1
|
Wani AA, Bhujbal SM, Sherpa D, Kathuria D, Chourasiya SS, Sahoo SC, Bharatam PV. An NNN Pd(II) pincer complex with 1,1-diaminoazine: a versatile catalyst for acceptorless dehydrogenative coupling reactions. Org Biomol Chem 2025; 23:343-351. [PMID: 39534965 DOI: 10.1039/d4ob01576b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An azine-based, non-palindromic, neutral NNN-pincer ligand was synthesised in a single step with an yield of 85%. The palladation of the ligand, using Pd(OAc)2, was performed in acetonitrile at room temperature to obtain the pincer complex in 88% yield through a simple, cost-effective, and straightforward synthetic procedure. The structure of the complex was confirmed by 1H NMR, 13C NMR, FT-IR, and mass spectrometry. The variable temperature NMR spectra revealed the stability of the complex even at higher temperatures, a characteristic feature of pincer complexes. The generated complex proved to be a versatile catalyst for Acceptorless Dehydrogenative Coupling (ADC) to synthesize N-heterocycles: (i) 1,2-disubstituted benzimidazoles, (ii) 2-phenylquinolines, (iii) 2-phenylquinoxalines and (iv) 2-phenylquinazolinones. Since the side products of the reactions are H2O and H2 gas, the catalysis can be considered as a green catalytic process. Quantum chemical calculations indicated the participation of a possible nitrene-imide conversion process during the Metal-Ligand Cooperation (MLC) in ADC reactions.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Punjab, India
| | - Shivkanya Madhavrao Bhujbal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Deekey Sherpa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India
| | - Sumit S Chourasiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Chandigarh, Punjab 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| |
Collapse
|
2
|
Hans S, Adham M, Khatua M, Samanta S. Cu-ABNO Catalyst for the Synthesis of Quinolines and Pyrazines via Aerobic Double Dehydrogenation of Alcohols. J Org Chem 2024; 89:18090-18108. [PMID: 39609099 DOI: 10.1021/acs.joc.4c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
In this report, a new imidazole- and amide-functionalized pincer-like Cu(II) complex (1) was synthesized and characterized. By employing 1 and 9-azabicyclo[3.3.1]nonane NH-Oxyl (ABNOH), a catalytic protocol for alcohol oxidation and the subsequent alcohol oxidation-triggered synthesis of quinolines and pyrazines were explored. Alcohols such as 2-aminoaryl alcohols were also oxidized efficiently. As carbonyls from 2-arylaminobenzyl alcohols and secondary alcohols are synthons for quinolines, we explored their synthesis directly from alcohols. The protocol was quite efficient and completed the reaction in only ∼5-10 h. Combinations such as (a) primary 2-arylaminobenzyl alcohols with secondary alcohols or their ketones and (b) secondary 2-arylaminobenzyl alcohols with secondary alcohols or their ketones were found to be very effective for the synthesis of quinolines. The protocol was also successful for the synthesis of various pyrazines from 1,2-diols and 1,2-diaminobenzenes in 10 h. Mechanistic investigations showed that the generated complex acted as an active catalyst: it activated O2 and subsequently with the cooperation of 9-azabicyclo[3.3.1]nonane N-Oxyl (ABNO•) activated the α-CH hydrogen of coordinated alkoxide. Then, Cu(II)/Cu(I) reduction led to the formation of carbonyl compounds, which via successive C-C/C-N coupling reactions resulted in heterocycles in the presence of KOtBu and 1.
Collapse
Affiliation(s)
- Shivali Hans
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu 181221, Jammu and Kashmir, India
| | - Mohd Adham
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu 181221, Jammu and Kashmir, India
| | - Manas Khatua
- Central Instrumentation Facility, Indian Institute of Technology (IIT) Jammu, Paloura, Jammu 181121, Jammu and Kashmir, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu 181221, Jammu and Kashmir, India
| |
Collapse
|
3
|
Sivakumar G, Suresh AK, Padhy SR, Balaraman E. Double dehydrogenative coupling of amino alcohols with primary alcohols under Mn(I) catalysis. Chem Commun (Camb) 2024; 60:13606-13609. [PMID: 39484689 DOI: 10.1039/d4cc03595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Herein, we unveil a method for synthesizing substituted pyrrole and pyrazine compounds via a double dehydrogenative coupling of amino alcohols with primary alcohols, facilitated by Mn(I)-PNP catalysis, which uniquely enables the simultaneous formation of C-C and C-N bonds.
Collapse
Affiliation(s)
- Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Abhijith Karattil Suresh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Smruti Rekha Padhy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| |
Collapse
|
4
|
Tewari S, Klask N, Ritter T. Allenyl Thianthrenium Salt: A Bench-Stable C 3 Synthon for Annulation and Cross-Coupling Reactions. J Am Chem Soc 2024; 146:27282-27286. [PMID: 39315942 PMCID: PMC11468728 DOI: 10.1021/jacs.4c10135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Herein, we report the first bench-stable and nonhygroscopic monosubstituted allenyl sulfonium salt (ATT) synthesized from thianthrene and propargyl alcohol. We demonstrate its use in annulation chemistry to synthesize heterocycles, such as 2-hydroxy morpholine, 2-methyl quinoxalines, and benzodioxepinone derivatives, with an exocyclic double bond. The reagent is the first allenyl sulfonium salt that can undergo palladium-catalyzed cross-coupling reactions to form a C(sp2)-C(sp2) bond via Suzuki coupling and a C(sp3)-C(sp2) bond formation via reductive coupling.
