1
|
Xu J, Liu Z, Zhang R, Ge Q, Zhu X. Solid Solution Derived Cu Clusters on Partially Reduced CuCeO 2 with Abundant Oxygen Vacancies Enable Efficient Reverse Water Gas Reaction. Chem Asian J 2024:e202401485. [PMID: 39720930 DOI: 10.1002/asia.202401485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/26/2024]
Abstract
The reverse water gas shift (RWGS) reaction provides a convenient approach to convert CO2 to CO, which facilitates to achieve the goals of carbon peaking and carbon neutrality. Herein, the Cu/CeO2 catalyst prepared by a co-precipitation method using a mixture of Na2CO3 and NaOH at pH of 10 (sample Cu/CeO2-10) achieved an intrinsic reaction rate of 428.4 mmol ⋅ gcat -1 ⋅ h-1 with 100 % CO selectivity at 400 °C and CO2/H2 ratio of 1 : 4, which is much higher than Cu/CeO2 prepared by impregnation and other methods. Various characterizations showed the highest fraction of CuCeO2 solid solution in the calcined Cu/CeO2-10, and formed highly dispersed Cu clusters (~2.5 nm) on partially reduced CuCeO2 solid solution with abundant of oxygen vacancies upon reduction. The Cu and oxygen vacancies facilitates the activation of H2 and CO2, respectively, resulting in lowered H2 and CO2 reaction orders. As a result, the synergy between the two components enhanced the overall RWGS activity with lowered activation energy. Moreover, the optimal catalyst is very stable in 24 h stability test without detectable agglomeration of Cu clusters.
Collapse
Affiliation(s)
- Jianhong Xu
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zihao Liu
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ruoyu Zhang
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Xinli Zhu
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300192, China
| |
Collapse
|
2
|
Tada S, Ogura Y, Sato M, Yoshida A, Honma T, Nishijima M, Joutsuka T, Kikuchi R. Difference in reaction mechanism between ZnZrO x and InZrO x for CO 2 hydrogenation. Phys Chem Chem Phys 2024; 26:14037-14045. [PMID: 38686433 DOI: 10.1039/d4cp00635f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Oxide solid-solution catalysts, such as Zn-doped ZrO2 (ZnZrOx) and In-doped ZrO2 (InZrOx), exhibit distinctive catalytic capabilities for CH3OH synthesis via CO2 hydrogenation. We investigated the active site structures of these catalysts and their associated reaction mechanisms using both experimental and computational approaches. Electron microscopy and X-ray absorption spectroscopy reveal that the primary active sites are isolated cations, such as Zn2+ and In3+, dissolved in tetragonal ZrO2. Notably, for Zn2+, decomposition of the methoxy group, which is an essential intermediate in CH4 synthesis, is partially suppressed because of the relatively high stability of the methoxy group. Conversely, the methyl group strongly adsorbs on In3+, facilitating the conversion of the methoxy species into methyl groups. The decomposition of CH3OH is also suggested to contribute to CH4 synthesis. These results highlight the generation of CH4 as a byproduct of the InZrOx catalyst. Understanding the active site structure and elucidating the reaction mechanism at the atomic level are anticipated to contribute significantly to the future development of oxide solid-solution catalysts.
Collapse
Affiliation(s)
- Shohei Tada
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.
