1
|
Lee J, Christopher P. Does H 2 Temperature-Programmed Reduction Always Probe Solid-State Redox Chemistry? The Case of Pt/CeO 2. Angew Chem Int Ed Engl 2025; 64:e202414388. [PMID: 39380162 DOI: 10.1002/anie.202414388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024]
Abstract
Redox reactions on the surface of transition metal oxides are of broad interest in thermo, photo, and electrocatalysis. H2 temperature-programmed reduction (H2-TPR) is commonly used to probe oxide reducibility by measuring the rate of H2 consumption during temperature ramps, assuming that this rate is controlled by oxide reduction. However, oxide reduction involves several elementary steps, such as H2 dissociation and H-spillover, before surface reduction and H2O formation occur. In this study, we evaluated the kinetics of H2 consumption over CeO2 and Pt/CeO2 with varying Pt loadings and structures to identify the elementary steps probed by H2-TPR. Literature often attributes changes in H2-TPR characteristics with Pt addition to increased CeO2 reducibility. However, our analysis revealed that the H2 consumption rate is measurement of the rate of H-spillover at Pt-CeO2 interfaces and is determined by the concentration of Pt species on Pt nanoclusters that dissociate H2. Therefore, lower temperature H2 consumption observed with Pt addition does not indicate higher CeO2 reducibility. Measurements on samples with mixtures of Pt single-atoms and nanoclusters demonstrated that H2-TPR can effectively quantify dilute Pt nanocluster concentrations, suggesting caution in directly linking H2-TPR characteristics to oxide reducibility while highlighting alternative material insights that can be gleaned.
Collapse
Affiliation(s)
- Jaeha Lee
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5080, United States
- Department of Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5080, United States
| |
Collapse
|
2
|
Tang Y, Yan G, Zhang S, Li Y, Nguyen L, Iwasawa Y, Sakata T, Andolina C, Yang JC, Sautet P, Tao FF. Turning on Low-Temperature Catalytic Conversion of Biomass Derivatives through Teaming Pd 1 and Mo 1 Single-Atom Sites. J Am Chem Soc 2024; 146:32366-32382. [PMID: 39541949 DOI: 10.1021/jacs.4c07075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
On-purpose atomic scale design of catalytic sites, specifically active and selective at low temperature for a target reaction, is a key challenge. Here, we report teamed Pd1 and Mo1 single-atom sites that exhibit high activity and selectivity for anisole hydrodeoxygenation to benzene at low temperatures, 100-150 °C, where a Pd metal nanoparticle catalyst or a MoO3 nanoparticle catalyst is individually inactive. The catalysts built from Pd1 or Mo1 single-atom sites alone are much less effective, although the catalyst with Pd1 sites shows some activity but low selectivity. Similarly, less dispersed nanoparticle catalysts are much less effective. Computational studies show that the Pd1 and Mo1 single-atom sites activate H2 and anisole, respectively, and their combination triggers the hydrodeoxygenation of anisole in this low-temperature range. The Co3O4 support is inactive for anisole hydrodeoxygenation by itself but participates in the chemistry by transferring H atoms from Pd1 to the Mo1 site. This finding opens an avenue for designing catalysts active for a target reaction channel such as conversion of biomass derivatives at a low temperature where neither metal nor oxide nanoparticles are.
Collapse
Affiliation(s)
- Yu Tang
- Center for Environmental Beneficial Catalysis and Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - George Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Shiran Zhang
- Center for Environmental Beneficial Catalysis and Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yuting Li
- Center for Environmental Beneficial Catalysis and Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Luan Nguyen
- Center for Environmental Beneficial Catalysis and Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells and Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Tomohiro Sakata
- Innovation Research Center for Fuel Cells and Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Christopher Andolina
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Judith C Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Franklin Feng Tao
- Center for Environmental Beneficial Catalysis and Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
3
|
Lu Y, Lin F, Zhang Z, Thompson C, Zhu Y, Doudin N, Kovarik L, García Vargas CE, Jiang D, Fulton JL, Wu Y, Gao F, Dohnálek Z, Karim AM, Wang H, Wang Y. Enhancing Activity and Stability of Pd-on-TiO 2 Single-Atom Catalyst for Low-Temperature CO Oxidation through in Situ Local Environment Tailoring. J Am Chem Soc 2024. [PMID: 39344102 DOI: 10.1021/jacs.4c07861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The development of efficient Pd single-atom catalysts for CO oxidation, crucial for environmental protection and fundamental studies, has been hindered by their limited reactivity and thermal stability. Here, we report a thermally stable TiO2-supported Pd single-atom catalyst that exhibits enhanced intrinsic CO oxidation activity by tunning the local coordination of Pd atoms via H2 treatment. Our comprehensive characterization reveals that H2-treated Pd single atoms have reduced nearest Pd-O coordination and form short-distanced Pd-Ti coordination, effectively stabilizing Pd as isolated atoms even at high temperatures. During CO oxidation, partial replacement of the Pd-Ti coordination by O or CO occurs. This unique Pd local environment facilitates CO adsorption and promotes the activity of the surrounding oxygen species, leading to superior catalytic performance. Remarkably, the turnover frequency of the H2-treated Pd single-atom catalyst at 120 °C surpasses that of the O2-treated Pd single-atom catalyst and the most effective Pd/Pt single-atom catalysts by an order of magnitude. These findings open up new possibilities for the design of high-performance single-atom catalysts for crucial industrial and environmental applications.
Collapse
Affiliation(s)
- Yubing Lu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fan Lin
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zihao Zhang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Coogan Thompson
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Yifeng Zhu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nassar Doudin
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Carlos E García Vargas
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Dong Jiang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - John L Fulton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yiqing Wu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zdenek Dohnálek
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
4
|
Dong C, Wang Y, Deng Z, Wang W, Marinova M, Ben Tayeb K, Morin JC, Dubois M, Trentesaux M, Kolyagin YG, Tran MN, Martin-Diaconescu V, Safonova O, Zaffran J, Khodakov AY, Ordomsky VV. Photocatalytic dihydroxylation of light olefins to glycols by water. Nat Commun 2024; 15:8210. [PMID: 39294117 PMCID: PMC11410969 DOI: 10.1038/s41467-024-52461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
Aliphatic diols such as ethylene and propylene glycol are the key products in the chemical industry for manufacturing polymers. The synthesis of these molecules usually implies sequential processes, including epoxidation of olefins using hydrogen peroxide or oxygen with subsequent hydrolysis to glycols. Direct hydroxylation of olefins by cheap and green oxidants is an economically attractive and environmentally friendly route for the synthesis of diols. Here, we report a photocatalytic reaction for the dihydroxylation of ethylene and propylene to their glycols at room temperature using water as the oxidant. The photocatalyst contains Pd clusters stabilized by sub-nanometric polyoxometalate with TiO2 as the host material. Under light irradiation, it results in production rates of ethylene glycol and propylene glycols of 146.8 mmol·gPd-1·h-1 and 28.6 mmol·gPd-1·h-1 with liquid-phase selectivities of 63.3 % and 80.0 %, respectively. Meanwhile, green hydrogen derived from water is produced as another valuable product. Combined spectroscopy investigation suggests that the reaction proceeds via π-bonded adsorption of olefins over Pd clusters with hydroxylation by hydroxyl radicals formed by photocatalytic dissociation of water.