Collapse
Affiliation(s)
- Srija Tewari
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Nicolai Klask
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Tobias Ritter
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Gao Y, Yip JHK, Lim EG, Nguyen VH. mer-M(CO) 3(PNP) 0/+ pincer complexes (M = W(0) or Re(I); PNP = 4,5-bis(diphenylphosphino)acridine): synthesis, spectroscopy and anti-Kasha emission. Dalton Trans 2024; 53:15565-15575. [PMID: 39229906 DOI: 10.1039/d4dt01899k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Two isoelectronic and isostructural W(0) and Re(I) complexes mer-W(CO)3(PNP) (1) and [mer-Re(CO)3(PNP)]Cl (2) (PNP = 4,5-bis(diphenylphosphino)acridine) were synthesized and characterized by X-ray diffraction, infrared, electronic absorption and emission spectroscopy, and cyclic voltammetry. Structures of these complexes show a metal center bonded to the pincer ligand and two axial CO and one equatorial CO ligands. DFT calculations showed that the LUMOs of both complexes are the lowest energy π* orbitals localized in the acridine part of the ligand. The HOMO of 1 is dominated by the dπ orbital of W(0) while the HOMO of 2 has a substantial contribution from the highest energy π orbital of the acridine ring. TD-DFT calculations were performed to assist assignment of the UV-vis absorption spectra. The UV-vis absorption spectrum of 1 shows a very low energy W → π* (acridine) metal-to-ligand-charge-transfer (MLCT) absorption band that ranges from visible (500 nm) to near-infrared (>900 nm) regions and an intense acridine π → π* absorption band at 410 nm. There is a blue-green window in the ∼450-500 nm range between the π → π* and W → π*(acridine) MLCT absorptions. The absorption spectrum of 2, dominated by intense π → π* absorptions, shows no distinct low energy MLCT band. Complex 1 is luminescent, displaying acridine-based ππ* fluorescence at 501 nm which is anti-Kasha as it is higher in energy than the lowest energy excited state.
Collapse
Affiliation(s)
- Yifei Gao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - John H K Yip
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - Eu Gene Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - Van Ha Nguyen
- Faculty of Chemistry, VNU University of Science, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam, 11021.
| |
Collapse
|
6
|
Mondal S, Chakraborty S, Khanra S, Chakraborty S, Pal S, Brandão P, Paul ND. A Phosphine-Free Air-Stable Mn(II)-Catalyst for Sustainable Synthesis of Quinazolin-4(3 H)-ones, Quinolines, and Quinoxalines in Water. J Org Chem 2024; 89:5250-5265. [PMID: 38554095 DOI: 10.1021/acs.joc.3c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The synthesis, characterization, and catalytic application of a new phosphine-free, well-defined, water-soluble, and air-stable Mn(II)-catalyst [Mn(L)(H2O)2Cl](Cl) ([1]Cl) featuring a 1,10-phenanthroline based tridentate pincer ligand, 2-(1H-pyrazol-1-yl)-1,10-phenanthroline (L), in dehydrogenative functionalization of alcohols to various N-heterocycles such as quinazolin-4(3H)-ones, quinolines, and quinoxalines are reported here. A wide array of multisubstituted quinazolin-4(3H)-ones were prepared in water under air following two pathways via the dehydrogenative coupling of alcohols with 2-aminobenzamides and 2-aminobenzonitriles, respectively. 2-Aminobenzyl alcohol and ketones bearing active methylene group were used as coupling partners for synthesizing quinoline derivatives, and various quinoxaline derivatives were prepared by coupling vicinal diols and 1,2-diamines. In all cases, the reaction proceeded smoothly using our Mn(II)-catalyst [1]Cl in water under air, affording the desired N-heterocycles in satisfactory yields starting from cheap and readily accessible precursors. Gram-scale synthesis of the compounds indicates the industrial relevance of our synthetic strategy. Control experiments were performed to understand and unveil the plausible reaction mechanism.
Collapse
Affiliation(s)
- Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Shrestha Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Paula Brandão
- Departamento de Química/CICECO, Instituto de Materiais de Aveiro, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| |
Collapse
|
7
|
Pennamuthiriyan A, Rengan R. Nickel Pincer Complexes Catalyzed Sustainable Synthesis of 3,4-Dihydro-2 H-1,2,4-benzothiadiazine-1,1-dioxides via Acceptorless Dehydrogenative Coupling of Primary Alcohols. J Org Chem 2024; 89:2494-2504. [PMID: 38326039 DOI: 10.1021/acs.joc.3c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We report the atom-economic and sustainable synthesis of biologically important 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide (DHBD) derivatives from readily available aromatic primary alcohols and 2-aminobenzenesulfonamide catalyzed by nickel(II)-N∧N∧S pincer-type complexes. The synthesized nickel complexes have been well-studied by elemental and spectroscopic (FT-IR, NMR, and HRMS) analyses. The solid-state molecular structure of complex 2 has been authenticated by a single-crystal X-ray diffraction study. Furthermore, a series of 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide derivatives have been synthesized (24 examples) utilizing a 3 mol % Ni(II) catalyst through acceptorless dehydrogenative coupling of benzyl alcohols with benzenesulfonamide. Gratifyingly, the catalytic protocol is highly selective with the yield up to 93% and produces eco-friendly water/hydrogen gas as byproducts. The control experiments and plausible mechanistic investigations indicate that the coupling of the in situ generated aldehyde with benzenesulfonamide leads to the desired product. In addition, a large-scale synthesis of one of the thiadiazine derivatives unveils the synthetic usefulness of the current methodology.