| | - Yurika Ogura
- Department of Materials Science and Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Motohiro Sato
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 030-8651, Japan
| | - Akihiro Yoshida
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 030-8651, Japan
- Institute of Regional Innovation, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 030-8651, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198, Japan
| | - Masahiko Nishijima
- Flexible 3D System Integration Laboratory, Osaka University, 8-1 Mihogaoka Ibaraki-Shi, Osaka 567-0047, Japan
| | - Tatsuya Joutsuka
- Department of Materials Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Ryuji Kikuchi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
3
|
Mahmood A, Perveen F, Akram T, Chen S, Irfan A, Chen H. Advancing nitrate reduction to ammonia: insights into mechanism, activity control, and catalyst design over Pt nanoparticle-based ZrO 2. RSC Adv 2023; 13:34497-34509. [PMID: 38024971 PMCID: PMC10667968 DOI: 10.1039/d3ra06449b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
The reduction of nitrogen oxides (NOx) to NH3, or N2 represents a crucial step in mitigating atmospheric NO3 and NO2 emissions, a significant contributor to air pollution. Among these reduction products, ammonia (NH3) holds particular significance due to its utility in nitrogen-based fertilizers and its versatile applications in various industrial processes. Platinum-based catalysts have exhibited promise in enhancing the rate and selectivity of these reduction reactions. In this study, we employ density functional theory (DFT) calculations to explore the catalytic potential of Pt nanoparticle (PtNP)-supported ZrO2 for the conversion of NO3 to NH3. The most favorable pathway for the NO3 reduction to NH3 follows a sequence, that is, NO3 → NO2 → NO → ONH → ONH2/HNOH → NH2/NH → NH2 → NH3, culminating in the production of valuable ammonia. The introduction of low-state Fe and Co dopants into the ZrO2 support reduces energy barriers for the most challenging rate-determining hydrogenation step in NOx reduction to NH3, demonstrating significant improvements in catalytic activity. The incorporation of dopants into the ZrO2 support results in a depletion of electron density within the Pt cocatalyst resulting in enhanced hydrogen transfer efficiency during the hydrogenation process. This study aims to provide insights into the catalytic activity of platinum-based ZrO2 catalysts and will help design new high-performance catalysts for the reduction of atmospheric pollutants and for energy applications.
Collapse
Affiliation(s)
- Ayyaz Mahmood
- School of Life Science and Technology, University of Electronic Science and Technology Chengdu 610054 China
- School of Mechanical Engineering, Dongguan University of Technology Dongguan 523808 China
- School of Art and Design, Guangzhou Panyu Polytechnic Guangzhou 511483 China
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology Dongguan 523808 China
| | - Fouzia Perveen
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST) Sector H-12 Islamabad 44000 Pakistan
| | - Tehmina Akram
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Shenggui Chen
- School of Mechanical Engineering, Dongguan University of Technology Dongguan 523808 China
- School of Art and Design, Guangzhou Panyu Polytechnic Guangzhou 511483 China
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology Dongguan 523808 China
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Huafu Chen
- School of Life Science and Technology, University of Electronic Science and Technology Chengdu 610054 China
| |
Collapse
|
4
|
Gericke SM, Kauppinen MM, Wagner M, Riva M, Franceschi G, Posada-Borbón A, Rämisch L, Pfaff S, Rheinfrank E, Imre AM, Preobrajenski AB, Appelfeller S, Blomberg S, Merte LR, Zetterberg J, Diebold U, Grönbeck H, Lundgren E. Effect of Different In 2O 3(111) Surface Terminations on CO 2 Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45367-45377. [PMID: 37704018 PMCID: PMC10540140 DOI: 10.1021/acsami.3c07166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
In2O3-based catalysts have shown high activity and selectivity for CO2 hydrogenation to methanol; however, the origin of the high performance of In2O3 is still unclear. To elucidate the initial steps of CO2 hydrogenation over In2O3, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO2 on the In2O3(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO2 adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO2 is hindered by hydroxyl groups on the hydroxylated surface.
Collapse
Affiliation(s)
| | - Minttu M. Kauppinen
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Margareta Wagner
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Michele Riva
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Giada Franceschi
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Alvaro Posada-Borbón
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Lisa Rämisch
- Division
of Combustion Physics, Lund University, 22100 Lund, Sweden
| | - Sebastian Pfaff
- Division
of Combustion Physics, Lund University, 22100 Lund, Sweden
| | - Erik Rheinfrank
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Alexander M. Imre
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | | | | | - Sara Blomberg
- Department
of Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Lindsay R. Merte
- Department
of Materials Science and Applied Mathematics, Malmö University, 20506 Malmö, Sweden
| | - Johan Zetterberg
- Division
of Combustion Physics, Lund University, 22100 Lund, Sweden
| | - Ulrike Diebold
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Henrik Grönbeck
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Edvin Lundgren
- Division
of Synchrotron Radiation Research, Lund
University, 22100 Lund, Sweden
| |
Collapse
|
5
|
Yin P, Yang Y, Yan H, Wei M. Theoretical Calculations on Metal Catalysts Toward Water-Gas Shift Reaction: a Review. Chemistry 2023; 29:e202203781. [PMID: 36723438 DOI: 10.1002/chem.202203781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Water-gas shift (WGS) reaction offers a dominating path to hydrogen generation from fossil fuel, in which heterogeneous metal catalysts play a crucial part in this course. This review highlights and summarizes recent developments on theoretical calculations of metal catalysts developed to date, including surface structure (e. g., monometallic and polymetallic systems) and interface structure (e. g., supported catalysts and metal oxide composites), with special emphasis on the characteristics of crystal-face effect, alloying strategy, and metal-support interaction. A systematic summarization on reaction mechanism was performed, including redox mechanism, associative mechanism as well as hybrid mechanism; the development on chemical kinetics (e. g., molecular dynamics, kinetic Monte Carlo and microkinetic simulation) was then introduced. At the end, challenges associated with theoretical calculations on metal catalysts toward WGS reaction are discussed and some perspectives on the future advance of this field are provided.
