• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4622557)   Today's Articles (3484)   Subscriber (49405)
For: Peng H, Zhang X, Han X, You X, Lin S, Chen H, Liu W, Wang X, Zhang N, Wang Z, Wu P, Zhu H, Dai S. Catalysts in Coronas: A Surface Spatial Confinement Strategy for High-Performance Catalysts in Methane Dry Reforming. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00968] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Number Cited by Other Article(s)
1
Wang Y, Wu P, Wang Y, He H, Huang L. Dendritic mesoporous nanoparticles for the detection, adsorption, and degradation of hazardous substances in the environment: State-of-the-art and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;345:118629. [PMID: 37499417 DOI: 10.1016/j.jenvman.2023.118629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
2
Pan J, Li XE, Zhu Y, Zhou J, Zhu Z, Li C, Liu X, Liang X, Yang Z, Chen Q, Ren P, Wen XD, Zhou X, Wu K. Clustering-Evolved Frontier Orbital for Low-Temperature CO2 Dissociation. J Am Chem Soc 2023;145:18748-18752. [PMID: 37606281 DOI: 10.1021/jacs.3c06845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
3
Bian H, Gani TZH, Liu J, Hondo E, Lim KH, Zhang T, Li D, Liu SF, Yan J, Kawi S. Ni nanoparticles supported on Al2O3 + La2O3 yolk-shell catalyst for photo-assisted thermal decomposition of methane. J Colloid Interface Sci 2023;643:151-161. [PMID: 37058890 DOI: 10.1016/j.jcis.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
4
Hua X, Wang W, Ran W, He G, Liu J, Liu R. Promoting Effect of Nitride as Support for Pd Hydrodechlorination Catalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023;39:4692-4700. [PMID: 36940401 DOI: 10.1021/acs.langmuir.3c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
5
Xiao W, Cai S, Wu T, Fu Z, Liu X, Wang C, Zhang W, Yang R. IrO2 clusters loaded on dendritic mesoporous silica nanospheres with superior peroxidase-like activity for sensitive detection of acetylcholinesterase and its inhibitors. J Colloid Interface Sci 2023;635:481-493. [PMID: 36599245 DOI: 10.1016/j.jcis.2022.12.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
6
Preparation of Nanoscale Ni–Cu Supported Over Hydrochar by Hydrothermal Method and Effect of Ni/Cu Ratio on Catalytic Performances in Dry Reforming of Methane. Catal Letters 2023. [DOI: 10.1007/s10562-023-04280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
7
Dry reforming of methane over Ni catalysts supported on micro- and mesoporous silica. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
8
Wang H, Diao Y, Gao Z, Smith KJ, Guo X, Ma D, Shi C. H2 Production from Methane Reforming over Molybdenum Carbide Catalysts: From Surface Properties and Reaction Mechanism to Catalyst Development. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
9
Wang F, Liao Y, Li T, Xia L. Coupling of CdS and g-C3N4 decorated dendritic fibrous nano-silica for efficient photocatalytic reduction of uranium (VI). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
10
Chen C, Wang W, Ren Q, Ye R, Nie N, Liu Z, Zhang L, Xiao J. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO2 catalysts. Front Chem 2022;10:993691. [PMID: 36118307 PMCID: PMC9475255 DOI: 10.3389/fchem.2022.993691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022]  Open
11
Kwon Y, Eichler JE, Mullins CB. NiAl2O4 as a beneficial precursor for Ni/Al2O3 catalysts for the dry reforming of methane. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
12
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022;122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
13
Al-Fatesh AS, Patel R, Srivastava VK, Ibrahim AA, Naeem MA, Fakeeha AH, Abasaeed AE, Alquraini AA, Kumar R. Barium-Promoted Yttria-Zirconia-Supported Ni Catalyst for Hydrogen Production via the Dry Reforming of Methane: Role of Barium in the Phase Stabilization of Cubic ZrO2. ACS OMEGA 2022;7:16468-16483. [PMID: 35601323 PMCID: PMC9118375 DOI: 10.1021/acsomega.2c00471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