Collapse
Affiliation(s)
- Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| |
Collapse
|
8
|
Farghaly TA, Alqurashi RM, Masaret GS, Abdulwahab HG. Recent Methods for the Synthesis of Quinoxaline Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:920-982. [PMID: 37885112 DOI: 10.2174/0113895575264375231012115026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023]
Abstract
Quinoxaline derivatives have been incorporated into numerous marketed drugs used for the treatment of various diseases. Examples include glecaprevir (Mavyret), voxilaprevir (Vosevi), Balversa (L01EX16) (erdafitinib), carbadox, XK469R (NSC698215), and becampanel (AMP397). These quinoxaline derivatives exhibit a diverse range of pharmacological activities, including antibacterial, antitubercular, antiviral, anti-HIV, anti-inflammatory, antifungal, anticancer, antiproliferative, antitumor, kinase inhibition, antimicrobial, antioxidant, and analgesic effects. Recognizing the significance of these bioactive quinoxaline derivatives, researchers have dedicated their efforts to developing various synthetic methods for their production. This review aimed to compile the most recent findings on the synthesis and biological properties of quinoxaline derivatives from 2015 to 2023.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raghad M Alqurashi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Mocci R, Atzori L, Baratta W, De Luca L, Porcheddu A. N-Alkylation of aromatic amines with alcohols by using a commercially available Ru complex under mild conditions. RSC Adv 2023; 13:34847-34851. [PMID: 38035248 PMCID: PMC10688395 DOI: 10.1039/d3ra06751c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
An N-alkylation procedure has been developed under very mild conditions using a known commercially available Ru-based catalyst. As a result, a wide range of aromatic primary amines has been selectively alkylated with several primary alcohols, yielding the corresponding secondary amines in high yields. The methodology also enables the methylation of anilines in refluxing methanol and the preparation of a set of heterocycles in a straightforward way.
Collapse
Affiliation(s)
- Rita Mocci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
| | - Luciano Atzori
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
| | - Walter Baratta
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine via delle Scienze 206 33100 Udine Italy
| | - Lidia De Luca
- Dipartimento di Scienze Chimiche, FIsiche, Matematiche e Naturali, Università degli Studi di Sassari via Vienna 2 07100 Sassari Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
| |
Collapse
|
10
|
R T, Yhobu Z, Budagumpi S, Małecki JG, Ghosh A, Limaye AS, R N, Dateer RB. Room-Temperature Synthesis of Biogenic δ-MnO 2 NPs for the Dehydrogenative Coupling of Diamines with Alcohols for Benzimidazole and Quinoxaline Synthesis: An Efficient Catalyst for Electrochemical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15474-15486. [PMID: 37874355 DOI: 10.1021/acs.langmuir.3c01749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
An efficient, unique, and eco-friendly biogenic synthesis of single-crystalline δ-phase manganese oxide nanoparticles (MnO2 NPs) using Gliricidia sepium leaves (GSL) extract at room temperature has been revealed for the first time. The active chemicals present in the GSL extract were found to serve as both reducing and stabilizing agents. The catalyst shows an excellent surface area of 301.13 m2 g-1, a mean pore diameter of 4.01 nm, and 39.97% w/w of active metal content. The reactivity of the synthesized catalyst was demonstrated by achieving a one-pot synthesis of benzimidazoles and quinoxalines via an acceptorless dehydrogenative coupling strategy utilizing biorenewable alcohols. The release of hydrogen gas was observed as the only side product and proven by its successful utilization for alkene reduction which supports the mechanistic elucidation. The release of hydrogen gas as a useful byproduct highlights the scientific importance of the present methodology. Additionally, gram-scale synthesis and catalyst recyclability studies are deliberated. Importantly, the δ-MnO2 NP catalyst exhibited superior catalytic activity and high durability toward hydrogen evolution reaction in alkaline media, highlighting the dual use of the catalyst. The δ-MnO2 NPs attain the current density of 10 mA/cm2 at an overpotential of 154 mV with a Tafel slope of 119 mV/dec.
Collapse
Affiliation(s)
- Thrilokraj R
- Centre for Nano and Material Sciences, JAIN (Deemed to be University), Jain Global Campus, Bangalore 562112, India
| | - Zhoveta Yhobu
- Centre for Nano and Material Sciences, JAIN (Deemed to be University), Jain Global Campus, Bangalore 562112, India
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, JAIN (Deemed to be University), Jain Global Campus, Bangalore 562112, India
| | | | - Arnab Ghosh
- Centre for Nano and Material Sciences, JAIN (Deemed to be University), Jain Global Campus, Bangalore 562112, India
| | - Akshay S Limaye
- Centre for Nano and Material Sciences, JAIN (Deemed to be University), Jain Global Campus, Bangalore 562112, India
| | - Nandini R
- Centre for Nano and Material Sciences, JAIN (Deemed to be University), Jain Global Campus, Bangalore 562112, India
| | - Ramesh B Dateer
- Centre for Nano and Material Sciences, JAIN (Deemed to be University), Jain Global Campus, Bangalore 562112, India
| |
Collapse
|
11
|
Swatiputra AA, Mukherjee D, Dinda S, Roy S, Pramanik K, Ganguly S. Electron transfer catalysis mediated by 3d complexes of redox non-innocent ligands possessing an azo function: a perspective. Dalton Trans 2023; 52:15627-15646. [PMID: 37792473 DOI: 10.1039/d3dt02567e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
It was first reported almost two decades ago that ligands with azo functions are capable of accepting electron(s) upon coordination to produce azo-anion radical complexes, thereby exhibiting redox non-innocence. Over the past two decades, there have been numerous reports of such complexes along with their structures and diverse characteristics. The ability of a coordinated azo function to accept one or more electron(s), thereby acting as an electron reservoir, is currently employed to carry out electron transfer catalysis since they can undergo redox transformation at mild potentials due to the presence of energetically accessible energy levels. The cooperative involvement of redox non-innocent ligand(s) containing an azo group and the coordinated metal centre can adjust and modulate the Lewis acidity of the latter through selective ligand-centred redox events, thereby manipulating the capacity of the metal centre to bind to the substrate. We have summarized the list of first row transition metal complexes of iron, cobalt, nickel, copper and zinc with redox non-innocent ligands incorporating an azo function that have been exploited as electron transfer catalysts to effectuate sustainable synthesis of a wide variety of useful chemicals. These include ketazines, pyrimidines, benzothiazole, benzoxazoles, N-acyl hydrazones, quinazoline-4(3)H-ones, C-3 alkylated indoles, N-alkylated anilines and N-alkylated heteroamines. The reaction pathways, as demonstrated by catalytic loops, reveal that the azo function of a coordinated ligand can act as an electron sink in the initial steps to bring about alcohol oxidation and thereafter, they serve as an electron pool to produce the final products either via HAT or PCET processes.
