1
|
Göltl F, Bhandari S, Lebrón-Rodríguez EA, Gold JI, Hutton DJ, Zones SI, Hermans I, Dumesic JA, Mavrikakis M. Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu-Exchanged Zeolites. Angew Chem Int Ed Engl 2024; 63:e202403179. [PMID: 38574295 DOI: 10.1002/anie.202403179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
In the past, Cu-oxo or -hydroxy clusters hosted in zeolites have been suggested to enable the selective conversion of methane to methanol, but the impact of the active site's stoichiometry and structure on methanol production is still poorly understood. Herein, we apply theoretical modeling in conjunction with experiments to study the impact of these two factors on partial methane oxidation in the Cu-exchanged zeolite SSZ-13. Phase diagrams developed from first-principles suggest that Cu-hydroxy or Cu-oxo dimers are stabilized when O2 or N2O are used to activate the catalyst, respectively. We confirm these predictions experimentally and determine that in a stepwise conversion process, Cu-oxo dimers can convert twice as much methane to methanol compared to Cu-hydroxyl dimers. Our theoretical models rationalize how Cu-di-oxo dimers can convert up to two methane molecules to methanol, while Cu-di-hydroxyl dimers can convert only one methane molecule to methanol per catalytic cycle. These findings imply that in Cu clusters, at least one oxo group or two hydroxyl groups are needed to convert one methane molecule to methanol per cycle. This simple structure-activity relationship allows to intuitively understand the potential of small oxygenated or hydroxylated transition metal clusters to convert methane to methanol.
Collapse
Affiliation(s)
- Florian Göltl
- The University of Arizona, Department of Biosystems Engineering, 1177, E 4th St., 85719, Tucson, AZ, United States
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Saurabh Bhandari
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Edgard A Lebrón-Rodríguez
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Jake I Gold
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Daniel J Hutton
- The University of Arizona, Department of Biosystems Engineering, 1177, E 4th St., 85719, Tucson, AZ, United States
| | - Stacey I Zones
- Chevron Energy Technology Company, Richmond, CA 94804, United States
| | - Ive Hermans
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
- The University of Wisconsin - Madison, Department of Chemistry, 1101 University Avenue, 53706, Madison, WI, United States
| | - James A Dumesic
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Manos Mavrikakis
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| |
Collapse
|
2
|
Shaw WJ, Kidder MK, Bare SR, Delferro M, Morris JR, Toma FM, Senanayake SD, Autrey T, Biddinger EJ, Boettcher S, Bowden ME, Britt PF, Brown RC, Bullock RM, Chen JG, Daniel C, Dorhout PK, Efroymson RA, Gaffney KJ, Gagliardi L, Harper AS, Heldebrant DJ, Luca OR, Lyubovsky M, Male JL, Miller DJ, Prozorov T, Rallo R, Rana R, Rioux RM, Sadow AD, Schaidle JA, Schulte LA, Tarpeh WA, Vlachos DG, Vogt BD, Weber RS, Yang JY, Arenholz E, Helms BA, Huang W, Jordahl JL, Karakaya C, Kian KC, Kothandaraman J, Lercher J, Liu P, Malhotra D, Mueller KT, O'Brien CP, Palomino RM, Qi L, Rodriguez JA, Rousseau R, Russell JC, Sarazen ML, Sholl DS, Smith EA, Stevens MB, Surendranath Y, Tassone CJ, Tran B, Tumas W, Walton KS. A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy. Nat Rev Chem 2024; 8:376-400. [PMID: 38693313 DOI: 10.1038/s41570-024-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 05/03/2024]
Abstract
Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.
Collapse
Affiliation(s)
- Wendy J Shaw
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Simon R Bare
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | | | | | - Francesca M Toma
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute of Functional Materials for Sustainability, Helmholtz Zentrum Hereon, Teltow, Brandenburg, Germany.
| | | | - Tom Autrey
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Shannon Boettcher
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Mark E Bowden
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Robert C Brown
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | | | - Jingguang G Chen
- Brookhaven National Laboratory, Upton, NY, USA
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | | | - Peter K Dorhout
- Vice President for Research, Iowa State University, Ames, IA, USA
| | | | | | - Laura Gagliardi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Aaron S Harper
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - David J Heldebrant
- Pacific Northwest National Laboratory, Richland, WA, USA
- Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Oana R Luca
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | - Jonathan L Male
- Pacific Northwest National Laboratory, Richland, WA, USA
- Biological Systems Engineering Department, Washington State University, Pullman, WA, USA
| | | | | | - Robert Rallo
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Aaron D Sadow
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Lisa A Schulte
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Bryan D Vogt
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Robert S Weber
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - Elke Arenholz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brett A Helms
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wenyu Huang
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - James L Jordahl
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | | | - Kourosh Cyrus Kian
- Independent consultant, Washington DC, USA
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Johannes Lercher
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Ping Liu
- Brookhaven National Laboratory, Upton, NY, USA
| | | | - Karl T Mueller
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Casey P O'Brien
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | | | - Long Qi
- Ames National Laboratory, Ames, IA, USA
| | | | | | - Jake C Russell
- Advanced Research Projects Agency - Energy, Department of Energy, Washington DC, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Emily A Smith
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ba Tran
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - William Tumas
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Granja-DelRío A, Cabria I. Insights into hydrogen and methane storage capacities: Grand canonical Monte Carlo simulations of SIGSUA. J Chem Phys 2024; 160:154712. [PMID: 38634495 DOI: 10.1063/5.0193291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
In the pursuit of sustainable energy solutions, the development of materials with efficient hydrogen and methane storage capacities is imperative, particularly for advancing hydrogen-powered vehicles. Metal-organic frameworks (MOFs) have emerged as promising candidates to meet the stringent targets set by the Department of Energy for both hydrogen and methane storage. This study employs Grand Canonical Monte Carlo simulations to investigate the usable hydrogen and methane gravimetric and volumetric storage capacities of the recently synthesized SIGSUA. A comparative analysis encompasses the selected MOFs with similar metal compositions, those with comparable density and average pore radius, and classical benchmarks, such as IRMOF-15 and IRMOF-20, all evaluated at room temperature and moderate pressures ranging from 25 to 35 MPa. The results reveal that SIGSUA demonstrates noteworthy gravimetric and volumetric storage capacities for both hydrogen and methane, rivaling or surpassing those of the selected MOFs for analysis. These findings underscore the potential of SIGSUA in advancing clean energy storage technologies.
