1
|
Suryanarayanan TS, Rajamani T, Aro N, Borisova A, Marjamaa K, Govindarajulu MB. Fungal endophytes and leaf litter fungi as sources of novel inhibitor-resistant cellulase for biofuel production: a basic study. 3 Biotech 2024; 14:243. [PMID: 39323902 PMCID: PMC11420430 DOI: 10.1007/s13205-024-04087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
Hydrothermal pretreatments are commonly employed prior to the biotechnological conversion of lignocellulosic biomass (LCB) into value-added products, such as fuels and chemicals. However, the by-products of this pretreatment, including furaldehydes, lignin-derived phenolics, and carboxylic acids, can inhibit the enzymes and microbes used in the biotechnological process. In this study, LCB degrading enzymes of endophytic and litter fungi were screened for their tolerance to potential pretreatment-derived inhibitors. Several fungi produced endo- and exoglucanases that remained functional in the presence of lignocellulose-derived phenolics. Some were also active in the presence of tannic acid. Additionally, thermostable endoglucanase activity was observed in some fungi. The ability of some of these fungi to utilize furaldehyde inhibitors as a sole carbon source was also noted. The culture supernatants of the fungal strains were tested in hydrolysis experiments using microcrystalline cellulose as a substrate, in the presence of lignocellulose phenolics and tannic acid. With some strains, higher sugar yields were obtained in the hydrolysis of cellulose when phenolics were added. Our results highlight the need for more intensive exploration of endophytic and plant litter fungi for novel inhibitor-resistant cellulases for biofuel production. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04087-3.
Collapse
Affiliation(s)
| | - Thavamani Rajamani
- Vivekananda Institute of Tropical Mycology, Ramakrishna Mission Vidyapith, Chennai, 600004 India
| | - Nina Aro
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 020244 VTT Espoo, Finland
| | - Anna Borisova
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 020244 VTT Espoo, Finland
| | - Kaisa Marjamaa
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 020244 VTT Espoo, Finland
| | | |
Collapse
|
2
|
Raheja Y, Singh V, Kumar N, Agrawal D, Sharma G, Di Falco M, Tsang A, Chadha BS. Transcriptional and secretome analysis of Rasamsonia emersonii lytic polysaccharide mono-oxygenases. Appl Microbiol Biotechnol 2024; 108:444. [PMID: 39167166 PMCID: PMC11339117 DOI: 10.1007/s00253-024-13240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024]
Abstract
The current study is the first to describe the temporal and differential transcriptional expression of two lytic polysaccharide monooxygenase (LPMO) genes of Rasamsonia emersonii in response to various carbon sources. The mass spectrometry based secretome analysis of carbohydrate active enzymes (CAZymes) expression in response to different carbon sources showed varying levels of LPMOs (AA9), AA3, AA7, catalase, and superoxide dismutase enzymes pointing toward the redox-interplay between the LPMOs and auxiliary enzymes. Moreover, it was observed that cello-oligosaccharides have a negative impact on the expression of LPMOs, which has not been highlighted in previous reports. The LPMO1 (30 kDa) and LPMO2 (47 kDa), cloned and expressed in Pichia pastoris, were catalytically active with (kcat/Km) of 6.6×10-2 mg-1 ml min-1 and 1.8×10-2 mg-1 ml min-1 against Avicel, respectively. The mass spectrometry of hydrolysis products of Avicel/carboxy methyl cellulose (CMC) showed presence of C1/C4 oxidized oligosaccharides indicating them to be Type 3 LPMOs. The 3D structural analysis of LPMO1 and LPMO2 revealed distinct arrangements of conserved catalytic residues at their active site. The developed enzyme cocktails consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant LPMO1/LPMO2 resulted in significantly enhanced saccharification of steam/acid pretreated unwashed rice straw slurry from PRAJ industries (Pune, India). The current work indicates that LPMO1 and LPMO2 are catalytically efficient and have a high degree of thermostability, emphasizing their usefulness in improving benchmark enzyme cocktail performance. KEY POINTS: • Mass spectrometry depicts subtle interactions between LPMOs and auxiliary enzymes. • Cello-oligosaccharides strongly downregulated the LPMO1 expression. • Developed LPMO cocktails showed superior hydrolysis in comparison to CellicCTec3.
Collapse
Affiliation(s)
- Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Dhruv Agrawal
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Marcos Di Falco
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | | |
Collapse
|
3
|
Topalian J, Navas L, Ontañon O, Valacco MP, Noseda DG, Blasco M, Peña MJ, Urbanowicz BR, Campos E. Production of a bacterial secretome highly efficient for the deconstruction of xylans. World J Microbiol Biotechnol 2024; 40:266. [PMID: 38997527 DOI: 10.1007/s11274-024-04075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.
Collapse
Affiliation(s)
- Juliana Topalian
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Navas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Ornella Ontañon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Maria Pia Valacco
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM-FCEN), Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (UBA-IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Gabriel Noseda
- Instituto de Investigaciones Biotecnológicas (IIBio), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Martín Blasco
- Departamento de Bioprocesos, Instituto Nacional de Tecnología Industrial (INTI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Jesus Peña
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina.
| |
Collapse
|
4
|
Tang C, Cavka A, Bui M, Jönsson LJ. Comparison of simultaneous saccharification and fermentation with LPMO-supported hybrid hydrolysis and fermentation. Front Bioeng Biotechnol 2024; 12:1419723. [PMID: 39055343 PMCID: PMC11269131 DOI: 10.3389/fbioe.2024.1419723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Enzymatic saccharification is used to convert polysaccharides in lignocellulosic biomass to sugars which are then converted to ethanol or other bio-based fermentation products. The efficacy of commercial cellulase preparations can potentially increase if lytic polysaccharide monooxygenase (LPMO) is included. However, as LPMO requires both a reductant and an oxidant, such as molecular oxygen, a reevaluation of process configurations and conditions is warranted. Saccharification and fermentation of pretreated softwood was investigated in demonstration-scale experiments with 10 m3 bioreactors using an LPMO-containing cellulase preparation, a xylose-utilizing yeast, and either simultaneous saccharification and fermentation (SSF) or hybrid hydrolysis and fermentation (HHF) with a 24-hour or 48-hour initial phase and with 0.15 vvm aeration before addition of the yeast. The conditions used for HHF, especially with 48 h initial phase, resulted in better glucan conversion, but in poorer ethanol productivity and in poorer initial ethanol yield on consumed sugars than the SSF. In the SSF, hexose sugars such as glucose and mannose were consumed faster than xylose, but, in the end of the fermentation >90% of the xylose had been consumed. Chemical analysis of inhibitory pretreatment by-products indicated that the concentrations of heteroaromatic aldehydes (such as furfural), aromatic aldehydes, and an aromatic ketone decreased as a consequence of the aeration. This was attributed mainly to evaporation caused by the gas flow. The results indicate that further research is needed to fully exploit the advantages of LPMO without compromising fermentation conditions.
Collapse
Affiliation(s)
- Chaojun Tang
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
5
|
Kracher D, Lanzmaier T, Carneiro LV. Active roles of lytic polysaccharide monooxygenases in human pathogenicity. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141012. [PMID: 38492831 DOI: 10.1016/j.bbapap.2024.141012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are redox enzymes widely studied for their involvement in microbial and fungal biomass degradation. The catalytic versatility of these enzymes is demonstrated by the recent discovery of LPMOs in arthropods, viruses, insects and ferns, where they fulfill diverse functions beyond biomass conversion. This mini-review puts a spotlight on a recently recognized aspect of LPMOs: their role in infectious processes in human pathogens. It discusses the occurrence and potential biological mechanisms of LPMOs associated with human pathogens and provides an outlook on future avenues in this emerging and exciting research field.
Collapse
Affiliation(s)
- Daniel Kracher
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - Tina Lanzmaier
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Leonor Vieira Carneiro
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
6
|
Runda ME, Miao H, de Kok NAW, Schmidt S. Developing hybrid systems to address oxygen uncoupling in multi-component Rieske oxygenases. J Biotechnol 2024; 389:22-29. [PMID: 38697360 DOI: 10.1016/j.jbiotec.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Rieske non-heme iron oxygenases (ROs) are redox enzymes essential for microbial biodegradation and natural product synthesis. These enzymes utilize molecular oxygen for oxygenation reactions, making them very useful biocatalysts due to their broad reaction scope and high selectivities. The mechanism of oxygen activation in ROs involves electron transfers between redox centers of associated protein components, forming an electron transfer chain (ETC). Although the ETC is essential for electron replenishment, it carries the risk of reactive oxygen species (ROS) formation due to electron loss during oxygen activation. Our previous study linked ROS formation to O2 uncoupling in the flavin-dependent reductase of the three-component cumene dioxygenase (CDO). In the present study, we extend this finding by investigating the effects of ROS formation on the multi-component CDO system in a cell-free environment. In particular, we focus on the effects of hydrogen peroxide (H2O2) formation in the presence of a NADH cofactor regeneration system on the catalytic efficiency of CDO in vitro. Based on this, we propose the implementation of hybrid systems with alternative (non-native) redox partners for CDO, which are highly advantageous in terms of reduced H2O2 formation and increased product formation. The hybrid system consisting of the RO-reductase from phthalate dioxygenase (PDR) and CDO proved to be the most promising for the oxyfunctionalization of indene, showing a 4-fold increase in product formation (20 mM) over 24 h (TTN of 1515) at a 3-fold increase in production rate.
Collapse
Affiliation(s)
- Michael E Runda
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713AV, the Netherlands
| | - Hui Miao
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713AV, the Netherlands
| | - Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713AV, the Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713AV, the Netherlands.
| |
Collapse
|
7
|
Baranda P, Islam S, Modi A, Mistry H, Al Obaid S, Ansari MJ, Yadav VK, Patel A, Joshi M, Sahoo DK, Bariya H. Whole-genome sequencing of marine water-derived Curvularia verruculosa KHW-7: a pioneering study. Front Microbiol 2024; 15:1363879. [PMID: 38846574 PMCID: PMC11155457 DOI: 10.3389/fmicb.2024.1363879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Marine microorganisms are renowned for being a rich source of new secondary metabolites that are significant to humans. The fungi strain KHW-7 was isolated from the seawater collected from the Gulf of Khambhat, India, and identified as Curvularia verruculosa KHW-7. On a next-generation sequencing platform, C. verruculosa KHW-7's whole-genome sequencing (WGS) and gene annotation were carried out using several bioinformatic methods. The 31.59 MB genome size, 52.3% GC, and 158 bp mean read length were discovered using WGS. This genome also contained 9,745 protein-coding genes, including 852 secreted proteins and 2048 transmembrane proteins. The antiSMASH algorithm used to analyze genomes found 25 secondary metabolite biosynthetic gene clusters (BGCs) that are abundant in terpene, non-ribosomal peptide synthetase (NRPS), and polyketides type 1 (T1PKS). To our knowledge, this is the first whole-genome sequence report of C. verruculosa. The WGS analysis of C. verruculosa KHW-7 indicated that this marine-derived fungus could be an efficient generator of bioactive secondary metabolites and an important industrial enzyme, both of which demand further investigation and development.
