1
|
Cao XC, Zhang BC, Cui J, Suo C, Duan XC, Guo SH, Zhang XM. Photocatalyst Au@Ni-MOFs with Different Plasmonic Coverages for Improved Hydrogen Evolution from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18695-18705. [PMID: 39172768 DOI: 10.1021/acs.langmuir.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Plasmonic materials are fundamental photosensitizer materials for photocatalytic reactions. Various structures, including core-shell types, satellite types, and distribution types, have been designed and prepared for the optimization of photocatalytic reactions. However, understanding the profound enhancement mechanism of various structures is still challenging. Thus, the plasmonic coverage is considered to be an index for analyzing the influence mechanism. Here, Au@Ni-MOF core-shell flower sphere-like photocatalysts are prepared, and the size of the flower sphere can be precisely regulated by varying the amount of Au. Thus, different plasmonic coverages are realized through the tuning of spheres of different sizes. The high plasmonic coverage of catalysts can enhance visible light absorption, facilitate the generation of photogenerated electron-hole pairs, and shorten the photogenerated carrier transport distance. Moreover, the exponential relationship between the photocatalytic hydrogen production performance and the plasmonic coverage can also be used as a guide for material design. As a result, a photocatalytic hydrogen production rate of 3389 μmol·g-1·h-1 is achieved in the Au@Ni-MOF sample with high plasmonic coverage, which will advance the plasmonic application in photocatalytic reactions.
Collapse
Affiliation(s)
- Xu Chuan Cao
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Bai Chao Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jing Cui
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Chao Suo
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiao Chuan Duan
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shao Hui Guo
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xian-Ming Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
2
|
Liu Y, Huang S, Huang X, Ma D. Enhanced photocatalysis of metal/covalent organic frameworks by plasmonic nanoparticles and homo/hetero-junctions. MATERIALS HORIZONS 2024; 11:1611-1637. [PMID: 38294286 DOI: 10.1039/d3mh01645e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have garnered attention in photocatalysis due to their unique features including extensive surface area, adjustable pores, and the ability to incorporate various functional groups. However, challenges such as limited visible light absorption and rapid electron-hole recombination often hinder their photocatalytic efficiency. Recent developments have introduced plasmonic nanoparticles (NPs) and junctions to enhance the photocatalytic performance of MOFs/COFs. This paper provides a comprehensive review of recent advancements in MOF/COF-based photocatalysts improved by integration of plasmonic NPs and junctions. We begin by examining the utilization of plasmonic NPs, known for absorbing longer-wavelength light compared to typical MOFs/COFs. These NPs exhibit localized surface plasmon resonance (LSPR) when excited, effectively enhancing the photocatalytic performance of MOFs/COFs. Moreover, we discuss the role of homo/hetero-junctions in facilitating charge separation, further boosting the photocatalytic performance of MOFs/COFs. The mechanisms behind the improved photocatalytic performance of these composites are discussed, along with an assessment of challenges and opportunities in the field, guiding future research directions.
Collapse
Affiliation(s)
- Yannan Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
- Énergie Matériauxet Télécommunications, Institut National de la Recherche Scientifque (INRS), 1650 Bd Lionel-Boulet, Varennes, QC J3X 1P7, Canada.
| | - Shengyun Huang
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou 341000, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xing Huang
- Department of Synthetic Materials and Functional Devices, Max-Planck Institute of Microstructure Physics, 06120, Halle, Germany
| | - Dongling Ma
- Énergie Matériauxet Télécommunications, Institut National de la Recherche Scientifque (INRS), 1650 Bd Lionel-Boulet, Varennes, QC J3X 1P7, Canada.
| |
Collapse
|
3
|
Hu DD, Guo RT, Yan JS, Guo SH, Pan WG. Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO 2) to hydrocarbon fuels. NANOSCALE 2024; 16:2185-2219. [PMID: 38226715 DOI: 10.1039/d3nr05664c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
MOF-based photoelectrocatalysis (PEC) using CO2 as an electron donor offers a green, clean, and extensible way to make hydrocarbon fuels under more tolerant conditions. Herein, basic principles of PEC reduction of CO2 and the preparation methods and characterization techniques of MOF-based materials are summarized. Furthermore, three applications of MOFs for improving the photoelectrocatalytic performance of CO2 reduction are described: (i) as photoelectrode alone; (ii) as a co-catalyst of semiconductor photoelectrode or as a substrate for loading dyes, quantum dots, and other co-catalysts; (iii) as one of the components of heterojunction structure. Challenges and future wave surrounding the development of robust PEC CO2 systems based on MOF materials are also discussed briefly.