Collapse
Affiliation(s)
- A Granja-DelRío
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, ES-47011 Valladolid, Spain
| | - I Cabria
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, ES-47011 Valladolid, Spain
| |
Collapse
|
4
|
Cho Y, Kulik HJ. Improving gas adsorption modeling for MOFs by local calibration of Hubbard U parameters. J Chem Phys 2024; 160:154101. [PMID: 38624114 DOI: 10.1063/5.0201934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
While computational screening with density functional theory (DFT) is frequently employed for the screening of metal-organic frameworks (MOFs) for gas separation and storage, commonly applied generalized gradient approximations (GGAs) exhibit self-interaction errors, which hinder the predictions of adsorption energies. We investigate the Hubbard U parameter to augment DFT calculations for full periodic MOFs, targeting a more precise modeling of gas molecule-MOF interactions, specifically for N2, CO2, and O2. We introduce a calibration scheme for the U parameter, which is tailored for each MOF, by leveraging higher-level calculations on the secondary building unit (SBU) of the MOF. When applied to the full periodic MOF, the U parameter calibrated against hybrid HSE06 calculations of SBUs successfully reproduces hybrid-quality calculations of the adsorption energy of the periodic MOF. The mean absolute deviation of adsorption energies reduces from 0.13 eV for a standard GGA treatment to 0.06 eV with the calibrated U, demonstrating the utility of the calibration procedure when applied to the full MOF structure. Furthermore, attempting to use coupled cluster singles and doubles with perturbative triples calculations of isolated SBUs for this calibration procedure shows varying degrees of success in predicting the experimental heat of adsorption. It improves accuracy for N2 adsorption for cases of overbinding, whereas its impact on CO2 is minimal, and ambiguities in spin state assignment hinder consistent improvements of O2 adsorption. Our findings emphasize the limitations of cluster models and advocate the use of full periodic MOF systems with a calibrated U parameter, providing a more comprehensive understanding of gas adsorption in MOFs.
Collapse
Affiliation(s)
- Yeongsu Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
5
|
Guo J, Sours T, Holton S, Sun C, Kulkarni AR. Screening Cu-Zeolites for Methane Activation Using Curriculum-Based Training. ACS Catal 2024; 14:1232-1242. [PMID: 38327646 PMCID: PMC10845107 DOI: 10.1021/acscatal.3c05275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Machine learning (ML), when used synergistically with atomistic simulations, has recently emerged as a powerful tool for accelerated catalyst discovery. However, the application of these techniques has been limited by the lack of interpretable and transferable ML models. In this work, we propose a curriculum-based training (CBT) philosophy to systematically develop reactive machine learning potentials (rMLPs) for high-throughput screening of zeolite catalysts. Our CBT approach combines several different types of calculations to gradually teach the ML model about the relevant regions of the reactive potential energy surface. The resulting rMLPs are accurate, transferable, and interpretable. We further demonstrate the effectiveness of this approach by exhaustively screening thousands of [CuOCu]2+ sites across hundreds of Cu-zeolites for the industrially relevant methane activation reaction. Specifically, this large-scale analysis of the entire International Zeolite Association (IZA) database identifies a set of previously unexplored zeolites (i.e., MEI, ATN, EWO, and CAS) that show the highest ensemble-averaged rates for [CuOCu]2+-catalyzed methane activation. We believe that this CBT philosophy can be generally applied to other zeolite-catalyzed reactions and, subsequently, to other types of heterogeneous catalysts. Thus, this represents an important step toward overcoming the long-standing barriers within the computational heterogeneous catalysis community.
Collapse
Affiliation(s)
- Jiawei Guo
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Tyler Sours
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sam Holton
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Chenghan Sun
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ambarish R. Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
6
|
Obeso JL, Huxley MT, de Los Reyes JA, Humphrey SM, Ibarra IA, Peralta RA. Low-Valent Metals in Metal-Organic Frameworks Via Post-Synthetic Modification. Angew Chem Int Ed Engl 2023; 62:e202309025. [PMID: 37614026 DOI: 10.1002/anie.202309025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
Metal-organic frameworks (MOFs) provide uniquely tunable, periodic platforms for site-isolation of reactive low-valent metal complexes of relevance in modern catalysis, adsorptive applications, and fundamental structural studies. Strategies for integrating such species in MOFs include post-synthetic metalation, encapsulation and direct synthesis using low-valent organometallic complexes as building blocks. These approaches have each proven effective in enhancing catalytic activity, modulating product distributions (i.e., by improving catalytic selectivity), and providing valuable mechanistic insights. In this minireview, we explore these different strategies, as applied to isolate low-valent species within MOFs, with a particular focus on examples that leverage the unique crystallinity, permanent porosity and chemical mutability of MOFs to achieve deep structural insights that lead to new paradigms in the field of hybrid catalysis.
Collapse
Affiliation(s)
- Juan L Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, Ciudad de México, 04510, Mexico
| | - Michael T Huxley
- School of Physics, Chemistry and Earth Sciences, Faculty of Sciences, Engineering & Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - José Antonio de Los Reyes
- Laboratory of Environmental Catalysis, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México, 09340, México
| | - Simon M Humphrey
- Department of Chemistry, University of Texas at Austin, 4.424 Welch Hall, 105 E. 24th St., Austin, TX, 78712-0165, USA
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, Ciudad de México, 04510, Mexico
| | - Ricardo A Peralta
- Department of Chemistry, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana (UAM-I), Ciudad de México, 09340, Mexico
| |
Collapse
|
7
|
Xie E, Wang X. Fine-Tuning Dual Single-Atom Metal Sites on Graphene toward Enhanced Oxygen Reduction Reaction Activity. J Phys Chem Lett 2023; 14:9392-9402. [PMID: 37823826 DOI: 10.1021/acs.jpclett.3c02273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The oxygen reduction reaction (ORR) remains at the forefront of research in diverse energy and sustainability domains. While graphene-supported single-atom catalysts (SACs) have garnered attention for optimizing ORR efficiency, tailoring the interactions between adjacent single-atom sites presents intricate challenges. In this study, we leveraged density functional theory (DFT) calculations and cutting-edge machine learning (ML) techniques to explore 144 graphene-supported SACs, featuring interacting M1-N4 and M2-N4 moieties (M1, M2 = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag Ir, Pt, Au), denoted as M1-M2. By tailoring these interactions, we discovered 13 exceptional SACs outperforming the benchmark catalyst Fe(OH)-N4, including the best-performing Fe-Pd and several non-noble-metal SACs like Fe-Ag, Ag-Cu, and Ag-Ag. Venturing further, our ML models effectively capture the correlation between single-atom metal properties and overpotential, offering tools for rational electrocatalyst design. Our study illuminates the path to efficient SAC-catalyzed ORR, fostering a sustainable, energy-efficient future.