Collapse
Affiliation(s)
- Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Institute of Engineering Technology, SINOPEC Catalyst Co., Ltd., Beijing, 110112, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Sun X, Huang W, Xu H, Qu Z, Wu J, Yan N. Insight into H2S Production from CS2 Hydrolysis for Heavy Metals Treatment: In-situ FT-IR and DFT Studies over Crystalline Phase-dependent ZrO2. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Deploying Radical Inter-Transition from •OH to Supported NO3• on Mono-Dentate NO3--Modified ZrO2 to Sustain Fragmentation of Aqueous Contaminants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Hu Y, Liu X, Zou Y, Xie H, Zhu T. Nature of support plays vital roles in H2O promoted CO oxidation over Pt catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Li H, Xia M, Chong B, Xiao H, Zhang B, Lin B, Yang B, Yang G. Boosting Photocatalytic Nitrogen Fixation via Constructing Low-Oxidation-State Active Sites in the Nanoconfined Spinel Iron Cobalt Oxide. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- He Li
- A XJTU-Oxford International Joint Laboratory for Catalysis School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Mengyang Xia
- A XJTU-Oxford International Joint Laboratory for Catalysis School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Ben Chong
- A XJTU-Oxford International Joint Laboratory for Catalysis School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Hang Xiao
- A XJTU-Oxford International Joint Laboratory for Catalysis School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Bin Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Lin
- A XJTU-Oxford International Joint Laboratory for Catalysis School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Bolun Yang
- A XJTU-Oxford International Joint Laboratory for Catalysis School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Guidong Yang
- A XJTU-Oxford International Joint Laboratory for Catalysis School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| |
Collapse
|
10
|
|
11
|
Zhang Z, Zheng B, Tian H, He Y, Huang X, Ali S, Xu H. Rational design of highly efficient MXene-based catalysts for the water-gas-shift reaction. Phys Chem Chem Phys 2022; 24:18265-18271. [PMID: 35876328 DOI: 10.1039/d1cp05789h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water molecules linked by hydrogen bonds are responsible for the high efficiency of bi-functional catalysts for the water-gas-shift (WGS) reaction because water can act as a proton transfer medium. Herein, we propose an associative pathway for the WGS reaction assisted by water to realize hydrogen production. Based on this pathway, we show by first-principles calculations that a large family of oxygen-terminated two-dimensional transition metal carbides and nitrides (MXenes) deposited on Au clusters are promising catalysts for the WGS reaction. Remarkably, the rate-determining barriers for *CO → *COOH on Au/Mn+1XnO2 are in the range from 0.15 eV to 0.39 eV, indicating that WGS can occur at much lower temperatures. Furthermore, a comprehensive microkinetic model is constructed to describe the turnover frequencies (TOF) for the product under the steady-state conditions. More importantly, there is a perfect linear scaling relationship between the rate-determining barriers of the WGS and the free energy of the adsorbed hydrogen. Besides, the potential energy diagrams for CO reforming reveal that the F terminations introduced in experiments have only a slight influence on the catalytic performance of the oxygen-terminated MXenes. Our work not only opens a new avenue towards the WGS reaction but also provides many ideal catalysts for hydrogen production.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China.,Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baobing Zheng
- College of Physics and Optoelectronic Technology, Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721016, China
| | - Hao Tian
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Physics, The University of Hong Kong, Hong Kong
| | - Yanling He
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Physics, The University of Hong Kong, Hong Kong
| | - Xiang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sajjad Ali
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, China.,Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
12
|
Shin D, Huang R, Jang MG, Choung S, Kim Y, Sung K, Kim TY, Han JW. Role of an Interface for Hydrogen Production Reaction over Size-Controlled Supported Metal Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongjae Shin
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Rui Huang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Myeong Gon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seokhyun Choung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Youngbi Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kiheon Sung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tae Yong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
13
|