14
Ahadzadeh M, Alavi SM, Rezaei M, Akbari E. Propane dry reforming over highly active NiO-MgO solid solution catalyst for synthesis gas production. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
15
Sintering resistant cubic ceria yolk Ni phyllosilicate shell catalyst for methane dry reforming. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
16
Meiliefiana M, Nakayashiki T, Yamamoto E, Hayashi K, Ohtani M, Kobiro K. One-Step Solvothermal Synthesis of Ni Nanoparticle Catalysts Embedded in ZrO2 Porous Spheres to Suppress Carbon Deposition in Low-Temperature Dry Reforming of Methane. NANOSCALE RESEARCH LETTERS 2022;17:47. [PMID: 35435525 PMCID: PMC9016108 DOI: 10.1186/s11671-022-03683-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 05/06/2023]
17
Wang J, Fu Y, Kong W, Li S, Yuan C, Bai J, Chen X, Zhang J, Sun Y. Investigation of Atom-Level Reaction Kinetics of Carbon-Resistant Bimetallic NiCo-Reforming Catalysts: Combining Microkinetic Modeling and Density Functional Theory. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
18
Prospects and Technical Challenges in Hydrogen Production through Dry Reforming of Methane. Catalysts 2022. [DOI: 10.3390/catal12040363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]  Open
19
Li X, Phornphimon M, Zhang X, Deng J, Zhang D. Promoting dry reforming of methane catalysed by atomically-dispersed Ni over ceria-upgraded boron nitride. Chem Asian J 2022;17:e202101428. [PMID: 35246955 DOI: 10.1002/asia.202101428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Indexed: 11/08/2022]
20
Highly Active CuO/KCC−1 Catalysts for Low-Temperature CO Oxidation. Processes (Basel) 2022. [DOI: 10.3390/pr10010145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
21
Zhou G, Ma Y, Gu C, Yang J, Pang H, Li J, Xu L, Tang Y. Fe incorporation-induced electronic modification of Co-tannic acid complex nanoflowers for high-performance water oxidation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01630j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
22
He Y, Pan G, Li L, Zhong S, Li L, Liu Z, Yu Y. Local charge transfer within a covalent organic framework and Pt nanoparticles promoting interfacial catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
23
Kweon S, Bae J, Cho YH, Lee S, Kim J, Jo D, Shin CH, Park MB, Min HK. Defect-stabilized nickel on beta zeolite as a promising catalyst for dry reforming of methane. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02363b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
24
Al-Fatesh AS, Kumar R, Kasim SO, Ibrahim AA, Fakeeha AH, Abasaeed AE, Atia H, Armbruster U, Kreyenschulte C, Lund H, Bartling S, Ahmed Mohammed Y, Albaqmaa YA, Lanre MS, Chaudhary ML, Almubaddel F, Chowdhury B. Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
25
Zhang S, Tang L, Yu J, Zhan W, Wang L, Guo Y, Guo Y. Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al2O3 for Dry Reforming of CH4: Elucidating the Induction Period and Its Excellent Resistance to Coking. ACS APPLIED MATERIALS & INTERFACES 2021;13:58605-58618. [PMID: 34866393 DOI: 10.1021/acsami.1c17890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
26
Self-stabilization of Ni/Al2O3 Catalyst with a NiAl2O4 Isolation Layer in Dry Reforming of Methane. Catal Letters 2021. [DOI: 10.1007/s10562-021-03867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
27
Taherian Z, Shahed Gharahshiran V, Khataee A, Orooji Y. Anti-coking freeze-dried NiMgAl catalysts for dry and steam reforming of methane. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
28
Xiao Z, Hou F, Zhang J, Zheng Q, Xu J, Pan L, Wang L, Zou J, Zhang X, Li G. Methane Dry Reforming by Ni-Cu Nanoalloys Anchored on Periclase-Phase MgAlOx Nanosheets for Enhanced Syngas Production. ACS APPLIED MATERIALS & INTERFACES 2021;13:48838-48854. [PMID: 34613699 DOI: 10.1021/acsami.1c14918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
29