Collapse
Affiliation(s)
- Alok Apan Swatiputra
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Debaarjun Mukherjee
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Soumitra Dinda
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Subhadip Roy
- Department of Chemistry, The ICFAI University Tripura, Tripura 799210, India
| | - Kausikisankar Pramanik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India
| | - Sanjib Ganguly
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| |
Collapse
|
12
|
Ghosh A, Hegde RV, Limaye AS, R. T, Patil SA, Dateer RB. Biogenic synthesis of δ‐MnO 2 nanoparticles: A sustainable approach for C‐alkylation and quinoline synthesis via acceptorless dehydrogenation and borrowing hydrogen reactions. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 01/06/2025]
Abstract
The sustainable and environmentally benign biogenic synthesis of manganese‐oxide nanoparticles (MnO2 NPs) in a single crystalline δ‐phase and its subsequent synthetic utility have been described. The synthesized δ‐MnO2 NPs were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray (EDX), and X‐ray diffraction (XRD) analysis techniques. The detailed analysis envisages the reduction of Mn(VII) to Mn(IV) was facilitated by various phytochemicals present in the aq. mango leaves extract, avoiding the use of external ligand source. The synthesized δ‐MnO2 NPs were perceived in a single delta (δ) monoclinic crystalline phase, wherein a spherical agglomerated morphology was displayed with a particle size of <5 nm. Further, the utility of newly developed δ‐MnO2 NPs was showcased for alpha‐keto‐alkylation and quinoline synthesis via hydrogen autotransfer and the acceptorless dehydrogenative coupling strategy. Moreover, a series of control experiments, mechanistic elucidation, catalyst recyclability, and a dye removal study were demonstrated.
Collapse
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Education Chungbuk National University Cheongju 28644 Republic of Korea
| | - Rajeev V. Hegde
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Akshay S. Limaye
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Thrilokraj R.
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Siddappa A. Patil
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Ramesh B. Dateer
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| |
Collapse
|
13
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. N-Alkylation of Amines by C1-C10 Aliphatic Alcohols Using A Well-Defined Ru(II)-Catalyst. A Metal-Ligand Cooperative Approach. J Org Chem 2023; 88:5944-5961. [PMID: 37052217 DOI: 10.1021/acs.joc.3c00313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A Ru(II)-catalyzed efficient and selective N-alkylation of amines by C1-C10 aliphatic alcohols is reported. The catalyst [Ru(L1a)(PPh3)Cl2] (1a) bearing a tridentate redox-active azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) is air-stable, easy to prepare, and showed wide functional group tolerance requiring only 1.0 mol % (for N-methylation and N-ethylation) and 0.1 mol % of catalyst loading for N-alkylation with C3-C10 alcohols. A wide array of N-methylated, N-ethylated, and N-alkylated amines were prepared in moderate to good yields via direct coupling of amines and alcohols. 1a efficiently catalyzes the N-alkylation of diamines selectively. It is even suitable for synthesizing N-alkylated diamines using (aliphatic) diols producing the tumor-active drug molecule MSX-122 in moderate yield. 1a showed excellent chemo-selectivity during the N-alkylation using oleyl alcohol and monoterpenoid β-citronellol. Control experiments and mechanistic investigations revealed that the 1a-catalyzed N-alkylation reactions proceed via a borrowing hydrogen transfer pathway where the hydrogen removed from the alcohol during the dehydrogenation step is stored in the ligand backbone of 1a, which in the subsequent steps transferred to the in situ formed imine intermediate to produce the N-alkylated amines.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
14
|
Pal S, Das S, Chakraborty S, Khanra S, Paul ND. Zn(II)-Catalyzed Multicomponent Sustainable Synthesis of Pyridines in Air. J Org Chem 2023; 88:3650-3665. [PMID: 36854027 DOI: 10.1021/acs.joc.2c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Herein, we report a Zn(II)-catalyzed solvent-free sustainable synthesis of tri- and tetra-substituted pyridines using alcohols as the primary feedstock and NH4OAc as the nitrogen source. Using a well-defined air-stable Zn(II)-catalyst, 1a, featuring a redox-active tridentate azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (La), a wide variety of unsymmetrical 2,4,6-substituted pyridines were prepared by three-component coupling of primary and secondary alcohols with NH4OAc. Catalyst 1a is equally compatible with the four-component coupling. Unsymmetrical 2,4,6-substituted pyridines were also prepared via a four-component coupling of a primary alcohol with two different secondary alcohols and NH4OAc. A series of tetra-substituted pyridines were prepared up to 67% yield by coupling primary and secondary alcohols with 1-phenylpropan-1-one or 1,2-diphenylethan-1-one and NH4OAc. The 1a-catalyzed reactions also proceeded efficiently upon replacing the secondary alcohols with the corresponding ketones, producing the desired tri- and tetra-substituted pyridines in higher yields in a shorter reaction time. A few control experiments were performed to unveil the mechanistic aspects, which indicates that the active participation of the aryl-azo ligand during catalysis enables the Zn(II)-complex to act as an efficient catalyst for the present multicomponent reactions. Aerial oxygen acts as an oxidant during the Zn(II)-catalyzed dehydrogenation of alcohols, producing H2O and H2O2 as byproducts.