Collapse
Affiliation(s)
- Payal Baranda
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Shaikhul Islam
- Plant Pathology Division, Bangladesh Wheat and Maize Research Institute, Nashipur, Bangladesh
| | - Ashish Modi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Harsh Mistry
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Uttar Pradesh, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Himanshu Bariya
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
8
|
Sulaeva I, Sto̷pamo FG, Melikhov I, Budischowsky D, Rahikainen JL, Borisova A, Marjamaa K, Kruus K, Eijsink VGH, Várnai A, Potthast A. Beyond the Surface: A Methodological Exploration of Enzyme Impact along the Cellulose Fiber Cross-Section. Biomacromolecules 2024; 25:3076-3086. [PMID: 38634234 PMCID: PMC11094719 DOI: 10.1021/acs.biomac.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Despite the wide range of analytical tools available for the characterization of cellulose, the in-depth characterization of inhomogeneous, layered cellulose fiber structures remains a challenge. When treating fibers or spinning man-made fibers, the question always arises as to whether the changes in the fiber structure affect only the surface or the entire fiber. Here, we developed an analysis tool based on the sequential limited dissolution of cellulose fiber layers. The method can reveal potential differences in fiber properties along the cross-sectional profile of natural or man-made cellulose fibers. In this analytical approach, carbonyl groups are labeled with a carbonyl selective fluorescence label (CCOA), after which thin fiber layers are sequentially dissolved with the solvent system DMAc/LiCl (9% w/v) and analyzed with size exclusion chromatography coupled with light scattering and fluorescence detection. The analysis of these fractions allowed for the recording of the changes in the chemical structure across the layers, resulting in a detailed cross-sectional profile of the different functionalities and molecular weight distributions. The method was optimized and tested in practice with LPMO (lytic polysaccharide monooxygenase)-treated cotton fibers, where it revealed the depth of fiber modification by the enzyme.
Collapse
Affiliation(s)
- Irina Sulaeva
- Core
Facility Analysis of Lignocellulosics (ALICE), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Strasse 24, A-3430 Tulln an der Donau, Austria
| | - Fredrik Gjerstad Sto̷pamo
- Faculty
of Chemistry, Biotechnology and Food Science, NMBU − Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Ivan Melikhov
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Strasse
24, A-3430 Tulln
an der Donau, Austria
| | - David Budischowsky
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Strasse
24, A-3430 Tulln
an der Donau, Austria
| | - Jenni L. Rahikainen
- Solutions
for Natural Resources and Environment, VTT
Technical Research Centre of Finland Ltd., Tietotie 2, FI-02044 Espoo, Finland
| | - Anna Borisova
- Solutions
for Natural Resources and Environment, VTT
Technical Research Centre of Finland Ltd., Tietotie 2, FI-02044 Espoo, Finland
| | - Kaisa Marjamaa
- Solutions
for Natural Resources and Environment, VTT
Technical Research Centre of Finland Ltd., Tietotie 2, FI-02044 Espoo, Finland
| | - Kristiina Kruus
- Solutions
for Natural Resources and Environment, VTT
Technical Research Centre of Finland Ltd., Tietotie 2, FI-02044 Espoo, Finland
- School
of Chemical Engineering, Aalto University, P.O. Box 16100, 00076 Espoo, Finland
| | - Vincent G. H. Eijsink
- Faculty
of Chemistry, Biotechnology and Food Science, NMBU − Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Anikó Várnai
- Faculty
of Chemistry, Biotechnology and Food Science, NMBU − Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Antje Potthast
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Strasse
24, A-3430 Tulln
an der Donau, Austria
| |
Collapse
|
9
|
Isaksen I, Jana S, Payne CM, Bissaro B, Røhr ÅK. The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent. Biophys J 2024; 123:1139-1151. [PMID: 38571309 PMCID: PMC11079946 DOI: 10.1016/j.bpj.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze a reaction that is crucial for the biological decomposition of various biopolymers and for the industrial conversion of plant biomass. Despite the importance of LPMOs, the exact molecular-level nature of the reaction mechanism is still debated today. Here, we investigated the pH-dependent conformation of a second-sphere histidine (His) that we call the stacking histidine, which is conserved in fungal AA9 LPMOs and is speculated to assist catalysis in several of the LPMO reaction pathways. Using constant-pH and accelerated molecular dynamics simulations, we monitored the dynamics of the stacking His in different protonation states for both the resting Cu(II) and active Cu(I) forms of two fungal LPMOs. Consistent with experimental crystallographic and neutron diffraction data, our calculations suggest that the side chain of the protonated and positively charged form is rotated out of the active site toward the solvent. Importantly, only one of the possible neutral states of histidine (HIE state) is observed in the stacking orientation at neutral pH or when bound to cellulose. Our data predict that, in solution, the stacking His may act as a stabilizer (via hydrogen bonding) of the Cu(II)-superoxo complex after the LPMO-Cu(I) has reacted with O2 in solution, which, in fine, leads to H2O2 formation. Also, our data indicate that the HIE-stacking His is a poor acid/base catalyst when bound to the substrate and, in agreement with the literature, may play an important stabilizing role (via hydrogen bonding) during the peroxygenase catalysis. Our study reveals the pH titration midpoint values of the pH-dependent orientation of the stacking His should be considered when modeling and interpreting LPMO reactions, whether it be for classical LPMO kinetics or in industry-oriented enzymatic cocktails, and for understanding LPMO behavior in slightly acidic natural processes such as fungal wood decay.
Collapse
Affiliation(s)
- Ingvild Isaksen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Suvamay Jana
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway; INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France.
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
10
|
Moya EB, Syhler B, Dragone G, Mussatto SI. Tailoring a cellulolytic enzyme cocktail for efficient hydrolysis of mildly pretreated lignocellulosic biomass. Enzyme Microb Technol 2024; 175:110403. [PMID: 38341912 DOI: 10.1016/j.enzmictec.2024.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Commercially available cellulase cocktails frequently demonstrate high efficiency in hydrolyzing easily digestible pretreated biomass, which often lacks hemicellulose and/or lignin fractions. However, the challenge arises with enzymatic hydrolysis of mildly pretreated lignocellulosic biomasses, which contain cellulose, hemicellulose and lignin in high proportions. This study aimed to address this question by evaluating the supplementation of a commercial cellulolytic cocktail with accessory hemicellulases and two additives (H2O2 and Tween® 80). Statistical optimization methods were employed to enhance the release of glucose and xylose from mildly pretreated sugarcane bagasse. The optimized supplement composition resulted in the production of 304 and 124 mg g-1 DM of glucose and xylose, respectively, significantly increasing glucose release by 84% and xylose release by 94% compared to using only the cellulolytic cocktail. This enhancement might be attributed to a coordinated hemicellulases action degrading hemicellulose, creating more space for cellulase activity, potentially boosted by the presence of H2O2 and Tween® 80. However, the addition of different concentrations of H2O2 in combination with hemicellulase and Tween® 80 did not result a significant difference on sugar release, which could be attributed to the limited range of concentrations studied (5 to 65 µM). The results obtained in this study using the mix of three supplements were also compared to the addition of only hemicellulase and only Tween® 80 to the cellulolytic cocktail. A significant increase in glucose release of 39% and 41%, respectively, was observed when using the optimized combination. For xylose, the increase was 38% and 41%, respectively. This study underscores the substantial potential in optimizing enzyme cocktails for the hydrolysis of mildly pretreated lignocellulosic biomass by using enzymes and additive combinations tailored to the specific biomass composition.
Collapse
Affiliation(s)
- Eva Balaguer Moya
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Berta Syhler
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Giuliano Dragone
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark.
| |
Collapse
|
11
|
Wieduwilt EK, Lo Leggio L, Hedegård ED. A frontier-orbital view of the initial steps of lytic polysaccharide monooxygenase reactions. Dalton Trans 2024; 53:5796-5807. [PMID: 38445349 DOI: 10.1039/d3dt04275h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that oxidatively cleave the strong C-H bonds in recalcitrant polysaccharide substrates, thereby playing a crucial role in biomass degradation. Recently, LPMOs have also been shown to be important for several pathogens. It is well established that the Cu(II) resting state of LPMOs is inactive, and the electronic structure of the active site needs to be altered to transform the enzyme into an active form. Whether this transformation occurs due to substrate binding or due to a unique priming reduction has remained speculative. Starting from four different crystal structures of the LPMO LsAA9A with well-defined oxidation states, we use a frontier molecular orbital approach to elucidate the initial steps of the LPMO reaction. We give an explanation for the requirement of the unique priming reduction and analyse electronic structure changes upon substrate binding. We further investigate how the presence of the substrate could facilitate an electron transfer from the copper active site to an H2O2 co-substrate. Our findings could help to control experimental LPMO reactions.
Collapse
Affiliation(s)
- Erna Katharina Wieduwilt
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
12
|
Sulaeva I, Budischowsky D, Rahikainen J, Marjamaa K, Støpamo FG, Khaliliyan H, Melikhov I, Rosenau T, Kruus K, Várnai A, Eijsink VGH, Potthast A. A novel approach to analyze the impact of lytic polysaccharide monooxygenases (LPMOs) on cellulosic fibres. Carbohydr Polym 2024; 328:121696. [PMID: 38220335 DOI: 10.1016/j.carbpol.2023.121696] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Enzymatic treatment of cellulosic fibres is a green alternative to classical chemical modification. For many applications, mild procedures for cellulose alteration are sufficient, in which the fibre structure and, therefore, the mechanical performance of cellulosic fibres are preserved. Lytic polysaccharide monooxygenases (LPMOs) bear a great potential to become a green reagent for such targeted cellulose modifications. An obstacle for wide implementation of LPMOs in tailored cellulose chemistry is the lack of suitable techniques to precisely monitor the LPMO impact on the polymer. Soluble oxidized cello-oligomers can be quantified using chromatographic and mass-spectrometric techniques. A considerable portion of the oxidized sites, however, remain on the insoluble cellulose fibres, and their quantification is difficult. Here, we describe a method for the simultaneous quantification of oxidized sites on cellulose fibres and changes in their molar mass distribution after treatment with LPMOs. The method is based on quantitative, heterogeneous, carbonyl-selective labelling with a fluorescent label (CCOA) followed by cellulose dissolution and size-exclusion chromatography (SEC). Application of the method to reactions of seven different LPMOs with pure cellulose fibres revealed pronounced functional differences between the enzymes, showing that this CCOA/SEC/MALS method is a promising tool to better understand the catalytic action of LPMOs.