Cheula R, Maestri M. Nature and identity of the active site via structure-dependent microkinetic modeling: An application to WGS and reverse WGS reactions on Rh. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Dynamic Simulation on Surface Hydration and Dehydration of Monoclinic Zirconia. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2204062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
15
|
Alam MI, Cheula R, Moroni G, Nardi L, Maestri M. Mechanistic and multiscale aspects of thermo-catalytic CO 2 conversion to C 1 products. Catal Sci Technol 2021; 11:6601-6629. [PMID: 34745556 PMCID: PMC8521205 DOI: 10.1039/d1cy00922b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022]
Abstract
The increasing environmental concerns due to anthropogenic CO2 emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO2, a thermodynamically stable and kinetically inert molecule, can significantly pave the way to sustainably produce chemicals and fuels and mitigate the additional CO2 load. This can be done through comprehensive knowledge and understanding of catalyst behavior, reaction kinetics, and reactor design. This review aims to catalog and summarize the advances in the experimental and theoretical approaches for CO2 activation and conversion to C1 products via heterogeneous catalytic routes. To this aim, we analyze the current literature works describing experimental analyses (e.g., catalyst characterization and kinetics measurement) as well as computational studies (e.g., microkinetic modeling and first-principles calculations). The catalytic reactions of CO2 activation and conversion reviewed in detail are: (i) reverse water-gas shift (RWGS), (ii) CO2 methanation, (iii) CO2 hydrogenation to methanol, and (iv) dry reforming of methane (DRM). This review is divided into six sections. The first section provides an overview of the energy and environmental problems of our society, in which promising strategies and possible pathways to utilize anthropogenic CO2 are highlighted. In the second section, the discussion follows with the description of materials and mechanisms of the available thermo-catalytic processes for CO2 utilization. In the third section, the process of catalyst deactivation by coking is presented, and possible solutions to the problem are recommended based on experimental and theoretical literature works. In the fourth section, kinetic models are reviewed. In the fifth section, reaction technologies associated with the conversion of CO2 are described, and, finally, in the sixth section, concluding remarks and future directions are provided.
Collapse
Affiliation(s)
- Md Imteyaz Alam
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Raffaele Cheula
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Gianluca Moroni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Luca Nardi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| |
Collapse
|
16
|
Qiu C, Deng S, Sun X, Gao Y, Yao Z, Zhuang G, Wang S, Wang JG. Meso-scale simulation on mechanism of Na+-gated water-conducting nanochannels in zeolite NaA. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Xu L, Stangland EE, Dumesic JA, Mavrikakis M. Hydrodechlorination of 1,2-Dichloroethane on Platinum Catalysts: Insights from Reaction Kinetics Experiments, Density Functional Theory, and Microkinetic Modeling. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lang Xu
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eric E. Stangland
- Core Research and Development, Dow, Midland, Michigan 48667, United States
| | - James A. Dumesic
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Manos Mavrikakis
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Gell L, Lempelto A, Kiljunen T, Honkala K. Influence of a Cu-zirconia interface structure on CO 2 adsorption and activation. J Chem Phys 2021; 154:214707. [PMID: 34240985 DOI: 10.1063/5.0049293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CO2 adsorption and activation on a catalyst are key elementary steps for CO2 conversion to various valuable products. In the present computational study, we screened different Cu-ZrO2 interface structures and analyzed the influence of the interface structure on CO2 binding strength using density functional theory calculations. Our results demonstrate that a Cu nanorod favors one position on both tetragonal and monoclinic ZrO2 surfaces, where the bottom Cu atoms are placed close to the lattice oxygens. In agreement with previous calculations, we find that CO2 prefers a bent bidentate configuration at the Cu-ZrO2 interface and the molecule is clearly activated being negatively charged. Straining of the Cu nanorod influences CO2 adsorption energy but does not change the preferred nanorod position on zirconia. Altogether, our results highlight that CO2 adsorption and activation depend sensitively on the chemical composition and atomic structure of the interface used in the calculations. This structure sensitivity may potentially impact further catalytic steps and the overall computed reactivity profile.
Collapse
Affiliation(s)
- Lars Gell
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YN), Jyväskylä FI-40014, Finland
| | - Aku Lempelto
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YN), Jyväskylä FI-40014, Finland
| | - Toni Kiljunen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YN), Jyväskylä FI-40014, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YN), Jyväskylä FI-40014, Finland
| |
Collapse
|
19
|
Zhurka MD, Lemonidou AA, Kechagiopoulos PN. Elucidation of metal and support effects during ethanol steam reforming over Ni and Rh based catalysts supported on (CeO2)-ZrO2-La2O3. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Abstract
Certain alkali metals (Na, K) at targeted loadings have been shown in recent decades to significantly promote the LT-WGS reaction. This occurs at alkali doping levels where a redshift in the C-H band of formate occurs, indicating electronic weakening of the bond. The C-H bond breaking of formate is the proposed rate-limiting step of the formate associative mechanism, lending support to the occurrence of this mechanism in H2-rich environments of the LT-WGS stage of fuel processors. Continuing in this vein of research, 2%Pt/m-ZrO2 was promoted with various levels of Cs in order to explore its influence on the rate of formate intermediate decomposition, as well as that of LT-WGS in a fixed bed reactor. In situ DRIFTS experiments revealed that Cs promoter loadings of 3.87% to 7.22% resulted in significant acceleration of the forward formate decomposition in steam at 130 °C. Of all of the alkali metals tested to date, the redshift in the formate ν(CH) band with the incorporation of Cs was the greatest. XANES difference experiments at the Pt L2 and L3 edges indicated that the electronic effect was not likely due to an enrichment of electronic density on Pt. CO2 TPD experiments revealed that, unlike Na and K promoters, Cs behaves more like Rb in that the decomposition of the second intermediate in LT-WGS, carbonate species, is hindered due to (1) increased basicity of Cs, (2) the tendency of Cs to cover Pt sites that facilitate CO2 decomposition, and (3) the tendency of Cs to increase Pt particle size as shown by EXAFS results, resulting in fewer Pt sites that facilitate CO2 decomposition. As such, the LT-WGS rate was hindered overall and the rate-limiting step shifted to carbonate decomposition (CO2 removal). Like its Rb counterpart, low levels of added Cs (e.g., 0.72%Cs) were found to improve the stability of the catalyst relative to the unpromoted catalyst; the stability comparison was made at similar CO conversion level as well as similar space velocity.
Collapse
|
21
|
Mahdavi-Shakib A, Kumar KBS, Whittaker TN, Xie T, Grabow LC, Rioux RM, Chandler BD. Kinetics of H 2 Adsorption at the Metal-Support Interface of Au/TiO 2 Catalysts Probed by Broad Background IR Absorbance. Angew Chem Int Ed Engl 2021; 60:7735-7743. [PMID: 33403732 DOI: 10.1002/anie.202013359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Indexed: 11/08/2022]
Abstract
H2 adsorption on Au catalysts is weak and reversible, making it difficult to quantitatively study. We demonstrate H2 adsorption on Au/TiO2 catalysts results in electron transfer to the support, inducing shifts in the FTIR background. This broad background absorbance (BBA) signal is used to quantify H2 adsorption; adsorption equilibrium constants are comparable to volumetric adsorption measurements. H2 adsorption kinetics measured with the BBA show a lower Eapp value (23 kJ mol-1 ) for H2 adsorption than previously reported from proxy H/D exchange (33 kJ mol-1 ). We also identify a previously unreported H-O-H bending vibration associated with proton adsorption on electronically distinct Ti-OH metal-support interface sites, providing new insight into the nature and dynamics of H2 adsorption at the Au/TiO2 interface.
Collapse
Affiliation(s)
| | - K B Sravan Kumar
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA.,Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA
| | - Todd N Whittaker
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA
| | - Tianze Xie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lars C Grabow
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.,Texas Center for Superconductivity at the, University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bert D Chandler
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA.,Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
22
|
Mahdavi‐Shakib A, Kumar KBS, Whittaker TN, Xie T, Grabow LC, Rioux RM, Chandler BD. Kinetics of H
2
Adsorption at the Metal–Support Interface of Au/TiO
2
Catalysts Probed by Broad Background IR Absorbance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - K. B. Sravan Kumar
- Department of Chemistry Trinity University San Antonio TX 78212-7200 USA
- Department of Chemical and Biomolecular Engineering University of Houston Houston TX 77204-4004 USA
| | - Todd N. Whittaker
- Department of Chemistry Trinity University San Antonio TX 78212-7200 USA
| | - Tianze Xie
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Lars C. Grabow
- Department of Chemical and Biomolecular Engineering University of Houston Houston TX 77204-4004 USA
- Texas Center for Superconductivity at the University of Houston (TcSUH) University of Houston Houston TX 77204 USA
| | - Robert M. Rioux
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Bert D. Chandler
- Department of Chemistry Trinity University San Antonio TX 78212-7200 USA
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
23
|
Low Temperature Water-Gas Shift: Enhancing Stability through Optimizing Rb Loading on Pt/ZrO2. Catalysts 2021. [DOI: 10.3390/catal11020210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that appropriate levels of alkali promotion can significantly improve the rate of low-temperature water gas shift (LT-WGS) on a range of catalysts. At sufficient loadings, the alkali metal can weaken the formate C–H bond and promote formate dehydrogenation, which is the proposed rate determining step in the formate associative mechanism. In a continuation of these studies, the effect of Rb promotion on Pt/ZrO2 is examined herein. Pt/ZrO2 catalysts were prepared with several different Rb loadings and characterized using temperature programmed reduction mass spectrometry (TPR-MS), temperature programmed desorption (TPD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), an X-ray absorption near edge spectroscopy (XANES) difference procedure, extended X-ray absorption fine structure spectroscopy (EXAFS) fitting, TPR-EXAFS/XANES, and reactor testing. At loadings of 2.79% Rb or higher, a significant shift was seen in the formate ν(CH) band. The results showed that a Rb loading of 4.65%, significantly improves the rate of formate decomposition in the presence of steam via weakening the formate C–H bond. However, excessive rubidium loading led to the increase in stability of a second intermediate, carbonate and inhibited hydrogen transfer reactions on Pt through surface blocking and accelerated agglomeration during catalyst activation. Optimal catalytic performance was achieved with loadings in the range of 0.55–0.93% Rb, where the catalyst maintained high activity and exhibited higher stability in comparison with the unpromoted catalyst.
Collapse
|
24
|
Wang WY, Wang GC. The first-principles-based microkinetic simulation of the dry reforming of methane over Ru(0001). Catal Sci Technol 2021. [DOI: 10.1039/d0cy01942a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the temperature was increased, the generation rate of H2 and CO in the DRM reaction on Ru(0001) gradually increased along with the ratio of H2/CO generation rate.
Collapse
Affiliation(s)
- Wan-Ying Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and
- The Tianjin Key Lab and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Gui-Chang Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and
- The Tianjin Key Lab and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
25
|
Gao X, Zhu S, Dong M, Wang J, Fan W. Ru/CeO2 catalyst with optimized CeO2 morphology and surface facet for efficient hydrogenation of ethyl levulinate to γ-valerolactone. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Zhang Y, Zhao Y, Otroshchenko T, Perechodjuk A, Kondratenko VA, Bartling S, Rodemerck U, Linke D, Jiao H, Jiang G, Kondratenko EV. Structure–Activity–Selectivity Relationships in Propane Dehydrogenation over Rh/ZrO2 Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01455] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaoyuan Zhang
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People’s Republic of China
| | - Yun Zhao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Tatiana Otroshchenko
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Anna Perechodjuk
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Vita A. Kondratenko
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Uwe Rodemerck
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - David Linke
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People’s Republic of China
| | - Evgenii V. Kondratenko
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
27
|
Qadir MI, Castegnaro MV, Selau FF, Samperi M, Fernandes JA, Morais J, Dupont J. Catalytic Semi-Water-Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel. CHEMSUSCHEM 2020; 13:1817-1824. [PMID: 32022428 DOI: 10.1002/cssc.201903417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Formic acid (FA) is a promising CO and hydrogen energy carrier, and currently its generation is mainly centered on the hydrogenation of CO2 . However, it can also be obtained by the hydrothermal conversion of CO with H2 O at very high pressures (>100 bar) and temperatures (>200 °C), which requires days to complete. Herein, it is demonstrated that by using a nano-Ru/Fe alloy embedded in an ionic liquid (IL)-hybrid silica in the presence of the appropriate IL in water, CO can be catalytically converted into free FA (0.73 m) under very mild reactions conditions (10 bar at 80 °C) with a turnover number of up to 1269. The catalyst was prepared by simple reduction/decomposition of Ru and Fe complexes in the IL, and it was then embedded into an IL-hybrid silica {1-n-butyl-3-(3-trimethoxysilylpropyl)-imidazolium cations associated with hydrophilic (acetate, SILP-OAc) and hydrophobic [bis((trifluoromethyl)sulfonyl)amide, SILP-NTf2 ] anions}. The location of the alloy nanoparticles on the support is strongly related to the nature of the anion, that is, in the case of hydrophilic SILP-OAc, RuFe nanoparticles are more exposed to the support surface than in the case of the hydrophobic SILP-NTf2 , as determined by Rutherford backscattering spectrometry. This catalytic membrane in the presence of H2 O/CO and an appropriate IL, namely, 1,2-dimethyl-3-n-butylimidazolium 2-methyl imidazolate (BMMIm⋅MeIm), is stable and recyclable for at least five runs, yielding a total of 4.34 m of free FA.
Collapse
Affiliation(s)
- Muhammad I Qadir
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, RS, Brazil
| | - Marcus V Castegnaro
- Institute of Physics, Federal University of Rio Grande do Sul, Campus Agronomia, Porto Alegre, 90650-001, Brazil
| | - Felipe F Selau
- Institute of Physics, Federal University of Rio Grande do Sul, Campus Agronomia, Porto Alegre, 90650-001, Brazil
| | - Mario Samperi
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Jesum Alves Fernandes
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Jonder Morais
- Institute of Physics, Federal University of Rio Grande do Sul, Campus Agronomia, Porto Alegre, 90650-001, Brazil
| | - Jairton Dupont
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, RS, Brazil
| |
Collapse
|
28
|
Catalysis at Metal/Oxide Interfaces: Density Functional Theory and Microkinetic Modeling of Water Gas Shift at Pt/MgO Boundaries. Top Catal 2020. [DOI: 10.1007/s11244-020-01257-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Wang B, Huang H, Huang M, Yan P, Isimjan TT, Yang X. Electron-transfer enhanced MoO2-Ni heterostructures as a highly efficient pH-universal catalyst for hydrogen evolution. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9721-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Wang YX, Wang GC. A systematic theoretical study of the water gas shift reaction on the Pt/ZrO 2 interface and Pt(111) face: key role of a potassium additive. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02287b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
K can enhance the activity of the WGSR on the Pt40/ZrO2 model by reducing both the H2O and COOH dissociation barriers.
Collapse
Affiliation(s)
- Yan-Xin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- and the Tianjin key Lab and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Gui-Chang Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- and the Tianjin key Lab and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
31
|
Lang Z, Li Y, Clotet A, Poblet JM. Water–gas shift reaction co-catalyzed by polyoxometalate (POM)–gold composites: the “magic” role of POMs. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01722a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We computationally investigated the WGSR mechanism on POM supported gold and revealed the role of POMs. A direct pathway by formation of COOHads from the co-adsorbed H2O and CO is proposed.
Collapse
Affiliation(s)
- Zhongling Lang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Anna Clotet
- Departament de Química Física i Inorgànica
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Josep M. Poblet
- Departament de Química Física i Inorgànica
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| |
Collapse
|
32
|
Xiao TT, Wang GC. A DFT and microkinetic study of propylene oxide selectivity over copper-based catalysts: effects of copper valence states. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01611j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of high-performance copper-based catalysts is critical for the selective oxidation of propylene in both technology and scientific fields.
Collapse
Affiliation(s)
- Tian-Tian Xiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin key Lab and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Gui-Chang Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin key Lab and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
33
|
Wu C, Wang L, Xiao Z, Li G, Wang L. Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study. Phys Chem Chem Phys 2020; 22:724-733. [DOI: 10.1039/c9cp05022a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DFT study on deep dehydrogenation and cracking of long-chain hydrocarbon involving the cleavage of different C–C bonds on nickel.
Collapse
Affiliation(s)
- Chan Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Zhourong Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Lichang Wang
- Department of Chemistry and Biochemistry
- Southern Illinois University
- Carbondale
- USA
| |
Collapse
|
34
|
Kyriakou V, Neagu D, Zafeiropoulos G, Sharma RK, Tang C, Kousi K, Metcalfe IS, van de Sanden MCM, Tsampas MN. Symmetrical Exsolution of Rh Nanoparticles in Solid Oxide Cells for Efficient Syngas Production from Greenhouse Gases. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04424] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vasileios Kyriakou
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612 AJ Eindhoven, The Netherlands
| | - Dragos Neagu
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, U.K
| | - Georgios Zafeiropoulos
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612 AJ Eindhoven, The Netherlands
| | - Rakesh Kumar Sharma
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612 AJ Eindhoven, The Netherlands
| | - Chenyang Tang
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, U.K
| | - Kalliopi Kousi
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, U.K
| | - Ian S. Metcalfe
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, U.K
| | | | - Mihalis N. Tsampas
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612 AJ Eindhoven, The Netherlands
| |
Collapse
|
35
|
Cao X, Zhang C, Wang Z, Sun X. Catalytic Reaction Mechanism of NO-CO on the ZrO 2 (110) and (111) Surfaces. Int J Mol Sci 2019; 20:ijms20246129. [PMID: 31817354 PMCID: PMC6940978 DOI: 10.3390/ijms20246129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022] Open
Abstract
Due to the large population of vehicles, significant amounts of carbon monoxide (CO), nitrogen oxides (NOx), and unburned hydrocarbons (HC) are emitted into the atmosphere, causing serious pollution to the environment. The use of catalysis prevents the exhaust from entering the atmosphere. To better understand the catalytic mechanism, it is necessary to establish a detailed chemical reaction mechanism. In this study, the adsorption behaviors of CO and NO, the reaction of NO reduction with CO on the ZrO2 (110) and (111) surfaces was performed through periodic density functional theory (DFT) calculations. The detailed mechanism for CO2 and N2 formation mainly involved two intermediates N2O complexes and NCO species. Moreover, the existence of oxygen vacancies was crucial for NO reduction reactions. From the calculated energy, it was found that the pathway involving NCO intermediate interaction occurring on the ZrO2 (110) surface was most favorable. Gas phase N2O formation and dissociation were also considered in this study. The results indicated the role of reaction intermediates NCO and N2O in catalytic reactions, which could solve the key scientific problems and disputes existing in the current experiments.
Collapse
Affiliation(s)
- Xuesong Cao
- Environment Research Institute, Shandong University, Qingdao 266200, China; (X.C.); (Z.W.)
| | - Chenxi Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China;
- Correspondence: (C.Z.); (X.S.)
| | - Zehua Wang
- Environment Research Institute, Shandong University, Qingdao 266200, China; (X.C.); (Z.W.)
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266200, China; (X.C.); (Z.W.)
- Correspondence: (C.Z.); (X.S.)
| |
Collapse
|
36
|
Kauppinen MM, Korpelin V, Verma AM, Melander MM, Honkala K. Escaping scaling relationships for water dissociation at interfacial sites of zirconia-supported Rh and Pt clusters. J Chem Phys 2019; 151:164302. [DOI: 10.1063/1.5126261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Minttu M. Kauppinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YN), Jyväskylä FI-40014, Finland
| | - Ville Korpelin
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YN), Jyväskylä FI-40014, Finland
| | - Anand Mohan Verma
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YN), Jyväskylä FI-40014, Finland
| | - Marko M. Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YN), Jyväskylä FI-40014, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YN), Jyväskylä FI-40014, Finland
| |
Collapse
|