Collapse
Affiliation(s)
- Dou-Dou Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China.
| | - Ji-Song Yan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Sheng-Hui Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China.
| |
Collapse
|
4
|
Zheng Z, Wang B, Li Z, Hao H, Wei C, Luo W, Jiao L, Zhang S, Zhou B, Ma X. Enhanced Charge Transfer via S-Scheme Heterojunction Interface Engineering of Supramolecular SubPc-Br/UiO-66 Arrays for Efficient Photocatalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306820. [PMID: 37802970 DOI: 10.1002/smll.202306820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Constructing heterojunction of supramolecular arrays self-assembled on metal-organic frameworks (MOFs) with elaborate charge transfer mechanisms is a promising strategy for the photocatalytic oxidation of organic pollutants. Herein, H12 SubPcB-Br (SubPc-Br) and UiO-66 are used to obtain the step-scheme (S-scheme) heterojunction SubPc-Br/UiO-66 for the first time, which is then applied in the photocatalytic oxidation of minocycline. Atomic-level B-O-Zr charge-transfer channels and van der Waals force connections synergistically accelerated the charge transfer at the interface of the SubPc-Br/UiO-66 heterojunction, while the establishment of the B-O-Zr bonds also led to the directional transfer of charge from SubPc-Br to UiO-66. The synergy is the key to improving the photocatalytic activity and stability of SubPc-Br/UiO-66, which is also verified by various characterization methods and theoretical calculations. The minocycline degradation efficiency of supramolecular SubPc-Br/UiO-66 arrays reach 90.9% within 30 min under visible light irradiation. The molecular dynamics simulations indicate that B-O-Zr bonds and van der Waals force contribute significantly to the stability of the SubPc-Br/UiO-66 heterojunction. This work reveals an approach for the rational design of semiconducting MOF-based heterojunctions with improved properties.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Bing Wang
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zhuo Li
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - ChaoYang Wei
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - WenYu Luo
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - LinYu Jiao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Sheng Zhang
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bo Zhou
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, 710069, China
| | - XiaoXun Ma
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| |
Collapse
|
5
|
Yin H, Zhou S, Liu J, Huang M. Synergetic enhancement effect of two-dimensional MoS2 nanosheets and metal organic framework-derived porous ZnO nanorods for photodegradation performance. J Chem Phys 2023; 159:204701. [PMID: 37991158 DOI: 10.1063/5.0165181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
Two-dimensional transition metal dichalcogenides and semiconductor metal oxides have shown great potential in photocatalysis. However, their stability and efficiency need to be further improved. In this paper, porous ZnO nanorods with high specific surface area were prepared from metal-organic framework ZIF-8 by a simple hydrothermal method. A MoS2/ZnO composite was constructed by loading MoS2 onto the surface of porous ZnO nanorods. Compared with ZnO materials prepared by other methods, MoS2/ZnO prepared in this paper exhibits superior photocatalytic performance. The enhanced photocatalytic activity of the MoS2/ZnO composite can be attributed to the formation of heterojunctions and strong interaction between them, which greatly facilitate the separation of electrons and holes at the contact interface. In addition, due to the wide absorption region of the visible spectrum, MoS2 can greatly broaden the light absorption range of the material after the formation of the composite material, increase the utilization rate of visible light, and reduce the combination of electrons and holes. This study provides a new way to prepare cheap and efficient photocatalysts.
Collapse
Affiliation(s)
- Huimin Yin
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Suyu Zhou
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Junhui Liu
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Mingju Huang
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Wu L, Mi X, Wang S, Huang C, Zhang Y, Wang YM, Wang Y. Construction of PCN-222 and Atomically Thin 2D CNs Van Der Waals Heterojunction for Enhanced Visible Light Photocatalytic Hydrogen Production. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1318. [PMID: 37110903 PMCID: PMC10143698 DOI: 10.3390/nano13081318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Atomically thin two-dimensional (2D) CN sheets have attracted extensive attention in the field of photocatalysis because of their shorter diffusion path of photogenerated carriers and abundant surface reaction sites than bulk CN. However, 2D CNs still exhibit poor visible-light photocatalytic activity because of a strong quantum size effect. Here, PCN-222/CNs vdWHs were successfully constructed using the electrostatic self-assembly method. The results showed that PCN-222/CNs vdWHs with 1 wt.% PCN-222 enhanced the absorption range of CNs from 420 to 438 nm, which improved the absorption capacity of visible light. Additionally, the hydrogen production rate of 1 wt.% PCN-222/CNs is four times that of the pristine 2D CNs. This study provides a simple and effective strategy for 2D CN-based photocatalysts to promote visible light absorption.
Collapse
Affiliation(s)
- Liting Wu
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710126, China
| | - Xuke Mi
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710126, China
| | - Shaopeng Wang
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710126, China
| | - Can Huang
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710126, China
| | - Yu Zhang
- Department of Physics, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yong-Mei Wang
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710126, China
| | - Yong Wang
- School of Advanced Materials and Nanotechnology, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710126, China
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi’an 710126, China
| |
Collapse
|
7
|
Sanchis-Gual R, Coronado-Puchau M, Mallah T, Coronado E. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Okada K, Mashita R, Fukatsu A, Takahashi M. Polarization-dependent plasmonic heating in epitaxially grown multilayered metal-organic framework thin films embedded with Ag nanoparticles. NANOSCALE ADVANCES 2023; 5:1795-1801. [PMID: 36926578 PMCID: PMC10012874 DOI: 10.1039/d2na00882c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The development of metal-organic framework (MOF) thin films with various functionalities has paved the way for research into a wide variety of applications. MOF-oriented thin films can exhibit anisotropic functionality in the not only out-of-plane but also in-plane directions, making it possible to utilize MOF thin films for more sophisticated applications. However, the functionality of oriented MOF thin films has not been fully exploited, and finding novel anisotropic functionality in oriented MOF thin films should be cultivated. In the present study, we report the first demonstration of polarization-dependent plasmonic heating in a MOF oriented film embedded with Ag nanoparticles (AgNPs), pioneering an anisotropic optical functionality in MOF thin films. Spherical AgNPs exhibit polarization-dependent plasmon-resonance absorption (anisotropic plasmon damping) when incorporated into an anisotropic lattice of MOFs. The anisotropic plasmon resonance results in a polarization-dependent plasmonic heating behavior; the highest elevated temperature was observed in case the polarization of incident light is parallel to the crystallographic axis of the host MOF lattice favorable for the larger plasmon resonance, resulting in polarization-controlled temperature regulation. Such spatially and polarization selective plasmonic heating offered by the use of oriented MOF thin films as a host can pave the way for applications such as efficient reactivation in MOF thin film sensors, partial catalytic reactions in MOF thin film devices, and soft microrobotics in composites with thermo-responsive materials.
Collapse
Affiliation(s)
- Kenji Okada
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
- JST, PRESTO 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Risa Mashita
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Arisa Fukatsu
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
| |
Collapse
|
9
|
Jiang W, Low BQL, Long R, Low J, Loh H, Tang KY, Chai CHT, Zhu H, Zhu H, Li Z, Loh XJ, Xiong Y, Ye E. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis. ACS NANO 2023; 17:4193-4229. [PMID: 36802513 DOI: 10.1021/acsnano.2c12314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasmonic nanostructures have shown immense potential in photocatalysis because of their distinct photochemical properties associated with tunable photoresponses and strong light-matter interactions. The introduction of highly active sites is essential to fully exploit the potential of plasmonic nanostructures in photocatalysis, considering the inferior intrinsic activities of typical plasmonic metals. This review focuses on active site-engineered plasmonic nanostructures with enhanced photocatalytic performance, wherein the active sites are classified into four types (i.e., metallic sites, defect sites, ligand-grafted sites, and interface sites). The synergy between active sites and plasmonic nanostructures in photocatalysis is discussed in detail after briefly introducing the material synthesis and characterization methods. Active sites can promote the coupling of solar energy harvested by plasmonic metal to catalytic reactions in the form of local electromagnetic fields, hot carriers, and photothermal heating. Moreover, efficient energy coupling potentially regulates the reaction pathway by facilitating the excited state formation of reactants, changing the status of active sites, and creating additional active sites using photoexcited plasmonic metals. Afterward, the application of active site-engineered plasmonic nanostructures in emerging photocatalytic reactions is summarized. Finally, a summary and perspective of the existing challenges and future opportunities are presented. This review aims to deliver some insights into plasmonic photocatalysis from the perspective of active sites, expediting the discovery of high-performance plasmonic photocatalysts.
Collapse
Affiliation(s)
- Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Ran Long
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingxiang Low
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyi Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Casandra Hui Teng Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Hui Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| |
Collapse
|
10
|
Kollmannsberger KL, Kronthaler L, Jinschek JR, Fischer RA. Defined metal atom aggregates precisely incorporated into metal-organic frameworks. Chem Soc Rev 2022; 51:9933-9959. [PMID: 36250400 DOI: 10.1039/d1cs00992c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanosized metal aggregates (MAs), including metal nanoparticles (NPs) and nanoclusters (NCs), are often the active species in numerous applications. In order to maintain the active form of MAs in "use", they need to be anchored and stabilised, preventing agglomeration. In this context, metal-organic frameworks (MOFs), which exhibit a unique combination of properties, are of particular interest as a tunable and porous matrix to host MAs. A high degree of control in the synthesis towards atom-efficient and application-oriented MA@MOF composites is required to derive specific structure-property relationships and in turn to enable design of functions on the molecular level. Due to the versatility of MA@MOF (derived) materials, their applications are not limited to the obvious field of catalysis, but increasingly include 'out of the box' applications, for example medical diagnostics and theranostics, as well as specialised (bio-)sensoring techniques. This review focuses on recent advances in the controlled synthesis of MA@MOF materials en route to atom-precise MAs. The main synthetic strategies, namely 'ship-in-bottle', 'bottle-around-ship', and approaches to achieve novel hierarchical MA@MOF structures are highlighted and discussed while identifying their potential as well as their limitations. Hereby, an overview of standard characterisation methods that enable a systematic analysis procedure and state-of-art techniques that localise MA within MOF cavities are provided. While the perspectives of MA@MOF materials in general have been reviewed various times in the recent past, few atom-precise MAs inside MOFs have been reported so far, opening opportunities for future investigation.
Collapse
Affiliation(s)
- Kathrin L Kollmannsberger
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Centre and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748 Garching, Germany.
| | - Laura Kronthaler
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Centre and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748 Garching, Germany.
| | - Joerg R Jinschek
- National Centre for Nano Fabrication and Characterisation (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark.
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Centre and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748 Garching, Germany.
| |
Collapse
|
11
|
Multifunctional Mn(II) Metal-Organic framework for photocatalytic aerobic oxidation and C H direct trifluoromethylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Abstract
Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China.,Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China.,College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, Hunan, P.R. China
| | - Gang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
13
|
Ezendam S, Herran M, Nan L, Gruber C, Kang Y, Gröbmeyer F, Lin R, Gargiulo J, Sousa-Castillo A, Cortés E. Hybrid Plasmonic Nanomaterials for Hydrogen Generation and Carbon Dioxide Reduction. ACS ENERGY LETTERS 2022; 7:778-815. [PMID: 35178471 PMCID: PMC8845048 DOI: 10.1021/acsenergylett.1c02241] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 05/05/2023]
Abstract
The successful development of artificial photosynthesis requires finding new materials able to efficiently harvest sunlight and catalyze hydrogen generation and carbon dioxide reduction reactions. Plasmonic nanoparticles are promising candidates for these tasks, due to their ability to confine solar energy into molecular regions. Here, we review recent developments in hybrid plasmonic photocatalysis, including the combination of plasmonic nanomaterials with catalytic metals, semiconductors, perovskites, 2D materials, metal-organic frameworks, and electrochemical cells. We perform a quantitative comparison of the demonstrated activity and selectivity of these materials for solar fuel generation in the liquid phase. In this way, we critically assess the state-of-the-art of hybrid plasmonic photocatalysts for solar fuel production, allowing its benchmarking against other existing heterogeneous catalysts. Our analysis allows the identification of the best performing plasmonic systems, useful to design a new generation of plasmonic catalysts.
Collapse
Affiliation(s)
- Simone Ezendam
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Matias Herran
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Lin Nan
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Christoph Gruber
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Yicui Kang
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Franz Gröbmeyer
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Rui Lin
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Julian Gargiulo
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Ana Sousa-Castillo
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Emiliano Cortés
- Faculty
of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| |
Collapse
|
14
|
Chen X, Zhang Y, Kong X, Yu B, Wang S, Xu W, Fang Z, Zhang J, Yao K, Liu Y. Coating metal-organic frameworks on plasmonic Ag/AgCl nanowire for boosting visible light photodegradation of organic pollutants. RSC Adv 2022; 12:3119-3127. [PMID: 35425310 PMCID: PMC8979304 DOI: 10.1039/d1ra08576j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Photoactive metal-organic frameworks, MIL-100(Fe), with controllable thickness are coated on plasmonic Ag/AgCl nanowire, for boosting visible light photodegradation of rhodamine B and tetracycline hydrochloride. The morphology and composition of the obtained nano-heterostructure were investigated in detail by SEM imaging, TEM imaging, XRD patterns, FT-IR spectra, N2 adsorption-desorption curves and TGA patterns. Photoelectric performance test suggested that a Z-scheme photocatalysis system for efficient transfer of photogenerated charge carriers was established between MIL-100(Fe) and plasmonic Ag/AgCl nanowire.
Collapse
Affiliation(s)
- Xi Chen
- School of Materials Science and Engineering, East China Jiaotong University Shuanggang Road 808 Nanchang 330013 People's Republic of China
| | - Yanshuang Zhang
- School of Materials Science and Engineering, East China Jiaotong University Shuanggang Road 808 Nanchang 330013 People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences Academy of Science Road 1 Ganzhou 341003 People's Republic of China
| | - Xiangyun Kong
- School of Materials Science and Engineering, East China Jiaotong University Shuanggang Road 808 Nanchang 330013 People's Republic of China
| | - Bowen Yu
- School of Materials Science and Engineering, East China Jiaotong University Shuanggang Road 808 Nanchang 330013 People's Republic of China
| | - Shuaiyin Wang
- School of Materials Science and Engineering, East China Jiaotong University Shuanggang Road 808 Nanchang 330013 People's Republic of China
| | - Wenyuan Xu
- School of Materials Science and Engineering, East China Jiaotong University Shuanggang Road 808 Nanchang 330013 People's Republic of China
| | - Zhili Fang
- School of Materials Science and Engineering, East China Jiaotong University Shuanggang Road 808 Nanchang 330013 People's Republic of China
| | - Jiali Zhang
- School of Materials Science and Engineering, East China Jiaotong University Shuanggang Road 808 Nanchang 330013 People's Republic of China
| | - Kun Yao
- Shenzhen Zhongxing New Material Technology Company Ltd. Shenzhen 518000 People's Republic of China
| | - Yongxin Liu
- School of Materials Science and Engineering, East China Jiaotong University Shuanggang Road 808 Nanchang 330013 People's Republic of China
| |
Collapse
|
15
|
Guo M, Zhang M, Liu R, Zhang X, Li G. State-of-the-Art Advancements in Photocatalytic Hydrogenation: Reaction Mechanism and Recent Progress in Metal-Organic Framework (MOF)-Based Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103361. [PMID: 34716687 PMCID: PMC8728825 DOI: 10.1002/advs.202103361] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Indexed: 05/07/2023]
Abstract
Photocatalytic hydrogenation provides an effective alternative way for the synthesis of industrial chemicals to meet the economic and environment expectations. Especially, over the past few years, metal-organic frameworks (MOFs), featured with tunable structure, porosity, and crystallinity, have been significantly developed as many high-performance catalysts in the field of photocatalysis. In this review, the background and development of photocatalytic hydrogenation are systemically summarized. In particular, the comparison between photocatalysis and thermal catalysis, and the fundamental understanding of photohydrogenation, including reaction pathways, reducing species, regulation of selectivity, and critical parameters of light, are proposed. Moreover, this review highlights the advantages of MOFs-based photocatalysts in the area of photohydrogenation. Typical effective strategies for modifying MOFs-based composites to produce their advantages are concluded. The recent progress in the application of various types of MOFs-based photocatalysts for photohydrogenation of unsaturated organic chemicals and carbon dioxide (CO2 ) is summarized and discussed in detail. Finally, a brief conclusion and personal perspective on current challenges and future developments of photocatalytic hydrogenation processes and MOFs-based photocatalysts are also highlighted.
Collapse
Affiliation(s)
- Mengya Guo
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Mingwei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Runze Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| |
Collapse
|
16
|
Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214240] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Zhang L, Zhang K, Wang C, Liu Y, Wu X, Peng Z, Cao H, Li B, Jiang J. Advances and Prospects in Metal-Organic Frameworks as Key Nexus for Chemocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102201. [PMID: 34396693 DOI: 10.1002/smll.202102201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen is a clean and sustainable energy carrier, which is considered a promising alternative for fossil fuels to solve the global energy crisis and respond to climate change. Social concerns on its safe storage promote continuous exploration of alternatives to traditional storage methods. In this case, chemical hydrogen storage materials initiate plentiful research with special attention to the design of heterogeneous catalysts that can enhance efficient and highly selective hydrogen production. Metal-organic frameworks (MOFs), a kind of unique crystalline porous materials featuring highly ordered porosities and tailorable structures, can provide various active sites (i.e., metal nodes, functional linkers, and defects) for heterogeneous catalysis. Furthermore, the easy construction of active sites in highly ordered MOFs, which can work as plate for the delicate active site engineering, make them ideal candidates for a variety of heterogeneous catalysts including chemocatalytic hydrogen production. This review concentrates on the application of MOFs as heterogeneous catalysts or catalyst supports in chemocatalytic hydrogen production. Recent progresses of MOFs as catalysts for chemocatalytic hydrogen production are comprehensively summarized. The research methods, mechanism analyses, and prospects of MOFs in this field are discussed. The challenges in future industrial applications of MOFs as catalysts for hydrogen production are proposed.
Collapse
Affiliation(s)
- Lina Zhang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Ke Zhang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Chengming Wang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Zhikun Peng
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|
18
|
Xu Q, Liao X, Hu W, Liu W, Wang C. Plasmon induced dual excited synergistic effect in Au/metal-organic frameworks composite for enhanced antibacterial therapy. J Mater Chem B 2021; 9:9606-9614. [PMID: 34784408 DOI: 10.1039/d1tb02141a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient antibacterial therapy holds great promise for human health. However, it is often limited by the insufficient activity of antibacterial agents. Herein, we demonstrate that the localized surface plasmon resonance (LSPR) excitation of gold nanostars (AuNSs) can dramatically improve the antibacterial activity of a Zn-metal-organic frameworks (Zn-MOFs) nanosheet, which exhibits higher ability to generate reactive oxygen species (ROS) (∼2.5-fold) for bacterial inactivation under light irradiation. Mechanistic investigations demonstrate that the enhancement is closely related to a plasmon-induced "dual excited synergistic effect". On the one hand, the Zn-MOFs nanosheets as photosensitive agents can be excited to generate ROS with bacterial toxicity. More importantly, abundant plasmonic hot electrons are generated on the surface of AuNSs upon LSPR excitation, which are then transferred from AuNSs into the Zn-MOFs due to the energy matching. As a result, the Zn-MOFs nanosheet presents an electron-rich condition, which activates the adsorbed O2 molecule into a transition state followed by its decomposition into ROS for bacterial inactivation. This study highlights the superiority of LSPR excitation on improving the antibacterial activity of MOFs and provides a novel strategy for effective antibacterial therapy.
Collapse
Affiliation(s)
- Qiuyang Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Xuewwei Liao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Wenchao Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
19
|
Zhou B, Ou W, Shen J, Zhao C, Zhong J, Du P, Bian H, Li P, Yang L, Lu J, Li YY. Controlling Plasmon-Aided Reduction of p-Nitrothiophenol by Tuning the Illumination Wavelength. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Binbin Zhou
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Weihui Ou
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Junda Shen
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Chenghao Zhao
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Jing Zhong
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Peng Du
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Haidong Bian
- Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen 518055, P. R. China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Jian Lu
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, P. R. China
| | - Yang Yang Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
20
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
21
|
Mavridi-Printezi A, Menichetti A, Guernelli M, Montalti M. Extending photocatalysis to the visible and NIR: the molecular strategy. NANOSCALE 2021; 13:9147-9159. [PMID: 33978040 DOI: 10.1039/d1nr01401c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photocatalysis exploits light to perform important processes as solar fuel production by water splitting, and CO2 reduction or water and air decontamination. Therefore, photocatalysis contributes to the satisfaction of the increasing needs for clean energy, environmental remediation and, most recently, sanification. Most of the efficient semiconductor nanoparticles (NP), developed as photocatalysts, work in the ultraviolet (UV) spectral region and they are not able to exploit either visible (Vis) or near infrared (NIR) radiation. This limitation makes them unable to fully exploit the broad band solar radiaton or to be applied in indoor conditions. Recently, different approaches have been developed to extend the spectral activity of semiconductor NP, like for example band-gap engineering, integration with upconversion NP and plasmonic enhancement involving also hot-electron injection. Nevertheless, the use of organic molecules and metal complexes, for enhancing the photoactivity in the Vis and NIR, was one of the first strategies proposed for sensitization and it is still one of the most efficient. In this minireview we highlight and critically discuss the most recent and relevant achievements in the field of photocatalysis obtained by exploiting dye sensitization either via dynamic or static quenching.