Collapse
Affiliation(s)
- Chunyang Dong
- UCCS-Unité de Catalyse et Chimie du Solide, Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, UMR, 8181, Lille, France
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yinghao Wang
- UCCS-Unité de Catalyse et Chimie du Solide, Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, UMR, 8181, Lille, France
| | - Ziqi Deng
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Wenchao Wang
- School of New Energy, Nanjing University of Science & Technology, Jiangyin, 214443, China
| | - Maya Marinova
- UMET-Institut Michel-Eugène Chevreul, Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR, 2638, Lille, France
| | - Karima Ben Tayeb
- Université de Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-, 59000, Lille, France
| | - Jean-Charles Morin
- UCCS-Unité de Catalyse et Chimie du Solide, Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, UMR, 8181, Lille, France
| | - Melanie Dubois
- UCCS-Unité de Catalyse et Chimie du Solide, Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, UMR, 8181, Lille, France
| | - Martine Trentesaux
- UCCS-Unité de Catalyse et Chimie du Solide, Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, UMR, 8181, Lille, France
| | - Yury G Kolyagin
- UCCS-Unité de Catalyse et Chimie du Solide, Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, UMR, 8181, Lille, France
| | - My Nghe Tran
- UCCS-Unité de Catalyse et Chimie du Solide, Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, UMR, 8181, Lille, France
| | - Vlad Martin-Diaconescu
- ALBA Synchrotron - CELLS, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès Barcelona, Spain
| | - Olga Safonova
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Jeremie Zaffran
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, China
| | - Andrei Y Khodakov
- UCCS-Unité de Catalyse et Chimie du Solide, Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, UMR, 8181, Lille, France.
| | - Vitaly V Ordomsky
- UCCS-Unité de Catalyse et Chimie du Solide, Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, UMR, 8181, Lille, France.
| |
Collapse
|
5
|
Wang W, Li S, Qiang Q, Wu K, Pan X, Su W, Cai J, Shen Z, Yang Y, Li C, Zhang T. Catalytic Refining Lignin-Derived Monomers: Seesaw Effect between Nanoparticle and Single-Atom Pt. Angew Chem Int Ed Engl 2024; 63:e202404683. [PMID: 38771068 DOI: 10.1002/anie.202404683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Pt automatically adsorbed on oxygen vacancy of TiO2 via an in situ interfacial redox reaction, resulting in atomically dispersion of Pt on TiO2. In the upgrading of lignin-derived 4-propylguaiacol, single-atom catalyst (SAC) Pt/TiO2-H achieved a conversion of 96.9 % and a demethoxylation selectivity of 93.3 % under 3 MPa H2 at 250 °C for 3 h, markedly different from the performance of nanoparticle counterpart that gave deep deoxygenation selectivity over 99.0 %. The high demethoxylation activity of SAC Pt/TiO2-H is mainly attributed to its weak hydrogen spillover capacity that suppressed the benzene ring hydrogenation and the deep deoxygenation. Additionally, SAC Pt/TiO2-H reduced the energy barrier of CAr-OCH3 bond cleavage and accordingly lowered the Gibbs free energy of the demethoxylation reaction. This facile method could fabricate single-atom Au, Pd, Ir, and Ru supported on TiO2-H, demonstrating the generality of this strategy for the establishment of a library of SACs. Moreover, SAC exhibited versatile capacity in demethoxylation of different lignin-derived monomers and high stability. This study showcases the superiority of atomically dispersed metal catalysts for selective demethoxylation reactions and proposes a renewable alternative to fossil-based 4-alkylphenols through upgrading of lignin-derived monomers.