Collapse
Affiliation(s)
- Evan Xie
- Deerfield Academy, 7 Boyden Lane, Deerfield, Massachusetts 01342, United States
| | - Xijun Wang
- Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Jo YM, Jo YK, Lee JH, Jang HW, Hwang IS, Yoo DJ. MOF-Based Chemiresistive Gas Sensors: Toward New Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206842. [PMID: 35947765 DOI: 10.1002/adma.202206842] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The sensing performances of gas sensors must be improved and diversified to enhance quality of life by ensuring health, safety, and convenience. Metal-organic frameworks (MOFs), which exhibit an extremely high surface area, abundant porosity, and unique surface chemistry, provide a promising framework for facilitating gas-sensor innovations. Enhanced understanding of conduction mechanisms of MOFs has facilitated their use as gas-sensing materials, and various types of MOFs have been developed by examining the compositional and morphological dependences and implementing catalyst incorporation and light activation. Owing to their inherent separation and absorption properties and catalytic activity, MOFs are applied as molecular sieves, absorptive filtering layers, and heterogeneous catalysts. In addition, oxide- or carbon-based sensing materials with complex structures or catalytic composites can be derived by the appropriate post-treatment of MOFs. This review discusses the effective techniques to design optimal MOFs, in terms of computational screening and synthesis methods. Moreover, the mechanisms through which the distinctive functionalities of MOFs as sensing materials, heterostructures, and derivatives can be incorporated in gas-sensor applications are presented.
Collapse
Affiliation(s)
- Young-Moo Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Yong Kun Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Sung Hwang
- Sentech Gmi Co. Ltd, Seoul, 07548, Republic of Korea
| | - Do Joon Yoo
- SentechKorea Co. Ltd, Paju, 10863, Republic of Korea
| |
Collapse
|
9
|
Adamji H, Nandy A, Kevlishvili I, Román-Leshkov Y, Kulik HJ. Computational Discovery of Stable Metal-Organic Frameworks for Methane-to-Methanol Catalysis. J Am Chem Soc 2023. [PMID: 37339429 DOI: 10.1021/jacs.3c03351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The challenge of direct partial oxidation of methane to methanol has motivated the targeted search of metal-organic frameworks (MOFs) as a promising class of materials for this transformation because of their site-isolated metals with tunable ligand environments. Thousands of MOFs have been synthesized, yet relatively few have been screened for their promise in methane conversion. We developed a high-throughput virtual screening workflow that identifies MOFs from a diverse space of experimental MOFs that have not been studied for catalysis, yet are thermally stable, synthesizable, and have promising unsaturated metal sites for C-H activation via a terminal metal-oxo species. We carried out density functional theory calculations of the radical rebound mechanism for methane-to-methanol conversion on models of the secondary building units (SBUs) from 87 selected MOFs. While we showed that oxo formation favorability decreases with increasing 3d filling, consistent with prior work, previously observed scaling relations between oxo formation and hydrogen atom transfer (HAT) are disrupted by the greater diversity in our MOF set. Accordingly, we focused on Mn MOFs, which favor oxo intermediates without disfavoring HAT or leading to high methanol release energies─a key feature for methane hydroxylation activity. We identified three Mn MOFs comprising unsaturated Mn centers bound to weak-field carboxylate ligands in planar or bent geometries with promising methane-to-methanol kinetics and thermodynamics. The energetic spans of these MOFs are indicative of promising turnover frequencies for methane to methanol that warrant further experimental catalytic studies.
Collapse
Affiliation(s)
- Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Demir H, Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Le TNM, Le TBN, Nguyen PT, Nguyen TT, Tran QN, Nguyen TT, Kawazoe Y, Phan TB, Nguyen DM. Insight into the direct conversion of methane to methanol on modified ZIF-204 from the perspective of DFT-based calculations. RSC Adv 2023; 13:15926-15933. [PMID: 37250213 PMCID: PMC10214002 DOI: 10.1039/d3ra02650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Direct oxidation of methane over oxo-doped ZIF-204, a bio-mimetic metal-organic framework, is investigated under first-principles calculations based on density functional theory. In the pristine ZIF-204, the tetrahedral methane molecule anchors to an open monocopper site via the so-called η2 configuration with a physisorption energy of 0.24 eV. This weak binding arises from an electrostatic interaction between the negative charge of carbon in the methane molecule and the positive Cu2+ cation in the framework. In the modified ZIF-204, the doped oxo species is stabilized at the axial position of a CuN4-base square pyramid at a distance of 2.06 Å. The dative covalent bond between Cu and oxo is responsible for the formation energy of 1.06 eV. With the presence of the oxo group, the presenting of electrons in the O_pz orbital accounts for the adsorption of methane via hydrogen bonding with an adsorption energy of 0.30 eV. The methane oxidation can occur via either a concerted direct oxo insertion mechanism or a hydrogen-atom abstraction radical rebound mechanism. Calculations on transition-state barriers show that reactions via the concerted direct oxo insertion mechanism can happen without energy barriers. Concerning the hydrogen-atom abstraction radical rebound mechanism, the C-H bond dissociation of the CH4 molecule is barrierless, but the C-O bond recombination to form the CH3OH molecule occurs through a low barrier of 0.16 eV. These predictions suggest the modified ZIF-204 is a promising catalyst for methane oxidization.
Collapse
Affiliation(s)
- Thong Nguyen-Minh Le
- Center for Innovative Materials and Architectures Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Thu Bao Nguyen Le
- Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
- Department of Mathematics and Physics, University of Information Technology Ho Chi Minh City 700000 Viet Nam
| | - Phat Tan Nguyen
- Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
- Department of Theoretical Physics, University of Science Ho Chi Minh City 700000 Vietnam
| | - Trang Thuy Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems, University of Science, Vietnam National University - Hanoi Hanoi 100000 Vietnam
| | - Quang Ngoc Tran
- Center for Innovative Materials and Architectures Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Toan The Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems, University of Science, Vietnam National University - Hanoi Hanoi 100000 Vietnam
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University Sendai 980-8579 Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
- School of Physics, Institute of Science, Suranaree University of Technology 111 University Avenue Nakhon Ratchasima 30000 Thailand
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Duc Manh Nguyen
- CCFE, United Kingdom Atomic Energy Authority Abingdon OX14 3DB UK
| |
Collapse
|
12
|
Hall JN, Kropf AJ, Delferro M, Bollini P. Kinetic and X-ray Absorption Spectroscopic Analysis of Catalytic Redox Cycles over Highly Uniform Polymetal Oxo Clusters. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Jacklyn N. Hall
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - A. Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Praveen Bollini
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
13
|
Andrade LS, Lima HH, Silva CT, Amorim WL, Poço JG, López-Castillo A, Kirillova MV, Carvalho WA, Kirillov AM, Mandelli D. Metal–organic frameworks as catalysts and biocatalysts for methane oxidation: The current state of the art. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Antil N, Chauhan M, Akhtar N, Kalita R, Manna K. Selective Methane Oxidation to Acetic Acid Using Molecular Oxygen over a Mono-Copper Hydroxyl Catalyst. J Am Chem Soc 2023; 145:6156-6165. [PMID: 36897313 DOI: 10.1021/jacs.2c12042] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Acetic acid is an industrially important chemical, produced mainly via carbonylation of methanol using precious metal-based homogeneous catalysts. As a low-cost feedstock, methane is commercially transformed to acetic acid via a multistep process involving energy-intensive methane steam reforming, methanol synthesis, and, subsequently, methanol carbonylation. Here, we report a direct single-step conversion of methane to acetic acid using molecular oxygen (O2) as the oxidant under mild conditions over a mono-copper hydroxyl site confined in a porous cerium metal-organic framework (MOF), Ce-UiO-Cu(OH). The Ce-UiO MOF-supported single-site copper hydroxyl catalyst gave exceptionally high acetic acid productivity of 335 mmolgcat-1 in 96% selectivity with a Cu TON up to 400 at 115 °C in water. Our spectroscopic and theoretical studies and controlled experiments reveal that the conversion of methane to acetic acid occurs via oxidative carbonylation, where methane is first activated at the copper hydroxyl site via σ-bond metathesis to afford Cu-methyl species, followed by carbonylation with in situ-generated carbon monoxide and subsequent hydrolysis by water. This work may guide the rational design of heterogeneous abundant metal catalysts for the activation and conversion of methane to acetic acid and other valuable chemicals under mild and environmentally friendly reaction conditions.
Collapse
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rahul Kalita
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
15
|
Methane Activation and Coupling Pathways on Ni2P Catalyst. Catalysts 2023. [DOI: 10.3390/catal13030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
The direct catalytic conversion of methane (CH4) to higher hydrocarbons has attracted considerable attention in recent years because of the increasing supply of natural gas. Efficient and selective catalytic conversion of methane to value-added products, however, remains a major challenge. Recent studies have shown that the incorporation of phosphorus atoms in transition metals improves their selectivity and resistance to coke formation for many catalytic reactions. In this work, we report a density function theory-based investigation of methane activation and C2 product formation on Ni2P(001). Our results indicate that, despite the lower reactivity of Ni2P relative to Ni, the addition of phosphorus atoms hinders excessive dehydrogenation of methane to CH* and C* species, thus reducing carbon deposition on the surface. CH3* and CH2* moieties, instead, are more likely to be the most abundant surface intermediates once the initial C–H bond in methane is activated with a barrier of 246 kJ mol−1. The formation of ethylene from 2CH2* on Ni2P is facile with a barrier of 56 kJ mol−1, which is consistent with prior experimental studies. Collectively, these findings suggest that Ni2P may be an attractive catalyst for selective methane conversion to ethylene.
Collapse
|
16
|
Ganai A, Ball B, Sarkar P. Modulating the Energetics of C-H Bond Activation in Methane by Utilizing Metalated Porphyrinic Metal-Organic Frameworks. J Phys Chem Lett 2023; 14:1832-1839. [PMID: 36779674 DOI: 10.1021/acs.jpclett.2c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, much effort has been directed toward utilizing metal-organic frameworks (MOFs) for activating C-H bonds of light alkanes. The energy demanding steps involved in the catalytic pathway are the formation of metal-oxo species and the subsequent cleavage of the C-H bonds of alkanes. With the intention of exploring the tunability of the activation barriers involved in the catalytic pathway of methane hydroxylation, we have employed density functional theory to model metalated porphyrinic MOFs (MOF-525(M)). We find that the heavier congeners down a particular group have high exothermic oxo-formation enthalpies ΔHO and hence are associated with low N2O activation barriers. Independent analyses of activation barriers and structure-activity relationship leads to the conclusion that MOF-525(Ru) and MOF-525(Ir) can act as an effective catalysts for methane hydroxylation. Hence, ΔHO has been found to act as a guide, in the first place, in choosing the optimum catalyst for methane hydroxylation from a large set of available systems.
Collapse
Affiliation(s)
- Anjali Ganai
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Biswajit Ball
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
17
|
Molecular insights into the role of O2 in reversed C2H6/C2H4 separation on metal–organic frameworks. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Wang Y, Wang J, Wei J, Wang C, Wang H, Yang X. Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure. Catal Letters 2022. [DOI: 10.1007/s10562-022-04238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Liu B, Huang M, Fang Z, Kong L, Xu Y, Li Z, Liu X. Breaking the scaling relationship in selective oxidation of methane via dynamic Metal-Intermediate Coordination-Induced modulation of reactivity descriptors on an atomically dispersed Rh/ZrO2 catalyst. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Dutta S. Greening the Synthesis of Biorenewable Fuels and Chemicals by Stoichiometric Reagentless Organic Transformations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangaluru-575025, Karnataka, India
| |
Collapse
|
21
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Duan C, Nandy A, Adamji H, Roman-Leshkov Y, Kulik HJ. Machine Learning Models Predict Calculation Outcomes with the Transferability Necessary for Computational Catalysis. J Chem Theory Comput 2022; 18:4282-4292. [PMID: 35737587 DOI: 10.1021/acs.jctc.2c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Virtual high-throughput screening (VHTS) and machine learning (ML) have greatly accelerated the design of single-site transition-metal catalysts. VHTS of catalysts, however, is often accompanied with a high calculation failure rate and wasted computational resources due to the difficulty of simultaneously converging all mechanistically relevant reactive intermediates to expected geometries and electronic states. We demonstrate a dynamic classifier approach, i.e., a convolutional neural network that monitors geometry optimizations on the fly, and exploit its good performance and transferability in identifying geometry optimization failures for catalyst design. We show that the dynamic classifier performs well on all reactive intermediates in the representative catalytic cycle of the radical rebound mechanism for the conversion of methane to methanol despite being trained on only one reactive intermediate. The dynamic classifier also generalizes to chemically distinct intermediates and metal centers absent from the training data without loss of accuracy or model confidence. We rationalize this superior model transferability as arising from the use of electronic structure and geometric information generated on-the-fly from density functional theory calculations and the convolutional layer in the dynamic classifier. When used in combination with uncertainty quantification, the dynamic classifier saves more than half of the computational resources that would have been wasted on unsuccessful calculations for all reactive intermediates being considered.