Collapse
Affiliation(s)
| | - Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| | - Moreno Guernelli
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
22
|
Li ZR, Zhu G, Han GZ. Enhanced Catalytic Activity of Magnetic Bimetallic Ag-Au Nanoparticles Mediated by Surface Plasmon Resonance. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:3107-3114. [PMID: 33653486 DOI: 10.1166/jnn.2021.19281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We firstly discover the enhanced catalytic activity of magnetic noble metal nanoparticles mediated by surface plasmon resonance. Under light irradiation with certain wavelength, the catalytic performance of magnetic noble metal nanoparticles shows changes with different degrees and directions that are associated with the surface plasmon resonance (SPR) of the noble metal. Moreover, the coupling of silver and gold allows the catalytic performance of magnetic bimetallic Ag-Au nanoparticles to show more positive response to surface plasmon resonance. The magnetic bimetallic Ag-Au nanoparticles show excellent catalytic performance toward the reduction reaction of aromatic nitro group, and corresponding rate constant of the catalytic reduction reaction increases about three times with light irradiation.
Collapse
Affiliation(s)
- Zhuo-Rui Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Geng Zhu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Guo-Zhi Han
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
23
|
Wang J, Wei X, Wang X, Song W, Zhong W, Wang M, Ju J, Tang Y. Plasmonic Au Nanoparticle@Ti 3C 2T x Heterostructures for Improved Oxygen Evolution Performance. Inorg Chem 2021; 60:5890-5897. [PMID: 33787232 DOI: 10.1021/acs.inorgchem.1c00302] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As we know, in plasmonic-enhanced heterogeneous catalysis, the reaction rates could be remarkably accelerated by generating hot carriers in the constituent nanostructured metals. To further improve the reaction rate, well-defined heterostructures based on plasmonic gold nanoparticles on MXene Ti3C2Tx nanosheets (Au NPs@Ti3C2Tx) were rationally designed and systematically investigated to improve the performance of the oxygen evolution reaction (OER). The results demonstrated that the catalysis performance of the Au NPs@Ti3C2Tx system could be easily tuned by simply varying the concentration and size of Au NPs, and Au NPs@Ti3C2Tx with an average Au NP diameter (∼10 nm) exhibited a 2.5-fold increase in the oxidation or reduction current compared with pure Ti3C2Tx. The enhanced OER performance can be attributed to the synergistic effect of the plasmonic hot hole injection and Schottky junction carrier trapping. Owing to easy fabrication of Au NPs@Ti3C2Tx, the tunable size and concentration of Au NPs loaded on MXene nanosheets, and the significantly enhanced OER, it is expected that this work can lay the foundation to the design of multidimensional MXene-based heterostructures for highly efficient OER performance.
Collapse
Affiliation(s)
- Jin Wang
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Xiaoqing Wei
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Xunyue Wang
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Wenwu Song
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Weiting Zhong
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Minmin Wang
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Jianfeng Ju
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Yanfeng Tang
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
24
|
Zhang D, Huang X, Huang J, Li Y, Cai J. The facile preparation of porphyrin based hierarchical micro/nano assemblies and their visible light photocatalytic activity. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyrin nanostructures are widely used in the field of visible light catalysis due to their superior light absorption properties and good controllability in size, shape and function. In this paper, the development of various morphologies in three types of porphyrins with three different phenyl substituents (designated as H2TTP, H2TPP and H2TCPP, respectively) is demonstrated. The formation mechanism proposed was based on the evolution of morphology as functions of molecular structure and solvent mixture. These nano/micro assemblies are well characterized by SEM, IR, UV-vis, X-ray diffraction and photoelectric conversion. The photocatalytic oxidation reactions under visible light irradiation of 1,5-dihydroxynaphthalene (DHN) in water is utilized to evaluate the photoactivity of the as-prepared porphyrin assemblies. The photocatalytic results indicate that the obtained porphyrin assemblies exhibit enhanced visible-light photocatalytic activity. In addition, the photocatalyst is easy to separate and recover, and has good stability. The possible photocatalytic degradation mechanism of DHN by the porphyrins nanopolyhedron photocatalyst was also proposed.
Collapse
Affiliation(s)
- Dingwa Zhang
- College of Chemistry & Chemical Engineering, Jinggangshan University, Jian, 343009, China
| | - Xueren Huang
- College of Petroleum and Chemical Engineering, Beibuwan University, Qinzhou 535011, China
| | - Jiangen Huang
- College of Chemistry & Chemical Engineering, Jinggangshan University, Jian, 343009, China
| | - Yuting Li
- College of Chemistry & Chemical Engineering, Jinggangshan University, Jian, 343009, China
| | - Jinhua Cai
- College of Chemistry & Chemical Engineering, Jinggangshan University, Jian, 343009, China
| |
Collapse
|
25
|
Li C, Li S, Xu C, Ma K. Plasmon-enhanced unidirectional charge transfer for efficient solar water oxidation. NANOSCALE 2021; 13:4654-4659. [PMID: 33620054 DOI: 10.1039/d1nr00324k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Precise modulation and nano-engineering of photoelectrochemical (PEC) materials, with high-speed charge separation efficiency and broad spectral response, are of significant importance in improving the PEC catalytic activities. Herein, by rational design of material structures, 3D-coaxial plasmonic hetero-nanostructures (carbon cloth@TiO2@SrTiO3-Au, CC@TiO2@SrTiO3-Au) are tactfully fabricated, which exhibit superior solar energy conversion efficiency in PEC water splitting with a current density reaching up to 23.56 mA cm-2 (1.23 V vs. RHE). More specific research and in-depth simulations reveal that the enhanced PEC performance should be attributed to the high-speed charge transfer channels of CC@TiO2@SrTiO3 and excellent light utilization ability stemming from the surface plasmon resonance and strong light-scattering of the 3D-coaxial frameworks. This study provides new strategies for the design of plasmon-enhanced PEC nanocatalysts and will benefit the development of photoelectric energy conversion.
Collapse
Affiliation(s)
- Chuanping Li
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P.R. China. and State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Shuoren Li
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P.R. China.
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China and University of Science & Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China and University of Science & Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| |
Collapse
|
26
|
Zhang G, Wang Z, Wu J. Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO 2 reduction. NANOSCALE 2021; 13:4359-4389. [PMID: 33621289 DOI: 10.1039/d0nr08442e] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The continuous growth of fossil fuel consumption and large amounts of CO2 emissions have caused global energy crisis and climate change. The employment of semiconductor photocatalysts to convert CO2 into value-added products has attracted extensive attention and research worldwide in recent years. However, it is difficult for a single-component semiconductor photocatalyst to achieve this goal efficiently due to its drawbacks, such as low quantum efficiency, limited surface area, limited number of active sites, the short lifetime of photogenerated carriers, poor long-term stability, and the weak redox ability of carriers. Fortunately, inspired by photosynthesis, the construction of an artificial Z-scheme heterojunction has brought a new dawn for the realization of this goal. The Z-scheme heterojunction has a high separation efficiency of electron-hole pairs with strong redox ability and a wide light response range. The abovementioned advantages make the Z-scheme heterojunction provide a great opportunity for the conversion of CO2 to value-added chemicals. This review concisely reports the progress of the Z-scheme heterojunction in the field of photocatalytic CO2 reduction in recent years, photocatalytic mechanism, choice of oxidation and reduction systems, strategies for improving efficiency, confirmation of the Z-scheme charge transport mechanism, problems and challenges, and the prospects for the future.
Collapse
Affiliation(s)
- Guoqiang Zhang
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Wang
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Jinhu Wu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| |
Collapse
|
27
|
Chen X, Zhang Y, Kong X, Yao K, Liu L, Zhang J, Guo Z, Xu W, Fang Z, Liu Y. Photocatalytic Performance of the MOF-Coating Layer on SPR-Excited Ag Nanowires. ACS OMEGA 2021; 6:2882-2889. [PMID: 33553906 PMCID: PMC7860077 DOI: 10.1021/acsomega.0c05229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The photoactive metal-organic frameworks (MOFs) were controllably coated on the surface plasmon resonance-excited Ag nanowires in a layer manner to adjust the photocatalytic activity. The influence of the thickness of the MOF coating layer on the photocatalytic activity was investigated. A thicker MOF coating layer not only facilitated the photogenerated electron-hole separation efficiency but also provided a larger Brunauer-Emmett-Teller surface area, thus enhancing the photocatalytic activity. This work provided a new way to adjust the photocatalytic activity of the photoactive MOF.
Collapse
Affiliation(s)
- Xi Chen
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Yanshuang Zhang
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Xiangyun Kong
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Kun Yao
- Shenzhen
Zhongxing New Material Technology Company Ltd., Binhai 2nd Road 8, Dapeng New
District, Shenzhen 518000, People’s Republic of China
| | - Lingzhi Liu
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Renmin Street
5625, Changchun 130022, People’s Republic of China
| | - Jiali Zhang
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Zanru Guo
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Wenyuan Xu
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Zhili Fang
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Yongxin Liu
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| |
Collapse
|
28
|
Qi G, Wang J, Ma K, Zhang Y, Zhang J, Xu W, Jin Y. Label-Free Single-Particle Surface-Enhanced Raman Spectroscopy Detection of Phosphatidylserine Externalization on Cell Membranes with Multifunctional Micron-Nano Composite Probes. Anal Chem 2021; 93:2183-2190. [DOI: 10.1021/acs.analchem.0c04038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Jiafeng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jie Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
29
|
Niu XL, Wei L, Liu JC, Jia WH, Ma JP, Wang L, Wang JC, Dong YB. Syntheses and structures of three macrocyclic supramolecular complexes and one Zn II-containing coordination polymer generated from a semi-rigid multidentate N-containing ligand. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2021; 77:29-39. [PMID: 33397822 DOI: 10.1107/s2053229620016083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/10/2020] [Indexed: 11/10/2022]
Abstract
Semirigid organic ligands can adopt different conformations to construct coordination polymers with more diverse structures when compared to those constructed from rigid ligands. A new asymmetric semirigid organic ligand, 4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine (L), has been prepared and used to synthesize three bimetallic macrocyclic complexes and one coordination polymer, namely, bis(μ-4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine)bis[dichloridozinc(II)] dichloromethane disolvate, [Zn2Cl4(C12H10N6)2]·2CH2Cl2, (I), the analogous chloroform monosolvate, [Zn2Cl4(C12H10N6)2]·CHCl3, (II), bis(μ-4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine)bis[diiodidozinc(II)] dichloromethane disolvate, [Zn2I4(C12H10N6)2]·2CH2Cl2, (III), and catena-poly[[[diiodidozinc(II)]-μ-4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine] chloroform monosolvate], {[ZnI2(C12H10N6)]·CHCl3}n, (IV), by solution reaction with ZnX2 (X = Cl and I) in a CH2Cl2/CH3OH or CHCl3/CH3OH mixed solvent system at room temperature. Complex (I) is isomorphic with complex (III) and has a bimetallic ring possessing similar coordination environments for both of the ZnII cations. Although complex (II) also contains a bimetallic ring, the two ZnII cations have different coordination environments. Under the influence of the I- anion and guest CHCl3 molecule, complex (IV) displays a significantly different structure with respect to complexes (I)-(III). C-H...Cl and C-H...N hydrogen bonds, and π-π stacking or C-Cl...π interactions exist in complexes (I)-(IV), and these weak interactions play an important role in the three-dimensional structures of (I)-(IV) in the solid state. In addition, the fluorescence properties of L and complexes (I)-(IV) were investigated.
Collapse
Affiliation(s)
- Xiang Long Niu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Lin Wei
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, People's Republic of China
| | - Jian Cheng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Wan He Jia
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Jian Ping Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Lei Wang
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, People's Republic of China
| | - Jian Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Yu Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| |
Collapse
|
30
|
Liang C, Lu ZA, Wu J, Chen MX, Zhang Y, Zhang B, Gao GL, Li S, Xu P. Recent Advances in Plasmon-Promoted Organic Transformations Using Silver-Based Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54266-54284. [PMID: 33226767 DOI: 10.1021/acsami.0c15192] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plasmonics has emerged as a promising methodology to promote chemical reactions and has become a field of intense research effort. Ag nanoparticles (NPs) as plasmonic catalysts have been extensively studied because of their remarkable optical properties. This review analyzes the emergence and development of localized surface plasmon resonance (LSPR) in organic chemistry, mainly focusing on the discovery of novel reactions with new mechanisms on Ag NPs. Initially, the basics of LSPR and LSPR-promoted photocatalytic mechanisms are illustrated. Then, the recent advances in plasmonic nanosilver-mediated photocatalysis in organic transformations are highlighted with an emphasis on the related reaction mechanisms. Finally, a proper perspective on the remaining challenges and future directions in the field of LSPR-promoted organic transformations is proposed.
Collapse
Affiliation(s)
- Ce Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Zi-Ang Lu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Jie Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Meng-Xin Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Yuanyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Bin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Guo-Lin Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Siwei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| |
Collapse
|
31
|
Zhu H, Dong Y, Zhang P, Hu X, Zhang H, Zhao H, Wang E, Jin Y, Yang X. Silver transfer based plasmonic nanoprobe for highly sensitive detection of hydrogen sulfide. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Synthesis and magnetic property of a cobalt complex constructed by a linear Co–NNN–Co unit. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Tumor Microenvironment-Activated Degradable Multifunctional Nanoreactor for Synergistic Cancer Therapy and Glucose SERS Feedback. iScience 2020; 23:101274. [PMID: 32615471 PMCID: PMC7330608 DOI: 10.1016/j.isci.2020.101274] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/26/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Integration of disease diagnosis and therapy in vivo by nanotechnology is a challenge in the design of multifunctional nanocarriers. Herein, we report an intelligent and degradable nanoreactor, an assembly of the 4-mercaptobenzonitrile-decorated silver nanoparticles (AgNPs@MBN) and the glucose oxidase (GOx)-loaded metal-organic-framework (ZIF-8@GOx), which can be activated by tumor microenvironment to start the catalytic cascade-enhanced chemo-starvation synergistic therapy and simultaneous self-sense of cellular glucose level. Under the mild acidic microenvironment of tumor, the nanoreactor will collapse to release GOx that triggers a catalytic cascade reaction in vivo, depleting glucose, etching AgNPs@MBN, and producing toxic H2O2, Ag+, and Zn2+ ions, all of which work together to inhibit tumor growth. The AgNPs@MBN as SERS nanoprobe reads out glucose concentration noninvasively in tumor to achieve instant feedback of therapeutic progression. This work proposes a promising example of using enzyme-encapsulated biomineralized MOFs as an effective anticarcinogen for clinical applications. This nanoreactor integrates in vivo sensing and synergistic therapy capabilities The ZIF-8 nanocarrier protects GOx from deactivation and immune clearance The nanoreactor is biodegradable, avoiding the side effects on tumor-bearing mice Instant non-invasive glucose feedback capability realized by in vivo SERS
Collapse
|
34
|
Xu Y, Gao T, Liang Y, Xiao D. Intercalation Lithium Cobalt Oxide for the Facile Fabrication of a Sensitive Dopamine Sensor. ChemElectroChem 2020. [DOI: 10.1002/celc.202000099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yanxue Xu
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Taotao Gao
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Yaming Liang
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Dan Xiao
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| |
Collapse
|