Collapse
Affiliation(s)
- Irina Sulaeva
- Core Facility "Analysis of Lignocellulosics" (ALICE), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria
| | - David Budischowsky
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria
| | - Jenni Rahikainen
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, Tietotie 2, FI-02044 Espoo, Finland
| | - Kaisa Marjamaa
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, Tietotie 2, FI-02044 Espoo, Finland
| | - Fredrik Gjerstad Støpamo
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Hajar Khaliliyan
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria
| | - Ivan Melikhov
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria
| | - Thomas Rosenau
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria
| | - Kristiina Kruus
- Solutions for Natural Resources and Environment, VTT Technical Research Centre of Finland Ltd, Tietotie 2, FI-02044 Espoo, Finland; School of Chemical Engineering, Aalto University, P.O. Box 16100, Espoo 00076 AALTO, Finland
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Antje Potthast
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria.
| |
Collapse
|
13
|
Angeltveit CF, Várnai A, Eijsink VGH, Horn SJ. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:39. [PMID: 38461298 PMCID: PMC10924376 DOI: 10.1186/s13068-024-02485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND The polysaccharides in lignocellulosic biomass hold potential for production of biofuels and biochemicals. However, achieving efficient conversion of this resource into fermentable sugars faces challenges, especially when operating at industrially relevant high solid loadings. While it is clear that combining classical hydrolytic enzymes and lytic polysaccharide monooxygenases (LPMOs) is necessary to achieve high saccharification yields, exactly how these enzymes synergize at high solid loadings remains unclear. RESULTS An LPMO-poor cellulase cocktail, Celluclast 1.5 L, was spiked with one or both of two fungal LPMOs from Thermothielavioides terrestris and Thermoascus aurantiacus, TtAA9E and TaAA9A, respectively, to assess their impact on cellulose saccharification efficiency at high dry matter loading, using Avicel and steam-exploded wheat straw as substrates. The results demonstrate that LPMOs can mitigate the reduction in saccharification efficiency associated with high dry matter contents. The positive effect of LPMO inclusion depends on the type of feedstock and the type of LPMO and increases with the increasing dry matter content and reaction time. Furthermore, our results show that chelating free copper, which may leak out of the active site of inactivated LPMOs during saccharification, with EDTA prevents side reactions with in situ generated H2O2 and the reductant (ascorbic acid). CONCLUSIONS This study shows that sustaining LPMO activity is vital for efficient cellulose solubilization at high substrate loadings. LPMO cleavage of cellulose at high dry matter loadings results in new chain ends and thus increased water accessibility leading to decrystallization of the substrate, all factors making the substrate more accessible to cellulase action. Additionally, this work highlights the importance of preventing LPMO inactivation and its potential detrimental impact on all enzymes in the reaction.
Collapse
Affiliation(s)
- Camilla F Angeltveit
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
14
|
Dou F, Phillip FO, Liu G, Zhu J, Zhang L, Wang Y, Liu H. Transcriptomic and physiological analyses reveal different grape varieties response to high temperature stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1313832. [PMID: 38525146 PMCID: PMC10957553 DOI: 10.3389/fpls.2024.1313832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
High temperatures affect grape yield and quality. Grapes can develop thermotolerance under extreme temperature stress. However, little is known about the changes in transcription that occur because of high-temperature stress. The heat resistance indices and transcriptome data of five grape cultivars, 'Xinyu' (XY), 'Miguang' (MG), 'Summer Black' (XH), 'Beihong' (BH), and 'Flame seedless' (FL), were compared in this study to evaluate the similarities and differences between the regulatory genes and to understand the mechanisms of heat stress resistance differences. High temperatures caused varying degrees of damage in five grape cultivars, with substantial changes observed in gene expression patterns and enriched pathway responses between natural environmental conditions (35 °C ± 2 °C) and extreme high temperature stress (40 °C ± 2 °C). Genes belonging to the HSPs, HSFs, WRKYs, MYBs, and NACs transcription factor families, and those involved in auxin (IAA) signaling, abscisic acid (ABA) signaling, starch and sucrose pathways, and protein processing in the endoplasmic reticulum pathway, were found to be differentially regulated and may play important roles in the response of grape plants to high-temperature stress. In conclusion, the comparison of transcriptional changes among the five grape cultivars revealed a significant variability in the activation of key pathways that influence grape response to high temperatures. This enhances our understanding of the molecular mechanisms underlying grape response to high-temperature stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaifeng Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Agricultural College, Department of Horticulture, Shihezi University, Shihezi, China
| |
Collapse
|
15
|
Chen X, Zhang X, Zhao X, Zhang P, Long L, Ding S. A novel cellulolytic/xylanolytic SbAA14 from Sordaria brevicollis with a branched chain preference and its synergistic effects with glycoside hydrolases on lignocellulose. Int J Biol Macromol 2024; 260:129504. [PMID: 38228212 DOI: 10.1016/j.ijbiomac.2024.129504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
In this study, the novel auxiliary activity (AA) family 14 lytic polysaccharide monooxygenase (LPMO) SbAA14 from Sordaria brevicollis was successfully characterized. It was active against heteroxylan, xyloglucan and cellulose in β-cellulose and released native oligosaccharides and corresponding C1- and/or C4-oxidized products. SbAA14 showed a branched chain preference, because partial removal of arabinosyl substituents from heteroxylan led to a decrease in activity. SbAA14 had synergistic effects with the debranching enzyme EpABF62C in an enzyme- and ascorbic acid-dependent manner. SbAA14 had synergistic effects with the GH10 endoxylanase EpXYN1, and the degree of synergy was greater with step-by-step addition than with simultaneous addition. SbAA14 could also synergize with Celluclast® 1.5 L on NaOH-pretreated wheat straw and on NaOH-pretreated and hydrogen peroxide-acetic acid (HPAC)-H2SO4-pretreated bamboo substrates. The greatest synergistic effect between SbAA14 and Celluclast® 1.5 L was observed for HPAC-H2SO4-200 mM pretreated bamboo, in which the degree of synergy reached approximately 1.61. The distinctive substrate preference of SbAA14 indicated that it is a novel AA14 LPMO that may act mainly on heteroxylan with numerous arabinosyl substituents between cellulose fibers rather than on recalcitrant xylan tightly associated with cellulose. These findings broaden the understanding of enigmatic AA14 LPMOs and provide new insights into the substrate specificities and biological functionalities of AA14 LPMOs in fungi.
Collapse
Affiliation(s)
- Xueer Chen
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xi Zhang
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xu Zhao
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Peiyu Zhang
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Liangkun Long
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
16
|
Liu Y, Li R, Du J, Xie J, Guo R. Defective copper-cobalt binuclear Prussian blue analogue nanozymes with high specificity as lytic polysaccharide monooxygenase-mimic via axial ligation of histidine. J Colloid Interface Sci 2024; 657:15-24. [PMID: 38029525 DOI: 10.1016/j.jcis.2023.11.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Degradation of polysaccharides based on lytic polysaccharide monooxygenases (LPMOs) has received considerably interest in the environment and energy fields since 2010. With the rapid development of nanozymes in various fields, it is highly desirable but challenging to develop LPMO-like nanozymes with high specificity and satisfied activity. Here, a defective copper-cobalt binuclear Prussian blue analogue (CuCoPBA) nanozyme was developed via a facile and ingenious methodology based on single histidine (His). For the first time, His-CuCoPBA nanozyme was found to exhibit LPMO-like activity with H2O2 as a cosubstrate at room temperature and neutral pH, which can efficiently catalyze the degradation of galactomannans selectively. Significantly, the high degradation activity at pH 10 expands the application of Fenton-like nanozymes in alkaline condition. Singlet oxygen (1O2), as a main reactive intermediate, plays a crucial role in the galactomannan degradation catalyzed by His-CuCoPBA nanozyme. Both control experimental and density functional theory (DFT) results indicate Cu-NxHis contributes to the efficiently and selectively catalytic activity of His-CuCoPBA nanozymes by emulating the binding and catalytic sites of LPMOs. The present work not only represents a fundamental breakthrough toward degradation of polysaccharide based on nanozyme, but also contributes to understanding the catalytic mechanism of natural Cu-dependent LPMOs.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Renjie Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Jiamei Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| |
Collapse
|
17
|
Chen K, Zhao X, Zhang P, Long L, Ding S. A novel AA14 LPMO from Talaromyces rugulosus with bifunctional cellulolytic/hemicellulolytic activity boosted cellulose hydrolysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:30. [PMID: 38395898 PMCID: PMC10885436 DOI: 10.1186/s13068-024-02474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The recently discovered PcAA14A and B from white-rot basidiomycete Pycnoporus coccineus enriched our understanding of the oxidative degradation of xylan in fungi, however, the unusual mode of action of AA14 LPMOs has sparked controversy. The substrate specificity and functionality of AA14 LPMOs still remain enigmatic and need further investigation. RESULTS In this study, a novel AA14 LPMO was characterized from the ascomycete Talaromyces rugulosus. TrAA14A has a broad substrate specificity with strong oxidative activity on pure amorphous cellulose and xyloglucan. It could simultaneously oxidize cellulose, xylan and xyloglucan in natural hemi/cellulosic substrate such as fibrillated eucalyptus pulp, and released native and oxidized cello-oligosaccharides, xylo-oligosaccharides and xyloglucan oligosaccharides from this substrate, but its cellulolytic/hemicellulolytic activity became weaker as the contents of xylan increase in the alkaline-extracted hemi/cellulosic substrates. The dual cellulolytic/hemicellulolytic activity enables TrAA14A to possess a profound boosting effect on cellulose hydrolysis by cellulolytic enzymes. Structure modelling of TrAA14A revealed that it exhibits a relatively flat active-site surface similar to the active-site surfaces in AA9 LPMOs but quite distinct from PcAA14B, despite TrAA14A is strongly clustered together with AA14 LPMOs. Remarkable difference in electrostatic potentials of L2 and L3 surfaces was also observed among TrAA14A, PcAA14B and NcLPMO9F. We speculated that the unique feature in substrate-binding surface might contribute to the cellulolytic/hemicellulolytic activity of TrAA14A. CONCLUSIONS The extensive cellulolytic/hemicellulolytic activity on natural hemi/cellulosic substrate indicated that TrAA14A from ascomycete is distinctively different from previously characterized xylan-active AA9 or AA14 LPMOs. It may play as a bifunctional enzyme to decompose some specific network structures formed between cellulose and hemicellulose in the plant cell walls. Our findings shed new insights into the novel substrate specificities and biological functionalities of AA14 LPMOs, and will contribute to developing novel bifunctional LPMOs as the booster in commercial cellulase cocktails to efficiently break down the hemicellulose-cellulose matrix in lignocellulose.
Collapse
Affiliation(s)
- Kaixiang Chen
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Xu Zhao
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Peiyu Zhang
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Liangkun Long
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
18
|
Munzone A, Eijsink VGH, Berrin JG, Bissaro B. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases. Nat Rev Chem 2024; 8:106-119. [PMID: 38200220 DOI: 10.1038/s41570-023-00565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have an essential role in global carbon cycle, industrial biomass processing and microbial pathogenicity by catalysing the oxidative cleavage of recalcitrant polysaccharides. Despite initially being considered monooxygenases, experimental and theoretical studies show that LPMOs are essentially peroxygenases, using a single copper ion and H2O2 for C-H bond oxygenation. Here, we examine LPMO catalysis, emphasizing key studies that have shaped our comprehension of their function, and address side and competing reactions that have partially obscured our understanding. Then, we compare this novel copper-peroxygenase reaction with reactions catalysed by haem iron enzymes, highlighting the different chemistries at play. We conclude by addressing some open questions surrounding LPMO catalysis, including the importance of peroxygenase and monooxygenase reactions in biological contexts, how LPMOs modulate copper site reactivity and potential protective mechanisms against oxidative damage.
Collapse
Affiliation(s)
- Alessia Munzone
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jean-Guy Berrin
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Bastien Bissaro
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France.
| |
Collapse
|
19
|
Chorozian K, Karnaouri A, Georgaki-Kondyli N, Karantonis A, Topakas E. Assessing the role of redox partners in TthLPMO9G and its mutants: focus on H 2O 2 production and interaction with cellulose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:19. [PMID: 38303072 PMCID: PMC10835826 DOI: 10.1186/s13068-024-02463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The field of enzymology has been profoundly transformed by the discovery of lytic polysaccharide monooxygenases (LPMOs). LPMOs hold a unique role in the natural breakdown of recalcitrant polymers like cellulose and chitin. They are characterized by a "histidine brace" in their active site, known to operate via an O2/H2O2 mechanism and require an electron source for catalytic activity. Although significant research has been conducted in the field, the relationship between these enzymes, their electron donors, and H2O2 production remains complex and multifaceted. RESULTS This study examines TthLPMO9G activity, focusing on its interactions with various electron donors, H2O2, and cellulose substrate interactions. Moreover, the introduction of catalase effectively eliminates H2O2 interference, enabling an accurate evaluation of each donor's efficacy based on electron delivery to the LPMO active site. The introduction of catalase enhances TthLPMO9G's catalytic efficiency, leading to increased cellulose oxidation. The current study provides deeper insights into specific point mutations, illuminating the crucial role of the second coordination sphere histidine at position 140. Significantly, the H140A mutation not only impacted the enzyme's ability to oxidize cellulose, but also altered its interaction with H2O2. This change was manifested in the observed decrease in both oxidase and peroxidase activities. Furthermore, the S28A substitution, selected for potential engagement within the His1-electron donor-cellulose interaction triad, displayed electron donor-dependent alterations in cellulose product patterns. CONCLUSION The interaction of an LPMO with H2O2, electron donors, and cellulose substrate, alongside the impact of catalase, offers deep insights into the intricate interactions occurring at the molecular level within the enzyme. Through rational alterations and substitutions that affect both the first and second coordination spheres of the active site, this study illuminates the enzyme's function. These insights enhance our understanding of the enzyme's mechanisms, providing valuable guidance for future research and potential applications in enzymology and biochemistry.
Collapse
Affiliation(s)
- Koar Chorozian
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772, Athens, Greece
| | - Anthi Karnaouri
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Nefeli Georgaki-Kondyli
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772, Athens, Greece
| | - Antonis Karantonis
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772, Athens, Greece.
| |
Collapse
|
20
|
Kumar A, Singh A, Sharma VK, Goel A, Kumar A. The upsurge of lytic polysaccharide monooxygenases in biomass deconstruction: characteristic functions and sustainable applications. FEBS J 2024. [PMID: 38291603 DOI: 10.1111/febs.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/19/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are one of the emerging classes of copper metalloenzymes that have received considerable attention due to their ability to boost the enzymatic conversion of intractable polysaccharides such as plant cell walls and chitin polymers. LPMOs catalyze the oxidative cleavage of β-1,4-glycosidic bonds using molecular O2 or H2 O2 in the presence of an external electron donor. LPMOs have been classified as an auxiliary active (AA) class of enzymes and, further based on substrate specificity, divided into eight families. Until now, multiple LPMOs from AA9 and AA10 families, mostly from microbial sources, have been investigated; the exact mechanism and structure-function are elusive to date, and recently discovered AA families of LPMOs are just scratched. This review highlights the origin and discovery of the enzyme, nomenclature, three-dimensional protein structure, substrate specificity, copper-dependent reaction mechanism, and different techniques used to determine the product formation through analytical and biochemical methods. Moreover, the diverse functions of proteins in various biological activities such as plant-pathogen/pest interactions, cell wall remodeling, antibiotic sensitivity of biofilms, and production of nanocellulose along with certain obstacles in deconstructing the complex polysaccharides have also been summarized, while highlighting the innovative and creative ways to overcome the limitations of LPMOs in hydrolyzing the biomass.
Collapse
Affiliation(s)
- Asheesh Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Aishwarya Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vijay Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Akshita Goel
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
21
|
Schwaiger L, Csarman F, Chang H, Golten O, Eijsink VGH, Ludwig R. Electrochemical Monitoring of Heterogeneous Peroxygenase Reactions Unravels LPMO Kinetics. ACS Catal 2024; 14:1205-1219. [PMID: 38269044 PMCID: PMC10804366 DOI: 10.1021/acscatal.3c05194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Biological conversion of plant biomass depends on peroxygenases and peroxidases acting on insoluble polysaccharides and lignin. Among these are cellulose- and hemicellulose-degrading lytic polysaccharide monooxygenases (LPMOs), which have revolutionized our concept of biomass degradation. Major obstacles limiting mechanistic and functional understanding of these unique peroxygenases are their complex and insoluble substrates and the hard-to-measure H2O2 consumption, resulting in the lack of suitable kinetic assays. We report a versatile and robust electrochemical method for real-time monitoring and kinetic characterization of LPMOs and other H2O2-dependent interfacial enzymes based on a rotating disc electrode for the sensitive and selective quantitation of H2O2 at biologically relevant concentrations. The H2O2 sensor works in suspensions of insoluble substrates as well as in homogeneous solutions. Our characterization of multiple LPMOs provides unprecedented insights into the substrate specificity, kinetics, and stability of these enzymes. High turnover and total turnover numbers demonstrate that LPMOs are fast and durable biocatalysts.
Collapse
Affiliation(s)
- Lorenz Schwaiger
- Department
of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences,
Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Florian Csarman
- Department
of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences,
Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Hucheng Chang
- Department
of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences,
Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Ole Golten
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432 Ås, Norway
| | - Vincent G. H. Eijsink
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432 Ås, Norway
| | - Roland Ludwig
- Department
of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences,
Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
22
|
Yao RA, Reyre JL, Tamburrini KC, Haon M, Tranquet O, Nalubothula A, Mukherjee S, Le Gall S, Grisel S, Longhi S, Madhuprakash J, Bissaro B, Berrin JG. The Ustilago maydis AA10 LPMO is active on fungal cell wall chitin. Appl Environ Microbiol 2023; 89:e0057323. [PMID: 37702503 PMCID: PMC10617569 DOI: 10.1128/aem.00573-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/14/2023] [Indexed: 09/14/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis, responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis. In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO (UmAA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that UmAA10_cd oxidatively cleaves α- and β-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis (UmGH18A). Using a biologically relevant substrate, we show that UmAA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by UmGH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle.IMPORTANCELytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.
Collapse
Affiliation(s)
- Roseline Assiah Yao
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Jean-Lou Reyre
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- IFP Energies Nouvelles, Rueil-Malmaison, France
| | - Ketty C. Tamburrini
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- CNRS, Aix Marseille Univ, UMR 7257 Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Mireille Haon
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| | - Olivier Tranquet
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Akshay Nalubothula
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Saumashish Mukherjee
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sophie Le Gall
- INRAE, UR1268 BIA, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, Nantes, France
| | - Sacha Grisel
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| | - Sonia Longhi
- CNRS, Aix Marseille Univ, UMR 7257 Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| |
Collapse
|
23
|
Grace Barrios-Gutiérrez S, Inés Vélez-Mercado M, Rodrigues Ortega J, da Silva Lima A, Luiza da Rocha Fortes Saraiva A, Leila Berto G, Segato F. Oxidative Machinery of basidiomycetes as potential enhancers in lignocellulosic biorefineries: A lytic polysaccharide monooxygenases approach. BIORESOURCE TECHNOLOGY 2023; 386:129481. [PMID: 37437815 DOI: 10.1016/j.biortech.2023.129481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Basidiomycetes are renowned as highly effective decomposers of plant materials, due to their extensive array of oxidative enzymes, which enable them to efficiently break down complex lignocellulosic biomass structures. Among the oxidative machinery of industrially relevant basidiomycetes, the role of lytic polysaccharide monooxygenases (LPMO) in lignocellulosic biomass deconstruction is highlighted. So far, only a limited number of basidiomycetes LPMOs have been identified and heterologously expressed. These LPMOs have presented activity on cellulose and hemicellulose, as well as participation in the deconstruction of lignin. Expanding on this, the current review proposes both enzymatic and non-enzymatic mechanisms of LPMOs for biomass conversion, considering the significance of the Carbohydrate-Binding Modules and other C-terminal regions domains associated with their structure, which is involved in the deconstruction of lignocellulosic biomass.
Collapse
Affiliation(s)
- Solange Grace Barrios-Gutiérrez
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Martha Inés Vélez-Mercado
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Júlia Rodrigues Ortega
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Awana da Silva Lima
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Ana Luiza da Rocha Fortes Saraiva
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Gabriela Leila Berto
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Fernando Segato
- Synthetic and Molecular Biology Laboratory (SyMB), Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil.
| |
Collapse
|
24
|
de Oliveira Gorgulho Silva C, Vuillemin M, Kabel MA, van Berkel WJH, Meyer AS, Agger JW. Polyphenol Oxidase Products Are Priming Agents for LPMO Peroxygenase Activity. CHEMSUSCHEM 2023; 16:e202300559. [PMID: 37278305 DOI: 10.1002/cssc.202300559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Polyphenol oxidases catalyze the hydroxylation of monophenols to diphenols, which are reducing agents for lytic polysaccharide monooxygenases (LPMOs) in their degradation of cellulose. In particular, the polyphenol oxidase MtPPO7 from Myceliophthora thermophila converts lignocellulose-derived monophenols, and under the new perspective of the peroxygenase reaction catalyzed by LPMOs, we aim to differentiate the role of the catalytic products of MtPPO7 in priming and fueling of LPMO activity. Exemplified by the activity of MtPPO7 towards guaiacol and by using the benchmark LPMO NcAA9C from Neurospora crassa we show that MtPPO7 catalytic products provide the initial electron for the reduction of Cu(II) to Cu(I) but cannot provide the required reducing power for continuous fueling of the LPMO. The priming reaction is shown to occur with catalytic amounts of MtPPO7 products and those compounds do not generate substantial amounts of H2 O2 in situ to fuel the LPMO peroxygenase activity. Reducing agents with a low propensity to generate H2 O2 can provide the means for controlling the LPMO catalysis through exogenous H2 O2 and thereby minimize any enzyme inactivation.
Collapse
Affiliation(s)
| | - Marlene Vuillemin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs Lyngby, Denmark
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs Lyngby, Denmark
| | - Jane W Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
25
|
Kuusk S, Eijsink VGH, Väljamäe P. The "life-span" of lytic polysaccharide monooxygenases (LPMOs) correlates to the number of turnovers in the reductant peroxidase reaction. J Biol Chem 2023; 299:105094. [PMID: 37507015 PMCID: PMC10458328 DOI: 10.1016/j.jbc.2023.105094] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that degrade the insoluble crystalline polysaccharides cellulose and chitin. Besides the H2O2 cosubstrate, the cleavage of glycosidic bonds by LPMOs depends on the presence of a reductant needed to bring the enzyme into its reduced, catalytically active Cu(I) state. Reduced LPMOs that are not bound to substrate catalyze reductant peroxidase reactions, which may lead to oxidative damage and irreversible inactivation of the enzyme. However, the kinetics of this reaction remain largely unknown, as do possible variations between LPMOs belonging to different families. Here, we describe the kinetic characterization of two fungal family AA9 LPMOs, TrAA9A of Trichoderma reesei and NcAA9C of Neurospora crassa, and two bacterial AA10 LPMOs, ScAA10C of Streptomyces coelicolor and SmAA10A of Serratia marcescens. We found peroxidation of ascorbic acid and methyl-hydroquinone resulted in the same probability of LPMO inactivation (pi), suggesting that inactivation is independent of the nature of the reductant. We showed the fungal enzymes were clearly more resistant toward inactivation, having pi values of less than 0.01, whereas the pi for SmAA10A was an order of magnitude higher. However, the fungal enzymes also showed higher catalytic efficiencies (kcat/KM(H2O2)) for the reductant peroxidase reaction. This inverse linear correlation between the kcat/KM(H2O2) and pi suggests that, although having different life spans in terms of the number of turnovers in the reductant peroxidase reaction, LPMOs that are not bound to substrates have similar half-lives. These findings have not only potential biological but also industrial implications.
Collapse
Affiliation(s)
- Silja Kuusk
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
26
|
Hall K, Joseph C, Ayuso-Fernández I, Tamhankar A, Rieder L, Skaali R, Golten O, Neese F, Røhr ÅK, Jannuzzi SAV, DeBeer S, Eijsink VGH, Sørlie M. A Conserved Second Sphere Residue Tunes Copper Site Reactivity in Lytic Polysaccharide Monooxygenases. J Am Chem Soc 2023; 145:18888-18903. [PMID: 37584157 PMCID: PMC10472438 DOI: 10.1021/jacs.3c05342] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 08/17/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are powerful monocopper enzymes that can activate strong C-H bonds through a mechanism that remains largely unknown. Herein, we investigated the role of a conserved glutamine/glutamate in the second coordination sphere. Mutation of the Gln in NcAA9C to Glu, Asp, or Asn showed that the nature and distance of the headgroup to the copper fine-tune LPMO functionality and copper reactivity. The presence of Glu or Asp close to the copper lowered the reduction potential and decreased the ratio between the reduction and reoxidation rates by up to 500-fold. All mutants showed increased enzyme inactivation, likely due to changes in the confinement of radical intermediates, and displayed changes in a protective hole-hopping pathway. Electron paramagnetic resonance (EPR) and X-ray absorption spectroscopic (XAS) studies gave virtually identical results for all NcAA9C variants, showing that the mutations do not directly perturb the Cu(II) ligand field. DFT calculations indicated that the higher experimental reoxidation rate observed for the Glu mutant could be reconciled if this residue is protonated. Further, for the glutamic acid form, we identified a Cu(III)-hydroxide species formed in a single step on the H2O2 splitting path. This is in contrast to the Cu(II)-hydroxide and hydroxyl intermediates, which are predicted for the WT and the unprotonated glutamate variant. These results show that this second sphere residue is a crucial determinant of the catalytic functioning of the copper-binding histidine brace and provide insights that may help in understanding LPMOs and LPMO-inspired synthetic catalysts.
Collapse
Affiliation(s)
- Kelsi
R. Hall
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Chris Joseph
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Iván Ayuso-Fernández
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Ashish Tamhankar
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Lukas Rieder
- Institute
for Molecular Biotechnology, Graz University
of Technology, 8010, Graz, Austria
| | - Rannei Skaali
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Ole Golten
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Åsmund K. Røhr
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Sergio A. V. Jannuzzi
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Vincent G. H. Eijsink
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Morten Sørlie
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| |
Collapse
|
27
|
Tuveng TR, Østby H, Tamburrini KC, Bissaro B, Hegnar OA, Stepnov AA, Várnai A, Berrin JG, Eijsink VGH. Revisiting the AA14 family of lytic polysaccharide monooxygenases and their catalytic activity. FEBS Lett 2023; 597:2086-2102. [PMID: 37418595 DOI: 10.1002/1873-3468.14694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) belonging to the AA14 family are believed to contribute to the enzymatic degradation of lignocellulosic biomass by specifically acting on xylan in recalcitrant cellulose-xylan complexes. Functional characterization of an AA14 LPMO from Trichoderma reesei, TrAA14A, and a re-evaluation of the properties of the previously described AA14 from Pycnoporus coccineus, PcoAA14A, showed that these proteins have oxidase and peroxidase activities that are common for LPMOs. However, we were not able to detect activity on cellulose-associated xylan or any other tested polysaccharide substrate, meaning that the substrate of these enzymes remains unknown. Next to raising questions regarding the true nature of AA14 LPMOs, the present data illustrate possible pitfalls in the functional characterization of these intriguing enzymes.
Collapse
Affiliation(s)
- Tina R Tuveng
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Heidi Østby
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ketty C Tamburrini
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
28
|
Askarian F, Tsai CM, Cordara G, Zurich RH, Bjånes E, Golten O, Vinther Sørensen H, Kousha A, Meier A, Chikwati E, Bruun JA, Ludviksen JA, Choudhury B, Trieu D, Davis S, Edvardsen PKT, Mollnes TE, Liu GY, Krengel U, Conrad DJ, Vaaje-Kolstad G, Nizet V. Immunization with lytic polysaccharide monooxygenase CbpD induces protective immunity against Pseudomonas aeruginosa pneumonia. Proc Natl Acad Sci U S A 2023; 120:e2301538120. [PMID: 37459522 PMCID: PMC10372616 DOI: 10.1073/pnas.2301538120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023] Open
Abstract
Pseudomonas aeruginosa (PA) CbpD belongs to the lytic polysaccharide monooxygenases (LPMOs), a family of enzymes that cleave chitin or related polysaccharides. Here, we demonstrate a virulence role of CbpD in PA pneumonia linked to impairment of host complement function and opsonophagocytic clearance. Following intratracheal challenge, a PA ΔCbpD mutant was more easily cleared and produced less mortality than the wild-type parent strain. The x-ray crystal structure of the CbpD LPMO domain was solved to subatomic resolution (0.75Å) and its two additional domains modeled by small-angle X-ray scattering and Alphafold2 machine-learning algorithms, allowing structure-based immune epitope mapping. Immunization of naive mice with recombinant CbpD generated high IgG antibody titers that promoted human neutrophil opsonophagocytic killing, neutralized enzymatic activity, and protected against lethal PA pneumonia and sepsis. IgG antibodies generated against full-length CbpD or its noncatalytic M2+CBM73 domains were opsonic and protective, even in previously PA-exposed mice, while antibodies targeting the AA10 domain were not. Preexisting antibodies in PA-colonized cystic fibrosis patients primarily target the CbpD AA10 catalytic domain. Further exploration of LPMO family proteins, present across many clinically important and antibiotic-resistant human pathogens, may yield novel and effective vaccine antigens.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Chih-Ming Tsai
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | | | - Raymond H. Zurich
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Elisabet Bjånes
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432Ås, Norway
| | | | - Armin Kousha
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Angela Meier
- Division of Critical Care, Department of Anesthesiology, University of California San Diego, La Jolla, CA92037
| | - Elvis Chikwati
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, N-1432Ås, Norway
| | - Jack-Ansgar Bruun
- Proteomics and Metabolomics Core Facility, Department of Medical Biology, The Arctic University of Norway, N-9037Tromsø, Norway
| | | | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA92093
| | - Desmond Trieu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- School of Pharmacy, University of California San Francisco, San Francisco, CA94143
| | - Stanley Davis
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | | | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, N-8005Bodø, Norway
- Department of Immunology, University of Oslo Hospital, N-0424Oslo, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491Trondheim, Norway
| | - George Y. Liu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Ute Krengel
- Department of Chemistry, University of Oslo, N-0315Oslo, Norway
| | - Douglas J. Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA92037
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432Ås, Norway
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
29
|
Reyre JL, Grisel S, Haon M, Xiang R, Gaillard JC, Armengaud J, Guallar V, Margeot A, Arragain S, Berrin JG, Bissaro B. Insights into peculiar fungal LPMO family members holding a short C-terminal sequence reminiscent of phosphate binding motifs. Sci Rep 2023; 13:11586. [PMID: 37463979 DOI: 10.1038/s41598-023-38617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are taxonomically widespread copper-enzymes boosting biopolymers conversion (e.g. cellulose, chitin) in Nature. White-rot Polyporales, which are major fungal wood decayers, may possess up to 60 LPMO-encoding genes belonging to the auxiliary activities family 9 (AA9). Yet, the functional relevance of such multiplicity remains to be uncovered. Previous comparative transcriptomic studies of six Polyporales fungi grown on cellulosic substrates had shown the overexpression of numerous AA9-encoding genes, including some holding a C-terminal domain of unknown function ("X282"). Here, after carrying out structural predictions and phylogenetic analyses, we selected and characterized six AA9-X282s with different C-term modularities and atypical features hitherto unreported. Unexpectedly, after screening a large array of conditions, these AA9-X282s showed only weak binding properties to cellulose, and low to no cellulolytic oxidative activity. Strikingly, proteomic analysis revealed the presence of multiple phosphorylated residues at the surface of these AA9-X282s, including a conserved residue next to the copper site. Further analyses focusing on a 9 residues glycine-rich C-term extension suggested that it could hold phosphate-binding properties. Our results question the involvement of these AA9 proteins in the degradation of plant cell wall and open new avenues as to the divergence of function of some AA9 members.
Collapse
Affiliation(s)
- Jean-Lou Reyre
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Sacha Grisel
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France
| | - Mireille Haon
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France
| | - Ruite Xiang
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 30200, Bagnols-Sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 30200, Bagnols-Sur-Cèze, France
| | - Victor Guallar
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Antoine Margeot
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Simon Arragain
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Jean-Guy Berrin
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France.
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France.
| | - Bastien Bissaro
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France.
| |
Collapse
|
30
|
Guo X, An Y, Lu F, Liu F, Wang B. Efficient Secretory Production of Lytic Polysaccharide Monooxygenase BaLPMO10 and Its Application in Plant Biomass Conversion. Int J Mol Sci 2023; 24:ijms24119710. [PMID: 37298661 DOI: 10.3390/ijms24119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can oxidatively break the glycosidic bonds of crystalline cellulose, providing more actionable sites for cellulase to facilitate the conversion of cellulose to cello-oligosaccharides, cellobiose and glucose. In this work, a bioinformatics analysis of BaLPMO10 revealed that it is a hydrophobic, stable and secreted protein. By optimizing the fermentation conditions, the highest protein secretion level was found at a IPTG concentration of 0.5 mM and 20 h of fermentation at 37 °C, with a yield of 20 mg/L and purity > 95%. The effect of metal ions on the enzyme activity of BaLPMO10 was measured, and it was found that 10 mM Ca2+ and Na+ increased the enzyme activity by 47.8% and 98.0%, respectively. However, DTT, EDTA and five organic reagents inhibited the enzyme activity of BaLPMO10. Finally, BaLPMO10 was applied in biomass conversion. The degradation of corn stover pretreated with different steam explosions was performed. BaLPMO10 and cellulase had the best synergistic degradation effect on corn stover pretreated at 200 °C for 12 min, improving reducing sugars by 9.2% compared to cellulase alone. BaLPMO10 was found to be the most efficient for ethylenediamine-pretreated Caragana korshinskii by degrading three different biomasses, increasing the content of reducing sugars by 40.5% compared to cellulase alone following co-degradation with cellulase for 48 h. The results of scanning electron microscopy revealed that BaLPMO10 disrupted the structure of Caragana korshinskii, making its surface coarse and poriferous, which increased the accessibility of other enzymes and thus promoted the process of conversion. These findings provide guidance for improving the efficiency of enzymatic digestion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Xiao Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, China
| | - Yajing An
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
31
|
Moya EB, Syhler B, Manso JO, Dragone G, Mussatto SI. Enzymatic hydrolysis cocktail optimization for the intensification of sugar extraction from sugarcane bagasse. Int J Biol Macromol 2023:125051. [PMID: 37245744 DOI: 10.1016/j.ijbiomac.2023.125051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Lignocellulosic biomasses have a very important role as a raw material to produce biofuels and biochemicals. However, a sustainable, efficient, and economically competitive process for the release of sugars from such materials has still not been achieved. In this work, the optimization of the enzymatic hydrolysis cocktail was evaluated as an approach to maximize sugar extraction from mildly pretreated sugarcane bagasse. Different additives and enzymes, including hydrogen peroxide (H2O2), laccase, hemicellulase and the surfactants Tween 80 and PEG4000 were added to a cellulolytic cocktail with the aim of improving biomass hydrolysis. An increase of 39 % and 46 % of glucose and xylose concentrations, respectively, compared to the control (when only the cellulolytic cocktail (20 or 35 FPU g-1 dry mass), was obtained when H2O2 (0.24 mM) was added at the beginning of the hydrolysis. On the other hand, the addition of hemicellulase (81-162 μL g-1 DM) increased the production of glucose up to 38 % and xylose up to 50 %. The findings of this study reveal that it is possible to increase the extraction of sugars from mildly pretreated lignocellulosic biomass by using an appropriate enzymatic cocktail supplemented with additives. This opens up new opportunities for the development of a more sustainable, efficient, and economically competitive process for biomass fractionation.
Collapse
Affiliation(s)
- Eva Balaguer Moya
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Berta Syhler
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Julen Ordeñana Manso
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Giuliano Dragone
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
32
|
Berhe MH, Song X, Yao L. Improving the Enzymatic Activity and Stability of a Lytic Polysaccharide Monooxygenase. Int J Mol Sci 2023; 24:ijms24108963. [PMID: 37240310 DOI: 10.3390/ijms24108963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Lytic Polysaccharide Monooxygenases (LPMOs) are copper-dependent enzymes that play a pivotal role in the enzymatic conversion of the most recalcitrant polysaccharides, such as cellulose and chitin. Hence, protein engineering is highly required to enhance their catalytic efficiencies. To this effect, we optimized the protein sequence encoding for an LPMO from Bacillus amyloliquefaciens (BaLPMO10A) using the sequence consensus method. Enzyme activity was determined using the chromogenic substrate 2,6-Dimethoxyphenol (2,6-DMP). Compared with the wild type (WT), the variants exhibit up to a 93.7% increase in activity against 2,6-DMP. We also showed that BaLPMO10A can hydrolyze p-nitrophenyl-β-D-cellobioside (PNPC), carboxymethylcellulose (CMC), and phosphoric acid-swollen cellulose (PASC). In addition to this, we investigated the degradation potential of BaLPMO10A against various substrates such as PASC, filter paper (FP), and Avicel, in synergy with the commercial cellulase, and it showed up to 2.7-, 2.0- and 1.9-fold increases in production with the substrates PASC, FP, and Avicel, respectively, compared to cellulase alone. Moreover, we examined the thermostability of BaLPMO10A. The mutants exhibited enhanced thermostability with an apparent melting temperature increase of up to 7.5 °C compared to the WT. The engineered BaLPMO10A with higher activity and thermal stability provides a better tool for cellulose depolymerization.
Collapse
Affiliation(s)
- Miesho Hadush Berhe
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biotechnology, College of Natural and Computational Sciences, Aksum University, Axum 1010, Ethiopia
| | - Xiangfei Song
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
33
|
Guo X, Jiang L, An Y, Lu F, Liu F, Wang B. Construction and characterization of a Myceliophthora thermophila lytic polysaccharide monooxygenase mutant S174C/A93C with improved thermostability. Enzyme Microb Technol 2023; 168:110255. [PMID: 37178549 DOI: 10.1016/j.enzmictec.2023.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can oxidatively cleave the glycosidic bonds of crystalline polysaccharides, providing more accessible sites for polysaccharide hydrolases and promoting efficient conversion of biomass. In order to promote industrial applications of LPMOs, the stability of an LPMO of Myceliophthora thermophila C1 (MtC1LPMO) was improved by adding disulfide bonds in this study. Firstly, the structural changes of wild-type (WT) MtC1LPMO at different temperatures were explored using molecular dynamics simulations, and eight mutants were selected by combining the predicted results from Disulfide by Design (DBD), Multi agent stability prediction upon point mutations (Maestro) and Bridge disulfide (BridgeD) websites. Then, the enzymatic properties of the different mutants were determined after their expression and purification, and the mutant S174C/A93C with the highest thermal stability was obtained. The specific activities of unheated S174C/A93C and WT were 160.6 ± 1.7 U/g and 174.8 ± 7.5 U/g, respectively, while those of S174C/A93C and WT treated at 70 °C for 4 h were 77.7 ± 3.4 U/g and 46.1 ± 0.4 U/g, respectively. The transition midpoint temperature of S174C/A93C was 2.7 °C higher than that of WT. The conversion efficiency of S174C/A93C for both microcrystalline cellulose and corn straw was about 1.5 times higher than that of WT. Finally, molecular dynamics simulations revealed that the introduction of disulfide bonds increased the β-sheet content of the H1-E34 region, thus improving the rigidity of the protein. Therefore, the overall structural stability of S174C/A93C was improved, which in turn improved its thermal stability.
Collapse
Affiliation(s)
- Xiao Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Yajing An
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China.
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
34
|
Caputo F, Tõlgo M, Naidjonoka P, Krogh KBRM, Novy V, Olsson L. Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:68. [PMID: 37076886 PMCID: PMC10114483 DOI: 10.1186/s13068-023-02316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND To realize the full potential of softwood-based forest biorefineries, the bottlenecks of enzymatic saccharification of softwood need to be better understood. Here, we investigated the potential of lytic polysaccharide monooxygenases (LPMO9s) in softwood saccharification. Norway spruce was steam-pretreated at three different severities, leading to varying hemicellulose retention, lignin condensation, and cellulose ultrastructure. Hydrolyzability of the three substrates was assessed after pretreatment and after an additional knife-milling step, comparing the efficiency of cellulolytic Celluclast + Novozym 188 and LPMO-containing Cellic CTec2 cocktails. The role of Thermoascus aurantiacus TaLPMO9 in saccharification was assessed through time-course analysis of sugar release and accumulation of oxidized sugars, as well as wide-angle X-ray scattering analysis of cellulose ultrastructural changes. RESULTS Glucose yield was 6% (w/w) with the mildest pretreatment (steam pretreatment at 210 °C without catalyst) and 66% (w/w) with the harshest (steam pretreatment at 210 °C with 3%(w/w) SO2) when using Celluclast + Novozym 188. Surprisingly, the yield was lower with all substrates when Cellic CTec2 was used. Therefore, the conditions for optimal LPMO activity were tested and it was found that enough O2 was present over the headspace and that the reducing power of the lignin of all three substrates was sufficient for the LPMOs in Cellic CTec2 to be active. Supplementation of Celluclast + Novozym 188 with TaLPMO9 increased the conversion of glucan by 1.6-fold and xylan by 1.5-fold, which was evident primarily in the later stages of saccharification (24-72 h). Improved glucan conversion could be explained by drastically reduced cellulose crystallinity of spruce substrates upon TaLPMO9 supplementation. CONCLUSION Our study demonstrated that LPMO addition to hydrolytic enzymes improves the release of glucose and xylose from steam-pretreated softwood substrates. Furthermore, softwood lignin provides enough reducing power for LPMOs, irrespective of pretreatment severity. These results provided new insights into the potential role of LPMOs in saccharification of industrially relevant softwood substrates.
Collapse
Affiliation(s)
- Fabio Caputo
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Monika Tõlgo
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Polina Naidjonoka
- Wallenberg Wood Science Center, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
- Division of Materials Physics, Department of Physics, Chalmers University of Technology, Kemigården 1, 412 96, Gothenburg, Sweden
| | | | - Vera Novy
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
- Wallenberg Wood Science Center, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden.
| |
Collapse
|
35
|
Sun P, Huang Z, Banerjee S, Kadowaki MAS, Veersma RJ, Magri S, Hilgers R, Muderspach SJ, Laurent CV, Ludwig R, Cannella D, Lo Leggio L, van Berkel WJH, Kabel MA. AA16 Oxidoreductases Boost Cellulose-Active AA9 Lytic Polysaccharide Monooxygenases from Myceliophthora thermophila. ACS Catal 2023; 13:4454-4467. [PMID: 37066045 PMCID: PMC10088020 DOI: 10.1021/acscatal.3c00874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/06/2023] [Indexed: 04/18/2023]
Abstract
Copper-dependent lytic polysaccharide monooxygenases (LPMOs) classified in Auxiliary Activity (AA) families are considered indispensable as synergistic partners for cellulolytic enzymes to saccharify recalcitrant lignocellulosic plant biomass. In this study, we characterized two fungal oxidoreductases from the new AA16 family. We found that MtAA16A from Myceliophthora thermophila and AnAA16A from Aspergillus nidulans did not catalyze the oxidative cleavage of oligo- and polysaccharides. Indeed, the MtAA16A crystal structure showed a fairly LPMO-typical histidine brace active site, but the cellulose-acting LPMO-typical flat aromatic surface parallel to the histidine brace region was lacking. Further, we showed that both AA16 proteins are able to oxidize low-molecular-weight reductants to produce H2O2. The oxidase activity of the AA16s substantially boosted cellulose degradation by four AA9 LPMOs from M. thermophila (MtLPMO9s) but not by three AA9 LPMOs from Neurospora crassa (NcLPMO9s). The interplay with MtLPMO9s is explained by the H2O2-producing capability of the AA16s, which, in the presence of cellulose, allows the MtLPMO9s to optimally drive their peroxygenase activity. Replacement of MtAA16A by glucose oxidase (AnGOX) with the same H2O2-producing activity could only achieve less than 50% of the boosting effect achieved by MtAA16A, and earlier MtLPMO9B inactivation (6 h) was observed. To explain these results, we hypothesized that the delivery of AA16-produced H2O2 to the MtLPMO9s is facilitated by protein-protein interaction. Our findings provide new insights into the functions of copper-dependent enzymes and contribute to a further understanding of the interplay of oxidative enzymes within fungal systems to degrade lignocellulose.
Collapse
Affiliation(s)
- Peicheng Sun
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Zhiyu Huang
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Sanchari Banerjee
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Marco A. S. Kadowaki
- PhotoBioCatalysis
Unit (CPBL) and Biomass Transformation Lab (BTL), École Interfacultaire
de Bioingénieurs (EIB), Université
Libre de Bruxelles, Avenue Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Romy J. Veersma
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Silvia Magri
- PhotoBioCatalysis
Unit (CPBL) and Biomass Transformation Lab (BTL), École Interfacultaire
de Bioingénieurs (EIB), Université
Libre de Bruxelles, Avenue Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Roelant Hilgers
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Sebastian J. Muderspach
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Christophe V.F.P. Laurent
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences
(BOKU), Muthgasse 18, 1190 Vienna, Austria
- Institute
of Molecular Modeling and Simulation, Department of Material Sciences
and Process Engineering, University of Natural
Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Roland Ludwig
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences
(BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - David Cannella
- PhotoBioCatalysis
Unit (CPBL) and Biomass Transformation Lab (BTL), École Interfacultaire
de Bioingénieurs (EIB), Université
Libre de Bruxelles, Avenue Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Leila Lo Leggio
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Willem J. H. van Berkel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
36
|
Torbjörnsson M, Hagemann MM, Ryde U, Hedegård ED. Histidine oxidation in lytic polysaccharide monooxygenase. J Biol Inorg Chem 2023; 28:317-328. [PMID: 36828975 PMCID: PMC10036459 DOI: 10.1007/s00775-023-01993-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/10/2023] [Indexed: 02/26/2023]
Abstract
The lytic polysaccharide monooxygenases (LPMOs) comprise a super-family of copper enzymes that boost the depolymerisation of polysaccharides by oxidatively disrupting the glycosidic bonds connecting the sugar units. Industrial use of LPMOs for cellulose depolymerisation has already begun but is still far from reaching its full potential. One issue is that the LPMOs self-oxidise and thereby deactivate. The mechanism of this self-oxidation is unknown, but histidine residues coordinating to the copper atom are the most susceptible. An unusual methyl modification of the NE2 atom in one of the coordinating histidine residues has been proposed to have a protective role. Furthermore, substrate binding is also known to reduce oxidative damage. We here for the first time investigate the mechanism of histidine oxidation with combined quantum and molecular mechanical (QM/MM) calculations, with outset in intermediates previously shown to form from a reaction with peroxide and a reduced LPMO. We show that an intermediate with a [Cu-O]+ moiety is sufficiently potent to oxidise the nearest C-H bond on both histidine residues, but methylation of the NE2 atom of His-1 increases the reaction barrier of this reaction. The substrate further increases the activation barrier. We also investigate a [Cu-OH]2+ intermediate with a deprotonated tyrosine radical. This intermediate was previously proposed to have a protective role, and we also find it to have higher barriers than the corresponding a [Cu-O]+ intermediate.
Collapse
Affiliation(s)
- Magne Torbjörnsson
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden
| | - Marlisa M Hagemann
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden.
| | - Erik Donovan Hedegård
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden.
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
37
|
Hansen LD, Eijsink VGH, Horn SJ, Várnai A. H 2 O 2 feeding enables LPMO-assisted cellulose saccharification during simultaneous fermentative production of lactic acid. Biotechnol Bioeng 2023; 120:726-736. [PMID: 36471631 DOI: 10.1002/bit.28298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Simultaneous saccharification and fermentation (SSF) is a well-known strategy for valorization of lignocellulosic biomass. Because the fermentation process typically is anaerobic, oxidative enzymes found in modern commercial cellulase cocktails, such as lytic polysaccharide monooxygenases (LPMOs), may be inhibited, limiting the overall efficiency of the enzymatic saccharification. Recent discoveries, however, have shown that LPMOs are active under anoxic conditions if they are provided with H2 O2 at low concentrations. In this study, we build on this concept and investigate the potential of using externally added H2 O2 to sustain oxidative cellulose depolymerization by LPMOs during an SSF process for lactic acid production. The results of bioreactor experiments with 100 g/L cellulose clearly show that continuous addition of small amounts of H2 O2 (at a rate of 80 µM/h) during SSF enables LPMO activity and improves lactic acid production. While further process optimization is needed, the present proof-of-concept results show that modern LPMO-containing cellulase cocktails such as Cellic CTec2 can be used in SSF setups, without sacrificing the LPMO activity in these cocktails.
Collapse
Affiliation(s)
- Line D Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| |
Collapse
|
38
|
Kommedal EG, Angeltveit CF, Klau LJ, Ayuso-Fernández I, Arstad B, Antonsen SG, Stenstrøm Y, Ekeberg D, Gírio F, Carvalheiro F, Horn SJ, Aachmann FL, Eijsink VGH. Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases. Nat Commun 2023; 14:1063. [PMID: 36828821 PMCID: PMC9958194 DOI: 10.1038/s41467-023-36660-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of crystalline polysaccharides such as cellulose and are crucial for the conversion of plant biomass in Nature and in industrial applications. Sunlight promotes microbial conversion of plant litter; this effect has been attributed to photochemical degradation of lignin, a major redox-active component of secondary plant cell walls that limits enzyme access to the cell wall carbohydrates. Here, we show that exposing lignin to visible light facilitates cellulose solubilization by promoting formation of H2O2 that fuels LPMO catalysis. Light-driven H2O2 formation is accompanied by oxidation of ring-conjugated olefins in the lignin, while LPMO-catalyzed oxidation of phenolic hydroxyls leads to the required priming reduction of the enzyme. The discovery that light-driven abiotic reactions in Nature can fuel H2O2-dependent redox enzymes involved in deconstructing lignocellulose may offer opportunities for bioprocessing and provides an enzymatic explanation for the known effect of visible light on biomass conversion.
Collapse
Affiliation(s)
- Eirik G Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Camilla F Angeltveit
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Leesa J Klau
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Iván Ayuso-Fernández
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Bjørnar Arstad
- SINTEF Industry, Process Chemistry and Functional Materials, 0373, Oslo, Norway
| | - Simen G Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Yngve Stenstrøm
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Francisco Gírio
- National Laboratory of Energy and Geology (LNEG), 1649-038, Lisboa, Portugal
| | | | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Finn Lillelund Aachmann
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
| |
Collapse
|
39
|
Hagemann MM, Hedegård ED. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations. Chemistry 2023; 29:e202202379. [PMID: 36207279 PMCID: PMC10107554 DOI: 10.1002/chem.202202379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 12/12/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that today comprise a large enzyme superfamily, grouped into the distinct members AA9-AA17 (with AA12 exempted). The LPMOs have the potential to facilitate the upcycling of biomass waste products by boosting the breakdown of cellulose and other recalcitrant polysaccharides. The cellulose biopolymer is the main component of biomass waste and thus comprises a large, unexploited resource. The LPMOs work through a catalytic, oxidative reaction whose mechanism is still controversial. For instance, the nature of the intermediate performing the oxidative reaction is an open question, and the same holds for the employed co-substrate. Here we review theoretical investigations addressing these questions. The applied theoretical methods are usually based on quantum mechanics (QM), often combined with molecular mechanics (QM/MM). We discuss advantages and disadvantages of the employed theoretical methods and comment on the interplay between theoretical and experimental results.
Collapse
Affiliation(s)
- Marlisa M. Hagemann
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| | - Erik D. Hedegård
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| |
Collapse
|
40
|
Tõlgo M, Hegnar OA, Larsbrink J, Vilaplana F, Eijsink VGH, Olsson L. Enzymatic debranching is a key determinant of the xylan-degrading activity of family AA9 lytic polysaccharide monooxygenases. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:2. [PMID: 36604763 PMCID: PMC9814446 DOI: 10.1186/s13068-022-02255-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Previous studies have revealed that some Auxiliary Activity family 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) oxidize and degrade certain types of xylans when incubated with mixtures of xylan and cellulose. Here, we demonstrate that the xylanolytic activities of two xylan-active LPMOs, TtLPMO9E and TtLPMO9G from Thermothielavioides terrestris, strongly depend on the presence of xylan substitutions. RESULTS Using mixtures of phosphoric acid-swollen cellulose (PASC) and wheat arabinoxylan (WAX), we show that removal of arabinosyl substitutions with a GH62 arabinofuranosidase resulted in better adsorption of xylan to cellulose, and enabled LPMO-catalyzed cleavage of this xylan. Furthermore, experiments with mixtures of PASC and arabinoglucuronoxylan from spruce showed that debranching of xylan with the GH62 arabinofuranosidase and a GH115 glucuronidase promoted LPMO activity. Analyses of mixtures with PASC and (non-arabinosylated) beechwood glucuronoxylan showed that GH115 action promoted LPMO activity also on this xylan. Remarkably, when WAX was incubated with Avicel instead of PASC in the presence of the GH62, both xylan and cellulose degradation by the LPMO9 were impaired, showing that the formation of cellulose-xylan complexes and their susceptibility to LPMO action also depend on the properties of the cellulose. These debranching effects not only relate to modulation of the cellulose-xylan interaction, which influences the conformation and rigidity of the xylan, but likely also affect the LPMO-xylan interaction, because debranching changes the architecture of the xylan surface. CONCLUSIONS Our results shed new light on xylanolytic LPMO9 activity and on the functional interplay and possible synergies between the members of complex lignocellulolytic enzyme cocktails. These findings will be relevant for the development of future lignocellulolytic cocktails and biomaterials.
Collapse
Affiliation(s)
- Monika Tõlgo
- grid.5371.00000 0001 0775 6028Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden ,grid.5371.00000 0001 0775 6028Wallenberg Wood Science Centre, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Olav A. Hegnar
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Johan Larsbrink
- grid.5371.00000 0001 0775 6028Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden ,grid.5371.00000 0001 0775 6028Wallenberg Wood Science Centre, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Francisco Vilaplana
- grid.5037.10000000121581746Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden ,grid.5037.10000000121581746Wallenberg Wood Science Centre, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Vincent G. H. Eijsink
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Lisbeth Olsson
- grid.5371.00000 0001 0775 6028Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden ,grid.5371.00000 0001 0775 6028Wallenberg Wood Science Centre, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
41
|
Cordas CM, Valério GN, Stepnov A, Kommedal E, Kjendseth ÅR, Forsberg Z, Eijsink VGH, Moura JJG. Electrochemical characterization of a family AA10 LPMO and the impact of residues shaping the copper site on reactivity. J Inorg Biochem 2023; 238:112056. [PMID: 36332410 DOI: 10.1016/j.jinorgbio.2022.112056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Research on enzymes for lignocellulose biomass degradation has progressively increased in recent years due to the interest in taking advantage of this natural resource. Among these enzymes are the lytic polysaccharide monooxygenases (LPMOs) that oxidatively depolymerize crystalline cellulose using a reactive oxygen species generated in a reduced mono‑copper active site. The copper site comprises of a highly conserved histidine-brace, providing three equatorial nitrogen ligands, whereas less conserved residues close to the copper contribute to shaping and confining the site. The catalytic copper site is exposed to the solvent and to the crystalline substrates, and as so, the influence of the copper environment on LPMO properties, including the redox potential, is of great interest. In the current work, a direct electrochemical study of an LPMO (ScLPMO10C) was conducted allowing to retrieve kinetic and thermodynamic data associated with the redox transition in the catalytic centre. Moreover, two residues that do not bind to the copper but shape the copper sites were mutated, and the properties of the mutants were compared with those of the wild-type enzyme. The direct electrochemical studies, using cyclic voltammetry, yielded redox potentials in the +200 mV range, well in line with LPMO redox potentials determined by other methods. Interestingly, while the mutations hardly affected the formal redox potential of the enzyme, they drastically affected the reactivity of the copper site and enzyme functionality.
Collapse
Affiliation(s)
- Cristina M Cordas
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Gabriel N Valério
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Anton Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Åsmund R Kjendseth
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway.
| | - José J G Moura
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
42
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
43
|
Schröder GC, O'Dell WB, Webb SP, Agarwal PK, Meilleur F. Capture of activated dioxygen intermediates at the copper-active site of a lytic polysaccharide monooxygenase. Chem Sci 2022; 13:13303-13320. [PMID: 36507176 PMCID: PMC9683017 DOI: 10.1039/d2sc05031e] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Metalloproteins perform a diverse array of redox-related reactions facilitated by the increased chemical functionality afforded by their metallocofactors. Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes that are responsible for the breakdown of recalcitrant polysaccharides via oxidative cleavage at the glycosidic bond. The activated copper-oxygen intermediates and their mechanism of formation remains to be established. Neutron protein crystallography which permits direct visualization of protonation states was used to investigate the initial steps of oxygen activation directly following active site copper reduction in Neurospora crassa LPMO9D. Herein, we cryo-trap an activated dioxygen intermediate in a mixture of superoxo and hydroperoxo states, and we identify the conserved second coordination shell residue His157 as the proton donor. Density functional theory calculations indicate that both superoxo and hydroperoxo active site states are stable. The hydroperoxo formed is potentially an early LPMO catalytic reaction intermediate or the first step in the mechanism of hydrogen peroxide formation in the absence of substrate. We observe that the N-terminal amino group of the copper coordinating His1 remains doubly protonated directly following molecular oxygen reduction by copper. Aided by molecular dynamics and mining minima free energy calculations we establish that the conserved second-shell His161 in MtPMO3* displays conformational flexibility in solution and that this flexibility is also observed, though to a lesser extent, in His157 of NcLPMO9D. The imidazolate form of His157 observed in our structure following oxygen intermediate protonation can be attributed to abolished His157 flexibility due steric hindrance in the crystal as well as the solvent-occluded active site environment due to crystal packing. A neutron crystal structure of NcLPMO9D at low pH further supports occlusion of the active site since His157 remains singly protonated even at acidic conditions.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State UniversityRaleighNC 27695USA,Neutron Scattering Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| | - William B. O'Dell
- Department of Molecular and Structural Biochemistry, North Carolina State UniversityRaleighNC 27695USA,Neutron Scattering Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Simon P. Webb
- VeraChem LLC12850 Middlebrook Rd. Ste 205GermantownMD 20874-5244USA
| | - Pratul K. Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State UniversityStillwaterOK 74078USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State UniversityRaleighNC 27695USA,Neutron Scattering Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| |
Collapse
|
44
|
Controlled depolymerization of cellulose by photoelectrochemical bioreactor using a lytic polysaccharide monooxygenase. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Evaluation of Enzymatic Hydrolysis of Sugarcane Bagasse Using Combination of Enzymes or Co-Substrate to Boost Lytic Polysaccharide Monooxygenases Action. Catalysts 2022. [DOI: 10.3390/catal12101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This study evaluated innovative approaches for the enzymatic hydrolysis of lignocellulosic biomass. More specifically, assays were performed to evaluate the supplementation of the commercial cellulolytic cocktail Cellic® CTec2 (CC2) with LPMO (GcLPMO9B), H2O2, or cello-oligosaccharide dehydrogenase (CelDH) FgCelDH7C in order to boost the LPMO action and improve the saccharification efficiency of biomass into monosaccharides. The enzymatic hydrolysis was carried out using sugarcane bagasse pretreated by hydrodynamic cavitation-assisted oxidative process, 10% (w/w) solid loading, and 30 FPU CC2/g dry biomass. The results were compared in terms of sugars release and revealed an important influence of the supplementations at the initial 6 h of hydrolysis. While the addition of CelDH led to a steady increase in glucose production to reach 101.1 mg of glucose/g DM, accounting for the highest value achieved after 72 h of hydrolysis, boosting the LPMOs activity by the supplementation of pure LPMOs or the LPMO co-substrate H2O2 were also effective to improve the cellulose conversion, increasing the initial reaction rate of the hydrolysis. These results revealed that LPMOs play an important role on enzymatic hydrolysis of cellulose and boosting their action can help to improve the reaction rate and increase the hydrolysis yield. LPMOs-CelDH oxidative pairs represent a novel potent combination for use in the enzymatic hydrolysis of lignocellulose biomass. Finally, the strategies presented in this study are promising approaches for application in lignocellulosic biorefineries, especially using sugarcane bagasse as a feedstock.
Collapse
|
46
|
Rezić I, Kracher D, Oros D, Mujadžić S, Anđelini M, Kurtanjek Ž, Ludwig R, Rezić T. Application of Causality Modelling for Prediction of Molecular Properties for Textile Dyes Degradation by LPMO. Molecules 2022; 27:molecules27196390. [PMID: 36234925 PMCID: PMC9572501 DOI: 10.3390/molecules27196390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
The textile industry is one of the largest water-polluting industries in the world. Due to an increased application of chromophores and a more frequent presence in wastewaters, the need for an ecologically favorable dye degradation process emerged. To predict the decolorization rate of textile dyes with Lytic polysaccharide monooxygenase (LPMO), we developed, validated, and utilized the molecular descriptor structural causality model (SCM) based on the decision tree algorithm (DTM). Combining mathematical models and theories with decolorization experiments, we have elucidated the most important molecular properties of the dyes and confirm the accuracy of SCM model results. Besides the potential utilization of the developed model in the treatment of textile dye-containing wastewater, the model is a good base for the prediction of the molecular properties of the molecule. This is important for selecting chromophores as the reagents in determining LPMO activities. Dyes with azo- or triarylmethane groups are good candidates for colorimetric LPMO assays and the determination of LPMO activity. An adequate methodology for the LPMO activity determination is an important step in the characterization of LPMO properties. Therefore, the SCM/DTM model validated with the 59 dyes molecules is a powerful tool in the selection of adequate chromophores as reagents in the LPMO activity determination and it could reduce experimentation in the screening experiments.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, Prilaz b. Filipovića 28a, 10000 Zagreb, Croatia
- Correspondence: (I.R.); (T.R.); Tel.: +385-1-3712-500 (I.R.); +385-1-4605-056 (T.R.)
| | - Daniel Kracher
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Damir Oros
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Sven Mujadžić
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Magdalena Anđelini
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Želimir Kurtanjek
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Roland Ludwig
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Tonči Rezić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Correspondence: (I.R.); (T.R.); Tel.: +385-1-3712-500 (I.R.); +385-1-4605-056 (T.R.)
| |
Collapse
|
47
|
Shabaev AV, Moiseenko KV, Glazunova OA, Savinova OS, Fedorova TV. Comparative Analysis of Peniophora lycii and Trametes hirsuta Exoproteomes Demonstrates “Shades of Gray” in the Concept of White-Rotting Fungi. Int J Mol Sci 2022; 23:ijms231810322. [PMID: 36142233 PMCID: PMC9499651 DOI: 10.3390/ijms231810322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
White-rot basidiomycete fungi are a unique group of organisms that evolved an unprecedented arsenal of extracellular enzymes for an efficient degradation of all components of wood such as cellulose, hemicelluloses and lignin. The exoproteomes of white-rot fungi represent a natural enzymatic toolbox for white biotechnology. Currently, only exoproteomes of a narrow taxonomic group of white-rot fungi—fungi belonging to the Polyporales order—are extensively studied. In this article, two white-rot fungi, Peniophora lycii LE-BIN 2142 from the Russulales order and Trametes hirsuta LE-BIN 072 from the Polyporales order, were compared and contrasted in terms of their enzymatic machinery used for degradation of different types of wood substrates—alder, birch and pine sawdust. Our findings suggested that the studied fungi use extremely different enzymatic systems for the degradation of carbohydrates and lignin. While T. hirsuta LE-BIN 072 behaved as a typical white-rot fungus, P. lycii LE-BIN 2142 demonstrated substantial peculiarities. Instead of using cellulolytic and hemicellulolytic hydrolytic enzymes, P. lycii LE-BIN 2142 primarily relies on oxidative polysaccharide-degrading enzymes such as LPMO and GMC oxidoreductase. Moreover, exoproteomes of P. lycii LE-BIN 2142 completely lacked ligninolytic peroxidases, a well-known marker of white-rot fungi, but instead contained several laccase isozymes and previously uncharacterized FAD-binding domain-containing proteins.
Collapse
|
48
|
Moon M, Lee JP, Park GW, Lee JS, Park HJ, Min K. Lytic polysaccharide monooxygenase (LPMO)-derived saccharification of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 359:127501. [PMID: 35753567 DOI: 10.1016/j.biortech.2022.127501] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Given that traditional biorefineries have been based on microbial fermentation to produce useful fuels, materials, and chemicals as metabolites, saccharification is an important step to obtain fermentable sugars from biomass. It is well-known that glycosidic hydrolases (GHs) are responsible for the saccharification of recalcitrant polysaccharides through hydrolysis, but the discovery of lytic polysaccharide monooxygenase (LPMO), which is a kind of oxidative enzyme involved in cleaving polysaccharides and boosting GH performance, has profoundly changed the understanding of enzyme-based saccharification. This review briefly introduces the classification, structural information, and catalytic mechanism of LPMOs. In addition to recombinant expression strategies, synergistic effects with GH are comprehensively discussed. Challenges and perspectives for LPMO-based saccharification on a large scale are also briefly mentioned. Ultimately, this review can provide insights for constructing an economically viable lignocellulose-based biorefinery system and a closed-carbon loop to cope with climate change.
Collapse
Affiliation(s)
- Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Hyun June Park
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
49
|
Natural photoredox catalysts promote light-driven lytic polysaccharide monooxygenase reactions and enzymatic turnover of biomass. Proc Natl Acad Sci U S A 2022; 119:e2204510119. [PMID: 35969781 PMCID: PMC9407654 DOI: 10.1073/pnas.2204510119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of crystalline polysaccharides such as cellulose and chitin and are important for biomass conversion in the biosphere as well as in biorefineries. The target polysaccharides of LPMOs naturally occur in copolymeric structures such as plant cell walls and insect cuticles that are rich in phenolic compounds, which contribute rigidity and stiffness to these materials. Since these phenolics may be photoactive and since LPMO action depends on reducing equivalents, we hypothesized that LPMOs may enable light-driven biomass conversion. Here, we show that redox compounds naturally present in shed insect exoskeletons enable harvesting of light energy to drive LPMO reactions and thus biomass conversion. The primary underlying mechanism is that irradiation of exoskeletons with visible light leads to the generation of H2O2, which fuels LPMO peroxygenase reactions. Experiments with a cellulose model substrate show that the impact of light depends on both light and exoskeleton dosage and that light-driven LPMO activity is inhibited by a competing H2O2-consuming enzyme. Degradation experiments with the chitin-rich exoskeletons themselves show that solubilization of chitin by a chitin-active LPMO is promoted by light. The fact that LPMO reactions, and likely reactions catalyzed by other biomass-converting redox enzymes, are fueled by light-driven abiotic reactions in nature provides an enzyme-based explanation for the known impact of visible light on biomass conversion.
Collapse
|
50
|
Long L, Hu Y, Sun F, Gao W, Hao Z, Yin H. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery. Int J Biol Macromol 2022; 219:68-83. [PMID: 35931294 DOI: 10.1016/j.ijbiomac.2022.07.240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
One crucial step in processing the recalcitrant lignocellulosic biomass is the fast hydrolysis of natural cellulose to fermentable sugars that can be subsequently converted to biofuels and bio-based chemicals. Recent studies have shown that lytic polysaccharide monooxygenase (LPMOs) with auxiliary activity family 9 (AA9) are capable of efficiently depolymerizing the crystalline cellulose via regioselective oxidation reaction. Intriguingly, the catalysis by AA9 LPMOs requires reductant to provide electrons, and lignin and its phenolic derivatives can be oxidized, releasing reductant to activate the reaction. The activity of AA9 LPMOs can be enhanced by in-situ generation of H2O2 in the presence of O2. Although scientific understanding of these enzymes remains somewhat unknown or controversial, structure modifications on AA9 LPMOs through protein engineering have emerged in recent years, which are prerequisite for their extensive applications in the development of cellulase-mediated lignocellulosic biorefinery processes. In this review, we critically comment on advances in studies for AA9 LPMOs, i.e., characteristic of AA9 LPMOs catalysis, external electron donors to AA9 LPMOs, especially the role of the oxidization of lignin and its derivatives, and AA9 LPMOs protein engineering as well as their extensive applications in the bioprocessing of lignocellulosic biomass. Perspectives are also highlighted for addressing the challenges.
Collapse
Affiliation(s)
- Lingfeng Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Wa Gao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| | - Zhikui Hao
- Institute of Applied Biotechnology, School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| |
Collapse
|