Collapse
Affiliation(s)
- Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuriy Roman-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Nandy A, Duan C, Goffinet C, Kulik HJ. New Strategies for Direct Methane-to-Methanol Conversion from Active Learning Exploration of 16 Million Catalysts. JACS AU 2022; 2:1200-1213. [PMID: 35647589 PMCID: PMC9135396 DOI: 10.1021/jacsau.2c00176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 05/03/2023]
Abstract
Despite decades of effort, no earth-abundant homogeneous catalysts have been discovered that can selectively oxidize methane to methanol. We exploit active learning to simultaneously optimize methane activation and methanol release calculated with machine learning-accelerated density functional theory in a space of 16 M candidate catalysts including novel macrocycles. By constructing macrocycles from fragments inspired by synthesized compounds, we ensure synthetic realism in our computational search. Our large-scale search reveals that low-spin Fe(II) compounds paired with strong-field (e.g., P or S-coordinating) ligands have among the best energetic tradeoffs between hydrogen atom transfer (HAT) and methanol release. This observation contrasts with prior efforts that have focused on high-spin Fe(II) with weak-field ligands. By decoupling equatorial and axial ligand effects, we determine that negatively charged axial ligands are critical for more rapid release of methanol and that higher-valency metals [i.e., M(III) vs M(II)] are likely to be rate-limited by slow methanol release. With full characterization of barrier heights, we confirm that optimizing for HAT does not lead to large oxo formation barriers. Energetic span analysis reveals designs for an intermediate-spin Mn(II) catalyst and a low-spin Fe(II) catalyst that are predicted to have good turnover frequencies. Our active learning approach to optimize two distinct reaction energies with efficient global optimization is expected to be beneficial for the search of large catalyst spaces where no prior designs have been identified and where linear scaling relationships between reaction energies or barriers may be limited or unknown.
Collapse
Affiliation(s)
- Aditya Nandy
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Conrad Goffinet
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Scheffler M, Aeschlimann M, Albrecht M, Bereau T, Bungartz HJ, Felser C, Greiner M, Groß A, Koch CT, Kremer K, Nagel WE, Scheidgen M, Wöll C, Draxl C. FAIR data enabling new horizons for materials research. Nature 2022; 604:635-642. [PMID: 35478233 DOI: 10.1038/s41586-022-04501-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
The prosperity and lifestyle of our society are very much governed by achievements in condensed matter physics, chemistry and materials science, because new products for sectors such as energy, the environment, health, mobility and information technology (IT) rely largely on improved or even new materials. Examples include solid-state lighting, touchscreens, batteries, implants, drug delivery and many more. The enormous amount of research data produced every day in these fields represents a gold mine of the twenty-first century. This gold mine is, however, of little value if these data are not comprehensively characterized and made available. How can we refine this feedstock; that is, turn data into knowledge and value? For this, a FAIR (findable, accessible, interoperable and reusable) data infrastructure is a must. Only then can data be readily shared and explored using data analytics and artificial intelligence (AI) methods. Making data 'findable and AI ready' (a forward-looking interpretation of the acronym) will change the way in which science is carried out today. In this Perspective, we discuss how we can prepare to make this happen for the field of materials science.
Collapse
Affiliation(s)
- Matthias Scheffler
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany.,The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Martin Aeschlimann
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Tristan Bereau
- Max-Planck-Institut für Polymerforschung, Mainz, Germany
| | | | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Mark Greiner
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University and Helmholtz-Institute Ulm, Ulm, Germany
| | - Christoph T Koch
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kurt Kremer
- Max-Planck-Institut für Polymerforschung, Mainz, Germany
| | - Wolfgang E Nagel
- Computer Science Department, Technical University Dresden, Dresden, Germany
| | - Markus Scheidgen
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Claudia Draxl
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany. .,The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society, Berlin, Germany.
| |
Collapse
|
25
|
Abdelgaid M, Mpourmpakis G. Structure–Activity Relationships in Lewis Acid–Base Heterogeneous Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mona Abdelgaid
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
26
|
Rosen AS, Notestein JM, Snurr RQ. Exploring mechanistic routes for light alkane oxidation with an iron-triazolate metal-organic framework. Phys Chem Chem Phys 2022; 24:8129-8141. [PMID: 35332353 DOI: 10.1039/d2cp00963c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we computationally explore the formation and subsequent reactivity of various iron-oxo species in the iron-triazolate framework Fe2(μ-OH)2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) for the catalytic activation of strong C-H bonds. With the direct conversion of methane to methanol as the probe reaction of interest, we use density functional theory (DFT) calculations to evaluate multiple mechanistic pathways in the presence of either N2O or H2O2 oxidants. These calculations reveal that a wide range of transition metal-oxo sites - both terminal and bridging - are plausible in this family of metal-organic frameworks, making it a unique platform for comparing the electronic structure and reactivity of different proposed active site motifs. Based on the DFT calculations, we predict that Fe2(μ-OH)2(bbta) would exhibit a relatively low barrier for N2O activation and energetically favorable formation of an [Fe(O)]2+ species that is capable of oxidizing C-H bonds. In contrast, the use of H2O2 as the oxidant is predicted to yield an assortment of bridging iron-oxo sites that are less reactive. We also find that abstracting oxo ligands can exhibit a complex mixture of both positive and negative spin density, which may have broader implications for relating the degree of radical character to catalytic activity. In general, we consider the coordinatively unsaturated iron sites to be promising for oxidation catalysis, and we provide several recommendations on how to further tune the catalytic properties of this family of metal-triazolate frameworks.
Collapse
Affiliation(s)
- Andrew S Rosen
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
27
|
Nandy A, Terrones G, Arunachalam N, Duan C, Kastner DW, Kulik HJ. MOFSimplify, machine learning models with extracted stability data of three thousand metal-organic frameworks. Sci Data 2022; 9:74. [PMID: 35277533 PMCID: PMC8917177 DOI: 10.1038/s41597-022-01181-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
We report a workflow and the output of a natural language processing (NLP)-based procedure to mine the extant metal–organic framework (MOF) literature describing structurally characterized MOFs and their solvent removal and thermal stabilities. We obtain over 2,000 solvent removal stability measures from text mining and 3,000 thermal decomposition temperatures from thermogravimetric analysis data. We assess the validity of our NLP methods and the accuracy of our extracted data by comparing to a hand-labeled subset. Machine learning (ML, i.e. artificial neural network) models trained on this data using graph- and pore-geometry-based representations enable prediction of stability on new MOFs with quantified uncertainty. Our web interface, MOFSimplify, provides users access to our curated data and enables them to harness that data for predictions on new MOFs. MOFSimplify also encourages community feedback on existing data and on ML model predictions for community-based active learning for improved MOF stability models. Measurement(s) | thermal decomposition | Technology Type(s) | thermogravimetry |
Collapse
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gianmarco Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Naveen Arunachalam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David W Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
28
|
|
29
|
Rosen AS, Notestein JM, Snurr RQ. Realizing the data-driven, computational discovery of metal-organic framework catalysts. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100760] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Vitillo JG, Cramer CJ, Gagliardi L. Multireference Methods are Realistic and Useful Tools for Modeling Catalysis. Isr J Chem 2022. [DOI: 10.1002/ijch.202100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jenny G. Vitillo
- Department of Science and High Technology and INSTM Università degli Studi dell'Insubria Via Valleggio 9 I-22100 Como Italy
| | - Christopher J. Cramer
- Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook Illinois 60602 United States
| | - Laura Gagliardi
- Department of Chemistry Pritzker School of Molecular Engineering James Franck Institute University of Chicago Chicago Illinois 60637 United States
| |
Collapse
|
31
|
Hall JN, Li M, Bollini P. Light alkane oxidation over well-defined active sites in metal–organic framework materials. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01876k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We review structure–catalytic property relationships for MOF materials used in the direct oxidation of light alkanes, focusing specifically on the elucidation of active site structures and probes for reaction mechanisms.
Collapse
Affiliation(s)
- Jacklyn N. Hall
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Mengying Li
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Praveen Bollini
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
32
|
Saiz F, Bernasconi L. Catalytic properties of the ferryl ion in the solid state: a computational review. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarises the last findings in the emerging field of heterogeneous catalytic oxidation of light alkanes by ferryl species supported on solid-state systems such as the conversion of methane into methanol by FeO-MOF74.
Collapse
Affiliation(s)
- Fernan Saiz
- ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles 08290, Spain
| | - Leonardo Bernasconi
- Center for Research Computing and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
33
|
Bhati M, Dhumal J, Joshi K. Lowering the C–H bond activation barrier of methane by means of SAC@Cu(111): periodic DFT investigations. NEW J CHEM 2022. [DOI: 10.1039/d1nj04525c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methane has long been in the world's spotlight as the simplest yet one of the most notorious hydrocarbons; here, we study the efficiency of single-atom catalysts (SACs) for methane activation using density functional theory (DFT).
Collapse
Affiliation(s)
- Meema Bhati
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune – 411008, India
- Academy of Scientific and Innovative Research (AcSIR), India
| | - Jignesh Dhumal
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune – 411008, India
| | - Kavita Joshi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune – 411008, India
- Academy of Scientific and Innovative Research (AcSIR), India
| |
Collapse
|
34
|
Yuyama S, Kaneko H. Correlation between the Metal and Organic Components, Structure Property, and Gas-Adsorption Capacity of Metal-Organic Frameworks. J Chem Inf Model 2021; 61:5785-5792. [PMID: 34898202 DOI: 10.1021/acs.jcim.1c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal-organic frameworks (MOFs) are materials in which metals and organic compounds form crystalline and porous structures. Previous studies have investigated the relationships between the structure properties and physical properties of MOFs through molecular simulations, but the overall relationships in MOFs, including the relationships between the metals and organic components and the experimentally measured physical properties, have not been clarified. In this study, we developed two regression models between three elements in MOFs: the components, structure properties, and gas-adsorption capacities as physical properties. Using a nonlinear regression analysis method, we succeeded in predicting the structure properties from the components and the physical properties from the structure properties.
Collapse
Affiliation(s)
- Shunsuke Yuyama
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiromasa Kaneko
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
35
|
Wu C, Yang W, Wang JJ, Li H, Gates ID. Methane activation on dual-atom catalysts supported on graphene. Chem Commun (Camb) 2021; 57:12127-12130. [PMID: 34723294 DOI: 10.1039/d1cc05701d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dual-atom Fe catalysts supported by three nitrogen atom doped graphene (Fe-TM/GP, where TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are explored for methane adsorption and activation. The addition of the second metal significantly tunes the properties of the catalysts. The main factor influencing methane adsorption is electron transfer. The second metal promotes methane adsorption by altering the electronic properties such as the band structure and charge transfer. A volcano-shaped relationship is found between the absolute value of adsorption energy and energy barrier at the heteroatom Fe-TM/GP. Fe-Ni/GP has the lowest energy barrier. Heteroatom Fe-TM/GP has a lower energy barrier than Fe-Fe/GP.
Collapse
Affiliation(s)
- Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, T2N 1N4, Alberta, Canada.
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jacky Jingyi Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, T2N 1N4, Alberta, Canada.
| | - Hao Li
- Department of Physics, Technical University of Denmark, Lyngby, 2800, Denmark.
| | - Ian D Gates
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, T2N 1N4, Alberta, Canada.
| |
Collapse
|
36
|
Nandy A, Duan C, Kulik HJ. Using Machine Learning and Data Mining to Leverage Community Knowledge for the Engineering of Stable Metal-Organic Frameworks. J Am Chem Soc 2021; 143:17535-17547. [PMID: 34643374 DOI: 10.1021/jacs.1c07217] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although the tailored metal active sites and porous architectures of MOFs hold great promise for engineering challenges ranging from gas separations to catalysis, a lack of understanding of how to improve their stability limits their use in practice. To overcome this limitation, we extract thousands of published reports of the key aspects of MOF stability necessary for their practical application: the ability to withstand high temperatures without degrading and the capacity to be activated by removal of solvent molecules. From nearly 4000 manuscripts, we use natural language processing and image analysis to obtain over 2000 solvent-removal stability measures and 3000 thermal degradation temperatures. We analyze the relationships between stability properties and the chemical and geometric structures in this set to identify limits of prior heuristics derived from smaller sets of MOFs. By training predictive machine learning (ML, i.e., Gaussian process and artificial neural network) models to encode the structure-property relationships with graph- and pore-structure-based representations, we are able to make predictions of stability orders of magnitude faster than conventional physics-based modeling or experiment. Interpretation of important features in ML models provides insights that we use to identify strategies to engineer increased stability into typically unstable 3d-transition-metal-containing MOFs that are frequently targeted for catalytic applications. We expect our approach to accelerate the time to discovery of stable, practical MOF materials for a wide range of applications.