Alam MI, Cheula R, Moroni G, Nardi L, Maestri M. Mechanistic and multiscale aspects of thermo-catalytic CO2 conversion to C1 products. Catal Sci Technol 2021;11:6601-6629. [PMID: 34745556 PMCID: PMC8521205 DOI: 10.1039/d1cy00922b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022]
30
He L, Li M, Li WC, Xu W, Wang Y, Wang YB, Shen W, Lu AH. Robust and Coke-free Ni Catalyst Stabilized by 1–2 nm-Thick Multielement Oxide for Methane Dry Reforming. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
31
Jang SW, Dutta S, Kumar A, Kim SM, You YW, Lee IS. Silica-Enveloped 2D-Sheet-to-Nanocrystals Conversion for Resilient Catalytic Dry Reforming of Methane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021;17:e2102851. [PMID: 34263553 DOI: 10.1002/smll.202102851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Indexed: 06/13/2023]
32
Song Q, Ran R, Li D, Zhao B, Weng D. Synthesis of Highly-Dispersed Ni/Mesoporous Silica via an Ammonia Evaporation Method for Dry Reforming of Methane: Effect of the Ni Loadings. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09331-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
33
Niu J, Wang Y, E. Liland S, K. Regli S, Yang J, Rout KR, Luo J, Rønning M, Ran J, Chen D. Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt–Ni Bimetallic Clusters in Dry Reforming. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04429] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
34
Lašič Jurković D, Liu JL, Pohar A, Likozar B. Methane Dry Reforming over Ni/Al2O3 Catalyst in Spark Plasma Reactor: Linking Computational Fluid Dynamics (CFD) with Reaction Kinetic Modelling. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
35
Nanowire-Based Materials as Coke-Resistant Catalyst Supports for Dry Methane Reforming. Catalysts 2021. [DOI: 10.3390/catal11020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]  Open
36
Han X, Gao Q, Yan Z, Ji M, Long C, Zhu H. Electrocatalysis in confined spaces: interplay between well-defined materials and the microenvironment. NANOSCALE 2021;13:1515-1528. [PMID: 33434259 DOI: 10.1039/d0nr08237f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
37
Abdelsadek Z, Holgado JP, Halliche D, Caballero A, Cherifi O, Gonzalez-Cortes S, Masset PJ. Examination of the Deactivation Cycle of NiAl- and NiMgAl-Hydrotalcite Derived Catalysts in the Dry Reforming of Methane. Catal Letters 2021. [DOI: 10.1007/s10562-020-03513-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
38
Xue Y, Xu L, Chen M, Wu CE, Cheng G, Wang N, Hu X. Constructing Ni-based confinement catalysts with advanced performances toward the CO2 reforming of CH4: state-of-the-art review and perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01039e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
39
Ranjekar AM, Yadav GD. Dry reforming of methane for syngas production: A review and assessment of catalyst development and efficacy. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
40
Yusuf M, Farooqi AS, Keong LK, Hellgardt K, Abdullah B. Contemporary trends in composite Ni-based catalysts for CO2 reforming of methane. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116072] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
41
Zheng YL, Liu HC, Zhang YW. Engineering Heterostructured Nanocatalysts for CO2 Transformation Reactions: Advances and Perspectives. CHEMSUSCHEM 2020;13:6090-6123. [PMID: 32662587 DOI: 10.1002/cssc.202001290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
42
One-Step Synthesis of Highly Dispersed and Stable Ni Nanoparticles Confined by CeO2 on SiO2 for Dry Reforming of Methane. ENERGIES 2020. [DOI: 10.3390/en13225956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
43
Hao P, Peng B, Shan BQ, Yang TQ, Zhang K. Comprehensive understanding of the synthesis and formation mechanism of dendritic mesoporous silica nanospheres. NANOSCALE ADVANCES 2020;2:1792-1810. [PMID: 36132521 PMCID: PMC9416971 DOI: 10.1039/d0na00219d] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 05/24/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA