactivated Alkynyl Alcohols. Org Lett 2023; 25:6891-6896. [PMID: 37735994 DOI: 10.1021/acs.orglett.3c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Using D2O as a deuterium source, a method for the deuteration of intra- and extra-cyclic methylene has been developed for cyclic ethers with moderate yield and excellent deuterium incorporation. This transformation features superb functional group tolerance in a wide range of alkynols. Notably, the critical factor to achieve high deuterium incorporation is determined by the hydrogen isotope exchange reaction of an unstable oxonium ion. This novel methodology provides an efficient and concise synthetic route to a number of valuable deuterated cyclic ethers that are often difficult to prepare with other methods.
Collapse
Affiliation(s)
- Jianbo Tang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jinfeng Zheng
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Shuangshuang Li
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People's Republic of China
| |
Collapse
|
7
|
Xiao Y, Tang L, Xu TT, Sheng JYH, Zhou Z, Yue L, Wang G, Oestreich M, Feng JJ. Atom-economic and stereoselective catalytic synthesis of fully substituted enol esters/carbonates of amides in acyclic systems enabled by boron Lewis acid catalysis. Chem Sci 2023; 14:5608-5618. [PMID: 37265723 PMCID: PMC10231430 DOI: 10.1039/d3sc01394d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Carboacyloxylation of internal alkynes is emerging as a powerful and straightforward strategy for enol ester synthesis. However, the reported examples come with limitations, including the utilization of noble metal catalysts, the control of regio- and Z/E selectivity, and an application in the synthesis of enol carbonates. Herein, a boron Lewis acid-catalyzed intermolecular carboacyloxylation of ynamides with esters to access fully substituted acyclic enol esters in high yield with generally high Z/E selectivity (up to >96 : 4) is reported. Most importantly, readily available allylic carbonates are also compatible with this difunctionalization reaction, representing an atom-economic, catalytic and stereoselective protocol for the construction of acyclic β,β-disubstituted enol carbonates of amides for the first time. The application of the carboacyloxylation products to decarboxylative allylations provided a ready access to enantioenriched α-quaternary amides. Moreover, experimental studies and theoretical calculations were performed to illustrate the reaction mechanism and rationalize the stereochemistry.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jiang-Yi-Hui Sheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Zhongyan Zhou
- College of Biology, Mass Spectrometry Lab of Bio-Chemistry, Hunan University P. R. China
| | - Lei Yue
- College of Biology, Mass Spectrometry Lab of Bio-Chemistry, Hunan University P. R. China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany https://www.tu.berlin/en/organometallics
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
8
|
Wang SJ, Wang L, Tang XY. Synergistic effect of hydrogen bonds and π-π interactions of B(C 6F 5) 3·H 2O/amides complex: Application in photoredox catalysis. iScience 2023; 26:106528. [PMID: 37128550 PMCID: PMC10148046 DOI: 10.1016/j.isci.2023.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023] Open
Abstract
B(C6F5)3·H2O has been long recognized as a common Brønsted acid. The lack of X-ray crystal structure of B(C6F5)3·H2O with other substrates has greatly limited the development of a new catalytic mode. In this work, a complex of B(C6F5)3·H2O and amide 2-phenyl-3,4-dihydroisoquinolin-1(2H)-one with hydrogen bonds and π-π interactions is characterized by X-ray diffraction. Such noncovalent interactions in solution also exist, as verified by NMR, UV-Vis absorption, and fluorescence emission measurements. Moreover, the mixture of amide 2-phenyl-3,4-dihydroisoquinolin-1(2H)-one and B(C6F5)3·H2O, instead of other tested Brønsted acids, shows a tailing absorption band in the visible light region (400-450 nm). Based on the photoactive properties of the complex, a photoredox catalysis is developed to construct α-aminoamides under mild conditions.