Collapse
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Hall JN, Bollini P. Role of metal identity and speciation in the
low‐temperature
oxidation of methane over
tri‐metal
oxo clusters. AIChE J 2021. [DOI: 10.1002/aic.17496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jacklyn N. Hall
- William A. Brookshire Department of Chemical & Biomolecular Engineering University of Houston Houston Texas USA
| | - Praveen Bollini
- William A. Brookshire Department of Chemical & Biomolecular Engineering University of Houston Houston Texas USA
| |
Collapse
|
38
|
Nandy A, Duan C, Taylor MG, Liu F, Steeves AH, Kulik HJ. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chem Rev 2021; 121:9927-10000. [PMID: 34260198 DOI: 10.1021/acs.chemrev.1c00347] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties. The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e., force field, semiempirical, and density functional theory methods) as it pertains to data generation for inorganic molecular discovery. The review will also discuss the opportunities and limitations in leveraging experimental data sources. We will focus on how advances in statistical modeling, artificial intelligence, multiobjective optimization, and automation accelerate discovery of lead compounds and design rules. The overall objective of this review is to showcase how bringing together advances from diverse areas of computational chemistry and computer science have enabled the rapid uncovering of structure-property relationships in transition-metal chemistry. We aim to highlight how unique considerations in motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding strength/nature) set them and their discovery apart from more commonly considered organic molecules. We will also highlight how uncertainty and relative data scarcity in transition-metal chemistry motivate specific developments in machine learning representations, model training, and in computational chemistry. Finally, we will conclude with an outlook of areas of opportunity for the accelerated discovery of transition-metal complexes.
Collapse
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Simons MC, Prinslow SD, Babucci M, Hoffman AS, Hong J, Vitillo JG, Bare SR, Gates BC, Lu CC, Gagliardi L, Bhan A. Beyond Radical Rebound: Methane Oxidation to Methanol Catalyzed by Iron Species in Metal-Organic Framework Nodes. J Am Chem Soc 2021; 143:12165-12174. [PMID: 34314584 DOI: 10.1021/jacs.1c04766] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent work has exploited the ability of metal-organic frameworks (MOFs) to isolate Fe sites that mimic the structures of sites in enzymes that catalyze selective oxidations at low temperatures, opening new pathways for the valorization of underutilized feedstocks such as methane. Questions remain as to whether the radical-rebound mechanism commonly invoked in enzymatic and homogeneous systems also applies in these rigid-framework materials, in which resisting the overoxidation of desired products is a major challenge. We demonstrate that MOFs bearing Fe(II) sites within Fe3-μ3-oxo nodes active for conversion of CH4 + N2O mixtures (368-408 K) require steps beyond the radical-rebound mechanism to protect the desired CH3OH product. Infrared spectra and density functional theory show that CH3OH(g) is stabilized as Fe(III)-OCH3 groups on the MOF via hydrogen atom transfer with Fe(III)-OH groups, eliminating water. Consequently, upon addition of a protonic zeolite in inter- and intrapellet mixtures with the MOF, we observed increases in CH3OH selectivity with increasing ratio and proximity of zeolitic H+ to MOF-based Fe(II) sites, as methanol is protected within the zeolite. We infer from the data that CH3OH(g) is formed via the radical-rebound mechanism on Fe(II) sites but that subsequent transport and dehydration steps are required to protect CH3OH(g) from overoxidation. The results demonstrate that the radical-rebound mechanism commonly invoked in this chemistry is insufficient to explain the reactivity of these systems, that the selectivity-controlling steps involve both chemical and physical rate phenomena, as well as offering a strategy to mitigate overoxidation in these and similar systems.
Collapse
Affiliation(s)
- Matthew C Simons
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Steven D Prinslow
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Melike Babucci
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Adam S Hoffman
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jiyun Hong
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jenny G Vitillo
- Department of Science and High Technology and INSTM, University of Insubria, 22100 Como, Italy
| | - Simon R Bare
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Connie C Lu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
40
|
Vennelakanti V, Nandy A, Kulik HJ. The Effect of Hartree-Fock Exchange on Scaling Relations and Reaction Energetics for C–H Activation Catalysts. Top Catal 2021. [DOI: 10.1007/s11244-021-01482-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Göltl F, Bhandari S, Mavrikakis M. Thermodynamics Perspective on the Stepwise Conversion of Methane to Methanol over Cu-Exchanged SSZ-13. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian Göltl
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Saurabh Bhandari
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Vitillo JG, Gagliardi L. Thermal Treatment Effect on CO and NO Adsorption on Fe(II) and Fe(III) Species in Fe 3O-Based MIL-Type Metal-Organic Frameworks: A Density Functional Theory Study. Inorg Chem 2021; 60:11813-11824. [PMID: 34110149 PMCID: PMC8371607 DOI: 10.1021/acs.inorgchem.1c01044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The properties of
metal–organic frameworks (MOFs) based
on triiron oxo-centered (Fe3O) metal nodes are often related
to the efficiency of the removal of the solvent molecules and the
counteranion chemisorbed on the Fe3O unit by postsynthetic
thermal treatment. Temperature, time, and the reaction environment
play a significant role in modifying key features of the materials,
that is, the number of open metal sites and the reduction of Fe(III)
centers to Fe(II). IR spectroscopy allows the inspection of these
postsynthetic modifications by using carbon monoxide (CO) and nitric
oxide (NO) as probe molecules. However, the reference data sets are
based on spectra recorded for iron zeolites and oxides, whose structures
are different from the Fe3O one. We used density functional
theory to study how the adsorption enthalpy and the vibrational bands
of CO and NO are modified upon dehydration and reduction of Fe3O metal nodes. We obtained a set of theoretical spectra that
can model the modification observed in previously reported experimental
spectra. Several CO and NO bands were previously assigned to heterogeneous
Fe(II) and Fe(III) sites, suggesting a large defectivity of the materials.
On the basis of the calculations, we propose an alternative assignment
of these bands by considering only crystallographic iron sites. These
findings affect the common description of Fe3O-based MOFs
as highly defective materials. We expect these results to be of interest
to the large community of scientists working on Fe(II)- and Fe(III)-based
MOFs and related materials. Thermal treatment
of triiron oxo-centered (Fe3O)-based metal−organic
frameworks is a common postsynthetic
method to determine the material performances in many applications:
we used density functional theory methods to study how the efficacy
of the treatment modifies the energetics and the vibrational bands
of nitric oxide (NO) and carbon monoxide. The obtained data set is
meant to be part of the characterization toolboxes aimed at the assessment
of thermal treatment protocols.