Collapse
Affiliation(s)
- Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
15
|
Sen A, Ansari M, Rajaraman G. Mechanism of Hydroboration of CO 2 Using an Fe Catalyst: What Controls the Reactivity and Product Selectivity? Inorg Chem 2023; 62:3727-3737. [PMID: 36802517 DOI: 10.1021/acs.inorgchem.2c02812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Using a combination of density functional theory (DFT) and ab initio complete active space self-consistent field (CASSCF) calculations, various elementary steps in the mechanism of the reductive hydroboration of CO2 to two-electron-reduced boryl formate, four-electron-reduced bis(boryl)acetal, and six-electron-reduced methoxy borane by the [Fe(H)2(dmpe)2] catalyst were established. The replacement of hydride by oxygen ligation after the boryl formate insertion step is the rate-determining step. Our work unveils, for the first time, (i) how a substrate steers product selectivity in this reaction and (ii) the importance of configurational mixing in contracting the kinetic barrier heights. Based on the reaction mechanism established, we have further focused on the effect of other metals, such as Mn and Co, on rate-determining steps and on catalyst regeneration.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, IIT Bombay, Powai 400076, Maharashtra, India
| | - Mursaleem Ansari
- Department of Chemistry, IIT Bombay, Powai 400076, Maharashtra, India
| | - Gopalan Rajaraman
- Department of Chemistry, IIT Bombay, Powai 400076, Maharashtra, India
| |
Collapse
|
16
|
De S, Chowdhury C. Substrate-Controlled Product Divergence in Iron(III)-Catalyzed Reactions of Propargylic Alcohols: Easy Access to Spiro-indenyl 1,4-Benzoxazines and 2-(2,2-Diarylvinyl)quinoxalines. Chemistry 2023; 29:e202203993. [PMID: 36651187 DOI: 10.1002/chem.202203993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
We report herein unprecedented cascade reactions of O-propargyl-N-tosyl-amino phenols with 10 mol% FeCl3 in DCE at room temperature for 0.67-3 h to form spiro-indenyl 1,4-benzoxazines with 38-89 % yield. Replacing the substrates' oxygen atom by a N-tosylimine group followed by treatment with the same catalyst and solvent at 80 °C produced 2-(2,2-diarylvinyl)quinoxalines in 12-20 h with up to 62 % yield. Mechanistic understanding provided an insight into the transformations. The use of simple substrates and an environmentally benign low-cost catalyst, broad substrate scope and tolerance of diverse functional groups makes the methodology inherently attractive.
Collapse
Affiliation(s)
- Sukanya De
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Chinmay Chowdhury
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
17
|
Kocsis M, Baán K, Ötvös SB, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I, Varga G. Sustainable synthesis of azobenzenes, quinolines and quinoxalines via oxidative dehydrogenative couplings catalysed by reusable transition metal oxide–Bi( iii) cooperative catalysts. Catal Sci Technol 2023; 13:3069-3083. [DOI: 10.1039/d3cy00327b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Heterogeneous catalytic oxidative dehydrogenative processes for N-heterocycles are presented, which enable waste-minimized (additive-, oxidant-, base-free), efficient cyclisations/couplings via transition metal oxide–Bi(iii) cooperative catalysis.
Collapse
Affiliation(s)
- Marianna Kocsis
- Department of Organic Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary
| | - Kornélia Baán
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| | - Sándor B. Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, A-8010 Austria
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| | - Pál Sipos
- Department of Inorganic and Analytical Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 7, Szeged, H-6720 Hungary
| | - István Pálinkó
- Department of Organic Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary
| | - Gábor Varga
- Department of Physical Chemistry and Materials Science and Materials and Solution Structure Research Group, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| |
Collapse
|
18
|
Anandaraj P, Ramesh R, Malecki JG. Direct Synthesis of Benzimidazoles by Pd(II) N^N^S-Pincer Type Complexes via Acceptorless Dehydrogenative Coupling of Alcohols with Diamines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Patra K, Bhattacherya A, Li C, Bera JK, Soo HS. Understanding the Visible-Light-Initiated Manganese-Catalyzed Synthesis of Quinolines and Naphthyridines under Ambient and Aerobic Conditions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kamaless Patra
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arindom Bhattacherya
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chenfei Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jitendra K. Bera
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Han Sen Soo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
20
|
Actinopolymorphols E and F, pyrazine alkaloids from a marine sediment-derived bacterium Streptomyces sp. J Antibiot (Tokyo) 2022; 75:619-625. [DOI: 10.1038/s41429-022-00562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
|
21
|
Tan Z, Zhang X, Xu M, Fu Y, Zhuang W, Li M, Wu X, Ying H, Ouyang P, Zhu C. Cooperative chemoenzymatic synthesis of N-heterocycles via synergizing bio- with organocatalysis. SCIENCE ADVANCES 2022; 8:eadd1912. [PMID: 36070374 PMCID: PMC9451157 DOI: 10.1126/sciadv.add1912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Inspired by Nature's ingenuity, considerable progress has been made in recent years to develop chemoenzymatic processes by the integration of environmentally friendly feature of biocatalysis with versatile reactivity of chemocatalysis. However, the current types of chemoenzymatic processes are relatively few and mostly rely on metal catalysts. Here, we report a previously unexplored cooperative chemoenzymatic system for the synthesis of N-heterocycles. Starting from alcohols and amines, benzimidazole, pyrazine, quinazoline, indole, and quinoline can be obtained in excellent yields in water with O2 as the terminal oxidant. Synthetic bridged flavin analog is served as a bifunctional organocatalyst for the regeneration of cofactor nicotinamide adenine dinucleotide in the bioprocess and oxidative cyclodehydrogenation in the chemoprocess. Compared to the classical acceptorless dehydrogenative coupling strategy, being metal and base free, requiring only water as solvent, and not needing atmosphere protection were observed for the present method, exhibiting a favorable green and sustainable alternative.
Collapse
Affiliation(s)
- Zhuotao Tan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Xiaowang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Mengjiao Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yaping Fu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ming Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaojin Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| |
Collapse
|
22
|
Tsurugi H, Matsuno M, Kawakami T, Mashima K. Pyrazine Alkylation with Aldehydes and Haloalkanes Using N,N’‐Bis(trimethylsilyl)‐1,4‐dihydropyrazine Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hayato Tsurugi
- Osaka University Department of Chemistry 1-3, Machikaneyama-cho 560-8531 Toyonaka JAPAN
| | | | | | - Kazushi Mashima
- Osaka University: Osaka Daigaku Pharmaceutical Sciences JAPAN
| |
Collapse
|
23
|
Hafeez J, Bilal M, Rasool N, Hafeez U, Adnan Ali Shah S, Imran S, Amiruddin Zakaria Z. Synthesis of Ruthenium complexes and their catalytic applications: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
Luo J, Wan J, Wu L, Yang L, Wang T. tert-Butyl Hydroperoxide Promoted the Reaction of Quinazoline-3-oxides with Primary Amines Affording Quinazolin-4(3 H)-ones. J Org Chem 2022; 87:9864-9874. [PMID: 35834782 DOI: 10.1021/acs.joc.2c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and facile approach for the synthesis of quinazolin-4(3H)-ones via the reaction of quinazoline-3-oxides with primary amines is described. This approach is demonstrated to be applicable for a broad range of substrates and proceeds efficiently under metal-free and mild reaction conditions employing easily available tert-butyl hydroperoxide as the oxidant. Remarkably, 3-(2-(1H-indol-3-yl) ethyl)quinazolin-4(3H)-one 3w, which was conveniently obtained by this process in 70% yield, was an excellent precursor for the synthesis of bioactive evodiamine and rutaempine.
Collapse
Affiliation(s)
- Jin Luo
- Analytical and Testing Center, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Juelin Wan
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Lianlian Wu
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Lingyun Yang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Tao Wang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
25
|
|
26
|
Yadav D, Singh RK, Misra S, Singh AK. Ancillary Ligand Effects and Microwave‐Assisted Enhancement on the Catalytic Performance of Cationic Ruthenium (II)‐CNC Pincer Complexes for Acceptorless Alcohol Dehydrogenation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dibya Yadav
- Department of Chemistry Indian Institute of Technology Indore Indore India
| | - Rahul Kumar Singh
- Department of Chemistry Indian Institute of Technology Indore Indore India
| | - Shilpi Misra
- Department of Chemistry Indian Institute of Technology Indore Indore India
| | - Amrendra K. Singh
- Department of Chemistry Indian Institute of Technology Indore Indore India
| |
Collapse
|
27
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
28
|
Das S, Mondal R, Guin AK, Paul ND. Ligand centered redox enabled sustainable synthesis of triazines and pyrimidines using a zinc-stabilized azo-anion radical catalyst. Org Biomol Chem 2022; 20:3105-3117. [PMID: 35088804 DOI: 10.1039/d1ob02428k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report ligand-centered redox controlled Zn(II)-catalyzed multicomponent approaches for synthesizing pyrimidines and triazines. Taking advantage of the ligand-centered redox events and using a well-defined Zn(II)-catalyst (1a) bearing (E)-2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) as the redox-active ligand, a wide variety of substituted pyrimidines and triazines were prepared via dehydrogenative alcohol functionalization reactions. Pyrimidines were prepared via two pathways: (i) dehydrogenative coupling of primary and secondary alcohols with amidines and (ii) dehydrogenative coupling of primary alcohols with alkynes and amidines. Triazines were prepared via dehydrogenative coupling of alcohols and amidines. Catalyst 1a is well tolerant to a wide range of substrates yielding the desired pyrimidines and triazines in moderate to good isolated yields. A series of control reactions were performed to predict the plausible mechanism, suggesting that the active participation of the ligand-centered redox events enables the Zn(II)-complex 1a to act as an efficient catalyst for synthesizing these N-heterocycles. Electron transfer processes occur at the azo-aromatic ligand throughout the catalytic reaction, and the Zn(II)-center serves only as a template.
Collapse
Affiliation(s)
- Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| |
Collapse
|
29
|
Mondal R, Guin AK, Chakraborty G, Paul ND. Metal-ligand cooperative approaches in homogeneous catalysis using transition metal complex catalysts of redox noninnocent ligands. Org Biomol Chem 2022; 20:296-328. [PMID: 34904619 DOI: 10.1039/d1ob01153g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalysis offers a straightforward route to prepare various value-added molecules starting from readily available raw materials. The catalytic reactions mostly involve multi-electron transformations. Hence, compared to the inexpensive and readily available 3d-metals, the 4d and 5d-transition metals get an extra advantage for performing multi-electron catalytic reactions as the heavier transition metals prefer two-electron redox events. However, for sustainable development, these expensive and scarce heavy metal-based catalysts need to be replaced by inexpensive, environmentally benign, and economically affordable 3d-metal catalysts. In this regard, a metal-ligand cooperative approach involving transition metal complexes of redox noninnocent ligands offers an attractive alternative. The synergistic participation of redox-active ligands during electron transfer events allows multi-electron transformations using 3d-metal catalysts and allows interesting chemical transformations using 4d and 5d-metals as well. Herein we summarize an up-to-date literature report on the metal-ligand cooperative approaches using transition metal complexes of redox noninnocent ligands as catalysts for a few selected types of catalytic reactions.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| |
Collapse
|
30
|
A. El-Hiti G, F. Abdel-Wahab B, A. Mohamed H, A. Farahat A, M. Kariuki B. Reactivity of 4-Bromoacetyl-1,2,3-triazoles towards Amines and Phenols: Synthesis and Antimicrobial Activity of Novel Heterocycles. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Attanayake G, Mao G, Walker KD. Semibiocatalytic Approach toward Regioisomerically Enriched Ethyl Dimethylpyrazines Important in Flavor Industries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15314-15324. [PMID: 34874714 DOI: 10.1021/acs.jafc.1c05786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alkylpyrazines are important heterocyclic compounds used as flavorants in food and beverage industries. In this study, a regioselective semibiocatalytic process was developed to synthesize 2-ethyl-3,5-dimethylpyrazine (235-EDMP) over its 3-ethyl-2,5-dimethyl pyrazine (325-EDMP) isomer and vice versa. We initially explored how sterics could direct the coupling orientations between diamines and diketones to access 235- or 325-EDMP selectively. Also, the physical parameters of the reaction conditions were changed, such as reduced temperature, the order-of-addition of the reactants, and supplementation with chiral zeolites to template the orientation of the coupling partners to direct the reaction regiochemistry. Each reaction trial resulted in 50:50 mixtures of the EDMP isomers. An alternative approach was explored to control the regioselectivity of the reactions; α-hydroxy ketones replaced the diketones as the electrophilic coupling reactant used in previous trial experiments. The hydroxy ketone reactants were made biocatalytically with pyruvate decarboxylase. The coupling reaction between 2-hydroxypentan-3-one and propane-1,2-diamine resulted in the desired 235-EDMP at >70% (∼77 mg) relative to 325-EDMP in the mixture. The 3-hydroxypentan-2-one congener was biocatalyzed and reacted with propane-1,2-diamine as a proof of principle to synthesize 325-EDMP (∼60% relative abundance, ∼73 mg) over 235-EDMP. These results suggested a mechanism that was directed by the hydroxy ketone electrophilicity and the sterics at the diamine nucleophilic centers.
Collapse
Affiliation(s)
- Gayanthi Attanayake
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guohong Mao
- Conagen, Inc., Bedford, Massachusetts 01730, United States
| | - Kevin D Walker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
32
|
Sun K, Shan H, Lu G, Cai C, Beller M. Synthesis of N-Heterocycles via Oxidant-Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angew Chem Int Ed Engl 2021; 60:25188-25202. [PMID: 34138507 PMCID: PMC9292538 DOI: 10.1002/anie.202104979] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 01/15/2023]
Abstract
N-Heterocycles, such as pyrroles, pyrimidines, quinazolines, and quinoxalines, are important building blocks for organic chemistry and the fine-chemical industry. For their synthesis, catalytic borrowing hydrogen and acceptorless dehydrogenative coupling reactions of alcohols as sustainable reagents have received significant attention in recent years. To overcome the problems of product separation and catalyst reusability, several metal-based heterogeneous catalysts have been reported to achieve these transformations with good yields and selectivity. In this Minireview, we summarize recent developments using both noble and non-noble metal-based heterogeneous catalysts to synthesize N-heterocycles from alcohols and N-nucleophiles via acceptorless dehydrogenation or borrowing hydrogen methodologies. Furthermore, this Minireview introduces strategies for the preparation and functionalization of the corresponding heterogeneous catalysts, discusses the reaction mechanisms and the roles of metal electronic states, and the influence of support Lewis acid-base properties on these reactions.
Collapse
Affiliation(s)
- Kangkang Sun
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
- Applied Homogeneous CatalysisLeibniz-Institut für Katalyse e.VAlbert-Einstein-Straße 29a18059RostockGermany
| | - Hongbin Shan
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
| | - Guo‐Ping Lu
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
| | - Chun Cai
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
| | - Matthias Beller
- Applied Homogeneous CatalysisLeibniz-Institut für Katalyse e.VAlbert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
33
|
Sun K, Shan H, Lu G, Cai C, Beller M. Synthesis of
N
‐Heterocycles via Oxidant‐Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kangkang Sun
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
- Applied Homogeneous Catalysis Leibniz-Institut für Katalyse e.V Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Hongbin Shan
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Guo‐Ping Lu
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Chun Cai
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Matthias Beller
- Applied Homogeneous Catalysis Leibniz-Institut für Katalyse e.V Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
34
|
Hofmann N, Hultzsch KC. Borrowing Hydrogen and Acceptorless Dehydrogenative Coupling in the Multicomponent Synthesis of N‐Heterocycles: A Comparison between Base and Noble Metal Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Natalie Hofmann
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| | - Kai C. Hultzsch
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
35
|
Mondal R, Chakraborty G, Guin AK, Pal S, Paul ND. Iron catalyzed metal-ligand cooperative approaches towards sustainable synthesis of quinolines and quinazolin-4(3H)-ones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Mondal R, Chakraborty G, Guin AK, Sarkar S, Paul ND. Iron-Catalyzed Alkyne-Based Multicomponent Synthesis of Pyrimidines under Air. J Org Chem 2021; 86:13186-13197. [PMID: 34528802 DOI: 10.1021/acs.joc.1c00867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An iron-catalyzed sustainable, economically affordable, and eco-friendly synthetic protocol for the construction of various trisubstituted pyrimidines is described. A wide range of trisubstituted pyrimidines were prepared using a well-defined, easy to prepare, bench-stable, and phosphine-free iron catalyst featuring a redox-noninnocent tridentate arylazo pincer under comparatively mild aerobic conditions via dehydrogenative functionalization of alcohols with alkynes and amidines.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Susmita Sarkar
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
37
|
Trincado M, Bösken J, Grützmacher H. Homogeneously catalyzed acceptorless dehydrogenation of alcohols: A progress report. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213967] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Das K, Barman MK, Maji B. Advancements in multifunctional manganese complexes for catalytic hydrogen transfer reactions. Chem Commun (Camb) 2021; 57:8534-8549. [PMID: 34369488 DOI: 10.1039/d1cc02512k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Catalytic hydrogen transfer reactions have enormous academic and industrial applications for the production of diverse molecular scaffolds. Over the past few decades, precious late transition-metal catalysts were employed for these reactions. The early transition metals have recently gained much attention due to their lower cost, less toxicity, and overall sustainability. In this regard, manganese, which is the third most abundant transition metal in the Earth's crust, has emerged as a viable alternative. However, the key to the success of such manganese-based complexes lies in the multifunctional ligand design and choice of appropriate ancillary ligands, which helps them mimic and, even in some cases, supersede noble metals' activities. The metal-ligand bifunctionality, achieved via deprotonation of the acidic C-H or N-H bonds, is one of the powerful strategies employed for this purpose. Alongside, the ligand hemilability in which a weakly chelating group tunes in between the coordinated and uncoordinated stages could effectively stabilize the reactive intermediates, thereby facilitating substrate activation and catalysis. Redox non-innocent ligands acting as an electron sink, thereby helping the metal center in steps gaining or losing electrons, and non-classical metal-ligand cooperativity has also played a significant role in the ligand design for manganese catalysis. The strategies were not only employed for the chemoselective hydrogenation of different reducible functionalities but also for the C-X (X = C/N) coupling reactions via HT and downstream cascade processes. This article features multifunctional ligand-based manganese complexes, highlighting the importance of ligand design and choice of ancillary ligands for achieving the desired catalytic activity and selectivity for HT reactions. We have also discussed the detailed reaction pathways for metal complexes involving bifunctionality, hemilability, redox activity, and indirect metal-ligand cooperativity. The synthetic utilization of those complexes in different organic transformations has also been detailed.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | | | | |
Collapse
|
39
|
Huh DN, Cheng Y, Frye CW, Egger DT, Tonks IA. Multicomponent syntheses of 5- and 6-membered aromatic heterocycles using group 4-8 transition metal catalysts. Chem Sci 2021; 12:9574-9590. [PMID: 34349931 PMCID: PMC8293814 DOI: 10.1039/d1sc03037j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
In this Perspective, we discuss recent syntheses of 5- and 6-membered aromatic heterocycles via multicomponent reactions (MCRs) that are catalyzed by group 4-8 transition metals. These MCRs can be categorized based on the substrate components used to generate the cyclized product, as well as on common mechanistic features between the catalyst systems. These particular groupings are intended to highlight mechanistic and strategic similarities between otherwise disparate transition metals and to encourage future work exploring related systems with otherwise-overlooked elements. Importantly, in many cases these early- to mid-transition metal catalysts have been shown to be as effective for heterocycle syntheses as the later (and more commonly implemented) group 9-11 metals.
Collapse
|
40
|
Mondal A, Sharma R, Pal D, Srimani D. Recent Progress in the Synthesis of Heterocycles through Base Metal‐Catalyzed Acceptorless Dehydrogenative and Borrowing Hydrogen Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Avijit Mondal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Rahul Sharma
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Debjyoti Pal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| |
Collapse
|
41
|
Nad P, Mukherjee A. Acceptorless Dehydrogenative Coupling Reactions by Manganese Pincer Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pinaki Nad
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| | - Arup Mukherjee
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| |
Collapse
|
42
|
Das S, Mondal R, Chakraborty G, Guin AK, Das A, Paul ND. Zinc Stabilized Azo-anion Radical in Dehydrogenative Synthesis of N-Heterocycles. An Exclusively Ligand Centered Redox Controlled Approach. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
43
|
Xie F, Chen X, Zhang X, Luo C, Lin S, Chen X, Li B, Li Y, Zhang M. OMS-2 nanorod-supported cobalt catalyst for aerobic dehydrocyclization of vicinal diols and amidines: Access to functionalized imidazolones. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
|
45
|
Hao S, Yang J, Liu P, Xu J, Yang C, Li F. Linear-Organic-Polymer-Supported Iridium Complex as a Recyclable Auto-Tandem Catalyst for the Synthesis of Quinazolinones via Selective Hydration/Acceptorless Dehydrogenative Coupling from o-Aminobenzonitriles. Org Lett 2021; 23:2553-2558. [PMID: 33729807 DOI: 10.1021/acs.orglett.1c00475] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A linear-organic-polymer-supported iridium complex Cp*Ir@P4VP, which is designed and synthesized by the coordinative immobilization of [Cp*IrCl2]2 on poly(4-vinylpyridine), was proven to be an efficient heterogeneous autotandem catalyst for synthesizing quinazolinones via selective hydration/acceptorless dehydrogenative coupling from o-aminobenzonitriles. Furthermore, the synthesized catalyst was recycled five times without an obvious decrease in the catalytic activity.
Collapse
Affiliation(s)
- Shushu Hao
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Jiazhi Yang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Peng Liu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Jing Xu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Chenchen Yang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Feng Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| |
Collapse
|
46
|
Efficient and sustainable Co3O4 nanocages based nickel catalyst: A suitable platform for the synthesis of quinoxaline derivatives. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Maikhuri VK, Prasad AK, Jha A, Srivastava S. Recent advances in the transition metal catalyzed synthesis of quinoxalines: a review. NEW J CHEM 2021. [DOI: 10.1039/d1nj01442k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the recent developments in the synthesis of a variety of substituted quinoxalines using transition metal catalysts.
Collapse
Affiliation(s)
- Vipin K. Maikhuri
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| | - Ashok K. Prasad
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| | - Amitabh Jha
- Department of Chemistry
- Acadia University
- Wolfville
- Canada
| | | |
Collapse
|
48
|
Wang YB, Shi L, Zhang X, Fu LR, Hu W, Zhang W, Zhu X, Hao XQ, Song MP. NaOH-Mediated Direct Synthesis of Quinoxalines from o-Nitroanilines and Alcohols via a Hydrogen-Transfer Strategy. J Org Chem 2021; 86:947-958. [PMID: 33351617 DOI: 10.1021/acs.joc.0c02453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A NaOH-mediated sustainable synthesis of functionalized quinoxalines is disclosed via redox condensation of o-nitroamines with diols and α-hydroxy ketones. Under optimized conditions, various o-nitroamines and alcohols are well tolerated to generate the desired products in 44-99% yields without transition metals and external redox additives.
Collapse
Affiliation(s)
- Yan-Bing Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xiaojie Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Lian-Rong Fu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Weinan Hu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Wenjing Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
49
|
Maji M, Panja D, Borthakur I, Kundu S. Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Org Chem Front 2021. [DOI: 10.1039/d0qo01577f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, we have summarized various aspects of homogeneous and heterogeneously catalyzed recent advancements in the synthesis of heterocycles following the ADC approach.
Collapse
Affiliation(s)
- Milan Maji
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Dibyajyoti Panja
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ishani Borthakur
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sabuj Kundu
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
50
|
Abstract
Quinoxalines are observed in several bioactive molecules and have been widely employed in designing molecules for DSSC's, optoelectronics, and sensing applications. Therefore, developing newer synthetic routes as well as novel ways for their functionalization is apparent.
Collapse
Affiliation(s)
- Gauravi Yashwantrao
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|