Collapse
Affiliation(s)
- Shi-Jun Wang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica and Semiconductor Chemistry Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Long Wang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica and Semiconductor Chemistry Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang-Ying Tang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica and Semiconductor Chemistry Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Corresponding author
| |
Collapse
|
9
|
Huang J, Wang L, Tang XY. Oxidative cross-coupling of quinoxalinones with indoles enabled by acidochromism. Org Biomol Chem 2023; 21:2709-2714. [PMID: 36928912 DOI: 10.1039/d3ob00280b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An oxidative cross-coupling of quinoxalinones with indole derivatives via B(C6F5)3·H2O induced acidochromism of quinoxalinone derivatives was developed under mild and external photocatalyst-free conditions. The reaction shows excellent substrate scope, accommodating a wide range of functional groups. The usefulness of this strategy was demonstrated by the synthesis of the natural products Azacephalandole A and Cephalandole A in high yields. Moreover, the products are fluorophores showing prevalent fluorescence properties with a wide emission range and good relative quantum yields.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| |
Collapse
|
10
|
Han L, Lv K, Wang T, Meng Z, Zhang J, Liu T. Mechanistic Insight into Palladium/Brønsted Acid Catalyzed Methoxycarbonylation and Hydromethoxylation of Internal Alkene: A Computational Study. Inorg Chem 2023; 62:3904-3915. [PMID: 36799526 DOI: 10.1021/acs.inorgchem.2c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Density functional theory (DFT) calculations were performed to study the palladium/Brønsted acid-catalyzed methoxycarbonylation and hydromethoxylation reactions of internal alkene. The calculated results show that the pyridyl group (N atom) in bidentate phosphine ligand with built-in base (L1) plays a crucial role in controlling the selectivity. With the help of the pyridyl group, the methanolysis steps in the methoxycarbonylation reaction and the hydromethoxylation reaction become easy, and both the linear ester methyl 3,4-dimethylpentanoate (P1) and the hydromethoxylation product 2-methoxy-2,3-dimethylbutane (P2) could be obtained. In contrast, the possibility of leading to branched ester P1' was ruled out according to our calculations. The steric effect could account for the observed selectivity. In the presence of the DPEphos ligand (L2) that does not bear the pyridyl group, the methanolysis step in the methoxycarbonylation reaction becomes the rate-determining step with a high overall energy barrier. Neither linear nor branched methoxycarbonylation product could be generated. The palladium/Brønsted acid co-catalyzed hydromethoxylation also become difficult without the assistance of the pyridyl group in the presence of the L2 ligand. Instead, TsOH-catalyzed hydromethoxylation reaction could take place to generate the ether product P2.
Collapse
Affiliation(s)
- Lingli Han
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, 273155 Shandong, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Kang Lv
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, 273155 Shandong, China
| | - Teng Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Zitong Meng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Jing Zhang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, 273155 Shandong, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Tao Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, 273155 Shandong, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| |
Collapse
|
11
|
Metal-Catalyzed Cascade Reactions between Alkynoic Acids and Dinucleophiles: A Review. Catalysts 2023. [DOI: 10.3390/catal13030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Cascade reactions provide a straightforward access to many valuable compounds and reduce considerably the number of steps of a synthetic sequence. Among the domino and multicomponent processes that involve alkynes, the cascade reaction between alkynoic acids and C-, N-, O- and S-aminonucleophiles stands out as a particularly powerful tool for the one-pot construction of libraries of nitrogen-containing heterocyclic compounds with scaffold diversity and molecular complexity. This reaction, based on an initial metal-catalyzed cycloisomerization that generates an alkylidene lactone intermediate, was originally catalyzed by gold(I) catalysts, along with silver salts or Brönsted acid additives, but other alternative metal catalysts have emerged in the last decade as well as different reaction media. This review examines the existing literature on the topic of metal-catalyzed cascade reactions of acetylenic acids and dinucleophiles and discusses aspects concerning substrate/catalyst ratio for every catalyst system, nature of the aminonucleophile involved and substrate scope. In addition, alternative solvents are also considered, and an insight into the pathway of the reaction and possible intermediates is also provided.
Collapse
|
12
|
Xu X, Gao D, Wang J, Tang XY, Wang L. The B(C 6F 5) 3·H 2O promoted synthesis of fluoroalkylated 3,3',3''-trisindolylmethanes from fluorocarboxylic acids and indoles. Org Biomol Chem 2023; 21:1478-1486. [PMID: 36655817 DOI: 10.1039/d2ob02241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trisindolylmethanes (TIMs) exist in many bioactive natural products and are frequently applied in medicinal chemistry and materials science. Herein, a simple and efficient protocol promoted by B(C6F5)3·H2O for the synthesis of their fluoroalkylated analogues, fluoroalkylated 3,3',3''-TIMs, is reported for the first time. Easily accessible fluorocarboxylic acids are utilized as the fluoroalkyl sources, exhibiting an obvious fluorine effect. This convenient and green process features mild and metal-free conditions, easy scale-up, and an environmentally friendly byproduct.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bio-inorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Dandan Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bio-inorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiahua Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bio-inorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bio-inorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bio-inorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
13
|
Phatake RS, Averdunk A, Würtele C, Gellrich U. Piers’ Borane-Catalyzed Dimerization of Arylallenes via Transborylation: A Synthetic and Mechanistic Study. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ravindra S. Phatake
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392Gießen, Germany
| | - Arthur Averdunk
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392Gießen, Germany
| | - Christian Würtele
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392Gießen, Germany
| | - Urs Gellrich
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392Gießen, Germany
| |
Collapse
|
14
|
Baumann JE, Lalic G. Differential Dihydrofunctionalization: A Dual Catalytic Three-Component Coupling of Alkynes, Alkenyl Bromides, and Pinacolborane. Angew Chem Int Ed Engl 2022; 61:e202206462. [PMID: 35849776 PMCID: PMC9452470 DOI: 10.1002/anie.202206462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/08/2022]
Abstract
A new method for differential dihydrofunctionalization of terminal alkynes enables the synthesis of allylic boronate esters through reductive three-component coupling of terminal alkynes, alkenyl bromides, and pinacolborane. The transformation is promoted by cooperative action of a copper/palladium catalyst system and results in hydrofunctionalization of both π-bonds of an alkyne. The synthesis of allylic boronate esters can be accomplished in the presence of a wide range of functional groups, including, esters, nitriles, alkyl halides, sulfonyl esters, acetals, protected terminal alkynes, aryl halides, and silyl ethers. Mechanistic experiments reveal the importance of subtle ligand effects on the performance of the palladium co-catalyst.
Collapse
Affiliation(s)
- James E Baumann
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gojko Lalic
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Baumann JE, Lalic G. Differential Dihydrofunctionalization: A Dual Catalytic Three‐Component Coupling of Alkynes, Alkenyl Bromides, and Pinacolborane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Gojko Lalic
- Unversity of Washington Chemistry Bagley Hall 98105 Seattle UNITED STATES
| |
Collapse
|
16
|
Shibuya M. Catalytic Intramolecular Hydrofunctionalization of Unactivated Alkenes and Alkynes. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Affiliation(s)
- Santosh K. Nanda
- Department of chemistry School of Applied Science Centurion University of Technology and Management Paralakhemundi Odisha 761211 India
| |
Collapse
|
18
|
Shibuya M, Matsuda M, Yamamoto Y. 1,2-Carbopentafluorophenylation of Alkynes: The Metallomimetic Pull-Push Reactivity of Tris(pentafluorophenyl)borane. Chemistry 2021; 27:8822-8831. [PMID: 33860597 DOI: 10.1002/chem.202101090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/26/2022]
Abstract
We report the novel single-step 1,2-dicarbofunctionalization of an arylacetylene with an allylsilane and tris(pentafluorophenyl)borane [B(C6 F5 )3 ] involving C-C bond formation with C-H bond scission at the β-position to the silicon atom of an allylsilane and B→C migration of a C6 F5 group. The 1,2-carbopentafluorophenylation occurs smoothly without the requirement for a catalyst or heating. Mechanistic studies suggest that the metallomimetic "pull-push" reactivity of B(C6 F5 )3 imparts consecutive electrophilic and nucleophilic characteristics to the benzylic carbon of the arylacetylene. Subsequent photochemical 6π-electrocyclization affords tetrafluoronaphthalenes, which are important in the pharmaceutical and materials sciences. Owing to the unique reactivity of B(C6 F5 )3 , the 1,2-carbopentafluorophenylation using 2-substituted furan proceeded with ring opening, and the reaction using silyl enolates formed a C-C bond with C-O bond scission at the silyloxy-substituted carbon.
Collapse
Affiliation(s)
- Masatoshi Shibuya
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Miki Matsuda
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
19
|
Zhang GM, Zhang H, Wang B, Wang JY. Boron-catalyzed dehydrative allylation of 1,3-diketones and β-ketone esters with 1,3-diarylallyl alcohols in water. RSC Adv 2021; 11:17025-17031. [PMID: 35479693 PMCID: PMC9031380 DOI: 10.1039/d1ra01922h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
A metal-free catalytic allylation with atom economy and green environment friendly was developed. Allylic alcohols could be directly dehydrated in water by B(C6F5)3, without using any base additives. The reaction can afford the corresponding monoallylated product in moderate to high yield and has been performed on a gram-scale, and a quaternary carbon center can be constructed for the active methine compounds of 1,3-diketones or β-ketone esters in this process. The product can be further converted, such as the synthesis of tetra-substituted pyrazole compounds, or 1,4-dienes and functionalized dihydropyrans.
Collapse
Affiliation(s)
- Guo-Min Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hua Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bei Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ji-Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
20
|
San HH, Huang J, Lei Aye S, Tang X. Boron‐Catalyzed Dehydrative Friedel‐Crafts Alkylation of Arenes Using
β
‐Hydroxyl Ketone as MVK Precursor. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Htet Htet San
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 People's Republic of China
- Department of Industrial Chemistry Yadanabon University Amarapura Township Mandalay Region 05063 Myanmar
| | - Jie Huang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 People's Republic of China
| | - Seinn Lei Aye
- Environment and Water Studies Department University of Yangon Kamayut Township Yangon 11041 Myanmar
| | - Xiang‐Ying Tang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 People's Republic of China
| |
Collapse
|
21
|
Yang S, Alix A, Bour C, Gandon V. Alkynophilicity of Group 13 MX 3 Salts: A Theoretical Study. Inorg Chem 2021; 60:5507-5522. [PMID: 33769800 DOI: 10.1021/acs.inorgchem.0c03302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The concept of alkynophilicity is revisited with group 13 MX3 metal salts (M = In, Ga, Al, B; X = Cl, OTf) using M06-2X/6-31+G(d,p) calculations. This study aims at answering why some of these salts show reactivity toward enynes that is similar to that observed with late-transition-metal complexes, notably Au(I) species, and why some of them are inactive. For this purpose, the mechanism of the skeletal reorganization of 1,6-enynes into 1-vinylcyclopentenes has been computed, including monomeric ("standard") and dimeric (superelectrophilic) activation. Those results are confronted with deactivation pathways based on the dissociation of the M-X bond. The role of the X ligand in the stabilization of the intermediate nonclassical carbocation is revealed, and the whole features required to make a good π-Lewis acid are discussed.
Collapse
Affiliation(s)
- Shengwen Yang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| | - Aurélien Alix
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| |
Collapse
|
22
|
Kumar G, Roy S, Chatterjee I. Tris(pentafluorophenyl)borane catalyzed C-C and C-heteroatom bond formation. Org Biomol Chem 2021; 19:1230-1267. [PMID: 33481983 DOI: 10.1039/d0ob02478c] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of boron based Lewis acids have been reported to date, but among them, tris(pentafluorophenyl)borane (BCF) has gained the most significant attention in the synthetic chemistry community. The viability of BCF as a potential Lewis acid catalyst has been vastly explored in organic and materials chemistry due to its thermal stability and commercial availability. Most explorations of BCF chemistry in organic synthesis has occurred in the last two decades and many new catalytic reactivities are currently under investigation. This review mainly focuses on recent reports from 2018 onwards and provides a concise knowledge to the readers about the role of BCF in metal-free catalysis. The review has mainly been categorized by different types of organic transformation mediated through BCF catalysis for the C-C and C-heteroatom bond formation.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
23
|
Yang C, Liu Z, Hu X, Xie H, Jiang H, Zeng W. Rh( iii)-Catalyzed Csp 2–Csp 3 bond alkoxylation of α-indolyl alcohols via C–C σ bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00194a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A Rh(iii)-catalyzed direct Csp2–Csp3 bond alkoxylation of α-(2-indolyl)alcohols with alcohols has been achieved via C–C sigma bond/C–O single bond switch.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Zhipeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xinwei Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Haisheng Xie
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
24
|
Chen H, Sun S, Liu YA, Liao X. Nickel-Catalyzed Cyanation of Aryl Halides and Hydrocyanation of Alkynes via C–CN Bond Cleavage and Cyano Transfer. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04586] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hui Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Shuhao Sun
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Yahu A. Liu
- Discovery Chemistry, Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Tejedor D, Delgado-Hernández S, Colella L, García-Tellado F. Catalytic Hydrocyanation of Activated Terminal Alkynes. Chemistry 2019; 25:15046-15049. [PMID: 31553088 DOI: 10.1002/chem.201903402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/24/2019] [Indexed: 11/10/2022]
Abstract
A universal, practical and scalable organocatalytic hydrocyanation manifold to provide β-substituted acrylonitriles bearing an electron-withdrawing functionality has been implemented. The catalytic manifold operates under the reactivity generation principle "a good nucleophile generates a strong base", and it uses 1,4-diazabicyclo[2.2.2]octane (DABCO) as the catalyst, activated terminal alkynes as substrates and acetone cyanohydrin as the cyanide source. The acrylonitriles obtained as E,Z mixtures are straightforwardly resolved by simple flash chromatography delivering the pure isomers in preparative amounts.
Collapse
Affiliation(s)
- David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain.,Doctoral and Postgraduate School, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, s/n, apdo. 456, 38200, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Lucía Colella
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain
| |
Collapse
|
26
|
Chang X, Zeng P, Chen Z. Synthesis of Furo[3,2-c
]coumarins via Lewis Acid-Mediated Multicomponent Tandem Reactions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiangqing Chang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; College of Pharmaceutical Sciences; Zhejiang University of Technology; Chao Wang Road 18th 310014 Hangzhou China
| | - Piaopiao Zeng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; College of Pharmaceutical Sciences; Zhejiang University of Technology; Chao Wang Road 18th 310014 Hangzhou China
| | - Zhiwei Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; College of Pharmaceutical Sciences; Zhejiang University of Technology; Chao Wang Road 18th 310014 Hangzhou China
| |
Collapse
|
27
|
Wang Q, Feng X, Meng W, Du H. B(C 6F 5) 3-catalyzed divergent cyanosilylations of chromones dependent on temperature. Org Biomol Chem 2019; 17:8354-8357. [PMID: 31475277 DOI: 10.1039/c9ob01710k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A B(C6F5)3-catalyzed divergent cyanosilylation of chromones has been successfully realized. A variety of 4-oxochromane-2-carbonitriles were furnished as kinetic products in high yields via 1,4-cyanosilylations. An unexpected C-O bond cyanosilylation was achieved when the temperature was raised to 80 °C, affording 4-oxo-4-(2-hydroxylphenyl)but-2-enenitriles as thermodynamic products in 72-94% yields, which was confirmed by DFT results.
Collapse
Affiliation(s)
- Qiaotian Wang
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangqing Feng
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Meng
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haifeng Du
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
28
|
Meng SS, Tang X, Luo X, Wu R, Zhao JL, Chan ASC. Borane-Catalyzed Chemoselectivity-Controllable N-Alkylation and ortho C-Alkylation of Unprotected Arylamines Using Benzylic Alcohols. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shan-Shui Meng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun-Ling Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Albert S. C. Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
29
|
Eastwood MS, Douglas CJ. Synthesis of the Madangamine Alkaloid Core by a C–C Bond Activation Cascade. Org Lett 2019; 21:6149-6154. [DOI: 10.1021/acs.orglett.9b02331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew S. Eastwood
- Department of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Douglas
- Department of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Anti-Markovnikov stereoselective hydroamination and hydrothiolation of (hetero)aromatic alkynes using a metal-free cyclic trimeric phosphazene base. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Shibuya M, Kawano S, Fujita S, Yamamoto Y. Boron‐Catalyzed Hydroamination/Hydroallylation and Hydroamination/Hydrocyanation of Unactivated Alkynes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Masatoshi Shibuya
- Department of Basic Medicinal SciencesGraduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa Nagoya 464-8601 Japan
| | - Shohei Kawano
- Department of Basic Medicinal SciencesGraduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa Nagoya 464-8601 Japan
| | - Shoji Fujita
- Department of Basic Medicinal SciencesGraduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa Nagoya 464-8601 Japan
| | - Yoshihiko Yamamoto
- Department of Basic Medicinal SciencesGraduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
32
|
Armstrong MK, Lalic G. Differential Dihydrofunctionalization of Terminal Alkynes: Synthesis of Benzylic Alkyl Boronates through Reductive Three-Component Coupling. J Am Chem Soc 2019; 141:6173-6179. [PMID: 30942593 DOI: 10.1021/jacs.9b02372] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The differential dihydrofunctionalization of terminal alkynes is accomplished through the reductive three-component coupling of terminal alkynes, aryl halides, and pinacolborane. The transformation results in hydrofunctionalization of both π-bonds of an alkyne in a single reaction promoted by cooperative action of a copper/palladium catalyst system. The differential dihydrofunctionalization reaction has excellent substrate scope and can be accomplished in the presence of esters, nitriles, alkyl halides, epoxides, acetals, alkenes, aryl halides, and silyl ethers. Mechanistic experiments indicate that the reaction proceeds through copper-catalyzed hydroboration followed by a second hydrocupration. The resulting heterobimetallic complex is the key intermediate that participates in the subsequent palladium-catalyzed cross-coupling, which furnishes benzylic alkyl boronate products.
Collapse
Affiliation(s)
- Megan K Armstrong
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Gojko Lalic
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
33
|
San HH, Wang CY, Zeng HP, Fu ST, Jiang M, Tang XY. Boron-Catalyzed Azide Insertion of α-Aryl α-Diazoesters. J Org Chem 2019; 84:4478-4485. [DOI: 10.1021/acs.joc.8b03278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Htet Htet San
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Chun-Ying Wang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Hai-Peng Zeng
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Shi-Tao Fu
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Min Jiang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiang-Ying Tang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| |
Collapse
|
34
|
Fegyverneki D, Kolozsvári N, Molnár D, Egyed O, Holczbauer T, Soós T. Size-Exclusion Borane-Catalyzed Domino 1,3-Allylic/Reductive Ireland-Claisen Rearrangements: Impact of the Electronic and Structural Parameters on the 1,3-Allylic Shift Aptitude. Chemistry 2019; 25:2179-2183. [PMID: 30466176 DOI: 10.1002/chem.201805208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/12/2018] [Indexed: 01/09/2023]
Abstract
The reductive Ireland-Claisen rearrangement through borane-mediated hydrosilylation is reported. The method employs a borane catalyst with a special structural design and affords access to synthetically relevant products with high diastereoselectivity. Depending on electronic and structural parameters, the reaction can be coupled with a 1,3-allylic shift, thus the valence isomer of the Ireland-Claisen product is formed.
Collapse
Affiliation(s)
- Dániel Fegyverneki
- Institute of Organic Chemistry, Research Centre of Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok krt., Budapest, 1117, Hungary
| | - Natália Kolozsvári
- Institute of Organic Chemistry, Research Centre of Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok krt., Budapest, 1117, Hungary
| | - Dániel Molnár
- Institute of Organic Chemistry, Research Centre of Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok krt., Budapest, 1117, Hungary
| | - Orsolya Egyed
- Institute of Organic Chemistry, Research Centre of Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok krt., Budapest, 1117, Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry, Research Centre of Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok krt., Budapest, 1117, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre of Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok krt., Budapest, 1117, Hungary
| |
Collapse
|
35
|
da Silva VAF, da Silva GP, Matsuo BT, Ali A, Davis RL, Zukerman-Schpector J, Corrêa AG, Paixão MW. Synthesis of (Z)-β-halo α,β-unsaturated carbonyl systems via the combination of halotrimethylsilane and tetrafluoroboric acid. Org Biomol Chem 2019; 17:519-526. [PMID: 30569046 DOI: 10.1039/c8ob02110d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and broadly applicable method for the hydrohalogenation of ynones is described, by the combination of halotrimethylsilanes and tetrafluoroboric acid. Practically, one equivalent of HX (Brønsted acid) and BF3 (Lewis acid) is smoothly generated, which activates the carbonyl compounds. Through this protocol, 42 examples of (Z)-β-halovinyl carbonyl compounds (Cl, Br and I) were obtained, in good yields and high stereoselectivity having 2-MeTHF as a solvent.
Collapse
Affiliation(s)
- Vitor A F da Silva
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ling F, Xiao L, Fang L, Feng C, Xie Z, Lv Y, Zhong W. B(C 6F 5) 3-catalyzed Markovnikov addition of indoles to aryl alkynes: an approach toward bis(indolyl)alkanes. Org Biomol Chem 2018; 16:9274-9278. [PMID: 30483686 DOI: 10.1039/c8ob02805b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of the metal- and solvent-free B(C6F5)3-catalyzed Markovnikov addition of indoles to aryl alkynes was disclosed. Both N-H and N-protected indoles were tolerated, leading to a wide spectrum of versatile bis(indolyl)alkanes in moderate to good yields with high regioselectivities.
Collapse
Affiliation(s)
- Fei Ling
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
37
|
San HH, Wang SJ, Jiang M, Tang XY. Boron-Catalyzed O-H Bond Insertion of α-Aryl α-Diazoesters in Water. Org Lett 2018; 20:4672-4676. [PMID: 30033730 DOI: 10.1021/acs.orglett.8b01988] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic, metal-free O-H bond insertion of α-diazoesters in water in the presence of B(C6F5)3· nH2O (2 mol %) was developed, affording a series of α-hydroxyesters in good to excellent yields. The reaction features easy operation and wide substrate scope, and importantly, no metal is needed as compared with the conventional methods. Significantly, this approach further expands the applications of B(C6F5)3 under water-tolerant conditions.
Collapse
Affiliation(s)
- Htet Htet San
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , People's Republic of China
| | - Shi-Jun Wang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , People's Republic of China
| | - Min Jiang
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Xiang-Ying Tang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , People's Republic of China
| |
Collapse
|
38
|
Liao L, Zhang H, Zhao X. Selenium-π-Acid Catalyzed Oxidative Functionalization of Alkynes: Facile Access to Ynones and Multisubstituted Oxazoles. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01595] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hang Zhang
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
39
|
Meng SS, Wang Q, Huang GB, Lin LR, Zhao JL, Chan ASC. B(C6F5)3 catalyzed direct nucleophilic substitution of benzylic alcohols: an effective method of constructing C–O, C–S and C–C bonds from benzylic alcohols. RSC Adv 2018; 8:30946-30949. [PMID: 35548750 PMCID: PMC9085633 DOI: 10.1039/c8ra05811c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023] Open
Abstract
An efficient and general method of nucleophilic substitution of benzylic alcohols catalyzed by non-metallic Lewis acid B(C6F5)3 was developed. The reaction could be carried out under mild conditions and more than 35 examples of ethers, thioethers and triarylmethanes were constructed in high yields. Some bioactive organic molecules were synthesized directly using the methods. An efficient and general method of nucleophilic substitution of benzylic alcohols catalyzed by non-metallic Lewis acid B(C6F5)3 was developed.![]()
Collapse
Affiliation(s)
- Shan-Shui Meng
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Qian Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Gong-Bin Huang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Li-Rong Lin
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jun-Ling Zhao
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Albert S. C. Chan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|