Collapse
Affiliation(s)
- Jenny G Vitillo
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy.,Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
43
|
McCarver GA, Rajeshkumar T, Vogiatzis KD. Computational catalysis for metal-organic frameworks: An overview. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213777] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Cutsail GE, Ross MO, Rosenzweig AC, DeBeer S. Towards a unified understanding of the copper sites in particulate methane monooxygenase: an X-ray absorption spectroscopic investigation. Chem Sci 2021; 12:6194-6209. [PMID: 33996018 PMCID: PMC8098663 DOI: 10.1039/d1sc00676b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The enzymatic conversion of the greenhouse gas, methane, to a liquid fuel, methanol, is performed by methane monooxygenases (MMOs) under mild conditions. The copper stoichiometry of particulate MMO (pMMO) has been long debated, with a dicopper site previously proposed on the basis of a 2.51 Å Cu–Cu feature in extended X-ray absorption fine structure (EXAFS) data. However, recent crystallographic data and advanced electron paramagnetic resonance (EPR) characterization support the presence of only mononuclear copper sites. To reconcile these data, we have collected high-energy resolution fluorescence detected (HERFD) and partial fluorescence yield (PFY) EXAFS spectra of Methylococcus (M.) capsulatus (Bath) pMMO. Both methods reveal only monocopper sites. These data were compared to previously published pMMO PFY-EXAFS data from M. capsulatus (Bath) and Methylomicrobium alcaliphilum 20Z, supporting dicopper and monocopper sites, respectively. The FT-EXAFS feature previously attributed to a dicopper site can be reproduced by the inclusion of a metallic copper background signal. The exact position of this feature is dependent on the nature of the sample and the percentage of background contamination, indicating that visual inspection is not sufficient for identifying background metallic contributions. Additionally, an undamaged X-ray absorption spectrum was obtained, consistent with the copper oxidation-state speciation determined by EPR quantification. X-ray photodamage studies suggest that the previously observed Cu(i) XAS features are in part attributable to photodamage. This study illustrates the complex array of factors involved in EXAFS measurement and modeling of pMMO and more generally, dilute metalloproteins with multiple metal centers. Extended X-ray absorption fine structure spectroscopic analysis of particulate methane monooxygenase reveals only monocopper sites and investigates the possible origins of the previous observed dicopper signals.![]()
Collapse
Affiliation(s)
- George E Cutsail
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 D-45470 Mülheim an der Ruhr Germany .,University of Duisburg-Essen Universitätsstrasse 7 D-45151 Essen Germany
| | - Matthew O Ross
- Departments of Molecular Biosciences and Chemistry, Northwestern University Evanston 60208 IL USA
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and Chemistry, Northwestern University Evanston 60208 IL USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 D-45470 Mülheim an der Ruhr Germany
| |
Collapse
|
45
|
Choi C, Yoon S, Jung Y. Shifting the scaling relations of single-atom catalysts for facile methane activation by tuning the coordination number. Chem Sci 2021; 12:3551-3557. [PMID: 34163628 PMCID: PMC8179458 DOI: 10.1039/d0sc05632d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
We investigate oxidative methane activation on a wide range of single transition metal atom catalysts embedded on N-doped graphene derivatives using density functional theory calculations. An inverse scaling relationship between *O formation and its hydrogen affinity is observed, consistent with a previous report. However, we find that the latter scaling line can be shifted towards a more reactive region by tuning the coordination number (CN) of the active metal sites. Specifically, we find that lowering the CN plays an important role in increasing the reactivity for methane activation via a radical-like transition state by moving the scaling lines. Thus, in the new design strategy suggested here, different from the conventional efforts focusing mainly on breaking the scaling relations, one maintains the scaling relations but moves them towards more reactive regions by controlling the coordination number of the active sites. With this design principle, we suggest several single atom catalysts with lower C-H activation barriers than some of the most active methane activation catalysts in the literature such as Cu-based zeolites.
Collapse
Affiliation(s)
- Changhyeok Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungho Yoon
- Department of Chemistry, Chung-Ang University Seoul 06974 Republic of Korea
| | - Yousung Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
46
|
Morales-Vidal J, García-Muelas R, Ortuño MA. Defects as catalytic sites for the oxygen evolution reaction in Earth-abundant MOF-74 revealed by DFT. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02163f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The oxygen evolution reaction (OER) is the bottleneck of hydrogen production via water splitting and understanding electrocatalysts at atomic level becomes paramount to enhance the efficiency of this process.
Collapse
Affiliation(s)
- Jordi Morales-Vidal
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology (BIST)
- 43007 Tarragona
- Spain
| | - Rodrigo García-Muelas
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology (BIST)
- 43007 Tarragona
- Spain
| | - Manuel A. Ortuño
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology (BIST)
- 43007 Tarragona
- Spain
| |
Collapse
|
47
|
A comprehensive methodology to screen metal-organic frameworks towards sustainable photofixation of nitrogen. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2020.107130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Saiz F, Bernasconi L. Unveiling the catalytic potential of the Fe( iv)oxo species for the oxidation of hydrocarbons in the solid state. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00551k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have investigated the three steps in the conversion of methane into methanol by Fe(iv)Ooxo species supported in MOF-74. We use ab initio MD and static approximations to predict the reaction barriers using enthalpy ΔH and free energy ΔG.
Collapse
Affiliation(s)
- Fernan Saiz
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | | |
Collapse
|
49
|
Vitillo JG, Lu CC, Cramer CJ, Bhan A, Gagliardi L. Influence of First and Second Coordination Environment on Structural Fe(II) Sites in MIL-101 for C–H Bond Activation in Methane. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03906] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jenny G. Vitillo
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, United States
- Department of Science and High Technology and INSTM, Università degli Studi dell’Insubria, Via Valleggio 9, I-22100 Como, Italy
| | - Connie C. Lu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
50
|
Bukowski BC, Snurr RQ. Topology-Dependent Alkane Diffusion in Zirconium Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56049-56059. [PMID: 33269907 DOI: 10.1021/acsami.0c17797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) can be designed for chemical applications by modulating the size and shape of intracrystalline pores through selection of their nodes and linkers. Zirconium nodes with variable connectivity to organic linkers allow for a broad range of topological nets that have diverse pore structures even for a consistent set of linkers. Identifying an optimal pore structure for a given application, however, is complicated by the large material space of possible MOFs. In this work, molecular dynamics simulations were used to determine how a MOF's topology affects the diffusion of propane and isobutane over the full range of loadings and to understand how MOFs can be tuned to reduce transport limitations for applications in separations and catalysis. High-throughput simulation techniques were employed to efficiently calculate loading-dependent diffusivities in 38 MOFs. The results show that topologies with higher node connectivity have reduced alkane diffusivities compared to topologies with lower node connectivity. Molecular siting techniques were used to elucidate how the pore structures in different topologies affect adsorbate diffusivities.
Collapse
Affiliation(s)
- Brandon C Bukowski
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|