Collapse
Affiliation(s)
- Weiyan Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P.R. China
| | - Shangjian Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P.R. China
| | - Qian Qiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R.China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Wu
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P.R. China
| | - Xiaoli Pan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R.China
| | - Wentao Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R.China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyang Cai
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P.R. China
| | - Zhigang Shen
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P.R. China
| | - Yunquan Yang
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P.R. China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R.China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R.China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
7
|
Chen Y, Rana R, Zhang Y, Hoffman AS, Huang Z, Yang B, Vila FD, Perez-Aguilar JE, Hong J, Li X, Zeng J, Chi M, Kronawitter CX, Wang H, Bare SR, Kulkarni AR, Gates BC. Dynamic structural evolution of MgO-supported palladium catalysts: from metal to metal oxide nanoparticles to surface then subsurface atomically dispersed cations. Chem Sci 2024; 15:6454-6464. [PMID: 38699272 PMCID: PMC11062082 DOI: 10.1039/d4sc00035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Supported noble metal catalysts, ubiquitous in chemical technology, often undergo dynamic transformations between reduced and oxidized states-which influence the metal nuclearities, oxidation states, and catalytic properties. In this investigation, we report the results of in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, and other physical characterization techniques, bolstered by density functional theory, to elucidate the structural transformations of a set of MgO-supported palladium catalysts under oxidative treatment conditions. As the calcination temperature increased, the as-synthesized supported metallic palladium nanoparticles underwent oxidation to form palladium oxides (at approximately 400 °C), which, at approximately 500 °C, were oxidatively fragmented to form mixtures of atomically dispersed palladium cations. The data indicate two distinct types of atomically dispersed species: palladium cations located at MgO steps and those embedded in the first subsurface layer of MgO. The former exhibit significantly higher (>500 times) catalytic activity for ethylene hydrogenation than the latter. The results pave the way for designing highly active and stable supported palladium hydrogenation catalysts with optimized metal utilization.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Rachita Rana
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Yizhi Zhang
- School of Materials Engineering, Purdue University West Lafayette Indiana 47907 USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Zhennan Huang
- Oak Ridge National Laboratory Oak Ridge Tennessee 37830 USA
| | - Bo Yang
- School of Materials Engineering, Purdue University West Lafayette Indiana 47907 USA
| | - Fernando D Vila
- Department of Physics, University of Washington Seattle Washington 98195 USA
| | - Jorge E Perez-Aguilar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Xu Li
- National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jie Zeng
- National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Miaofang Chi
- Oak Ridge National Laboratory Oak Ridge Tennessee 37830 USA
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University West Lafayette Indiana 47907 USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Ambarish R Kulkarni
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Bruce C Gates
- Department of Chemical Engineering, University of California Davis California 95616 USA
| |
Collapse
|
8
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
9
|
Robatjazi H, Battsengel T, Finzel J, Tieu P, Xu M, Hoffman AS, Qi J, Bare SR, Pan X, Chmelka BF, Halas NJ, Christopher P. Dynamic Behavior of Platinum Atoms and Clusters in the Native Oxide Layer of Aluminum Nanocrystals. ACS NANO 2024; 18:6638-6649. [PMID: 38350032 DOI: 10.1021/acsnano.3c12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Strong metal-support interactions (SMSIs) are well-known in the field of heterogeneous catalysis to induce the encapsulation of platinum (Pt) group metals by oxide supports through high temperature H2 reduction. However, demonstrations of SMSI overlayers have largely been limited to reducible oxides, such as TiO2 and Nb2O5. Here, we show that the amorphous native surface oxide of plasmonic aluminum nanocrystals (AlNCs) exhibits SMSI-induced encapsulation of Pt following reduction in H2 in a Pt structure dependent manner. Reductive treatment in H2 at 300 °C induces the formation of an AlOx SMSI overlayer on Pt clusters, leaving Pt single-atom sites (Ptiso) exposed available for catalysis. The remaining exposed Ptiso species possess a more uniform local coordination environment than has been observed on other forms of Al2O3, suggesting that the AlOx native oxide of AlNCs presents well-defined anchoring sites for individual Pt atoms. This observation extends our understanding of SMSIs by providing evidence that H2-induced encapsulation can occur for a wider variety of materials and should stimulate expanded studies of this effect to include nonreducible oxides with oxygen defects and the presence of disorder. It also suggests that the single-atom sites created in this manner, when combined with the plasmonic properties of the Al nanocrystal core, may allow for site-specific single-atom plasmonic photocatalysis, providing dynamic control over the light-driven reactivity in these systems.
Collapse
Affiliation(s)
- Hossein Robatjazi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Syzygy Plasmonics Inc., Houston, Texas 77054, United States
| | - Tsatsral Battsengel
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jordan Finzel
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Mingjie Xu
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ji Qi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
- Irvine Materials Research Institute (IMRI), University of California, Irvine, Irvine, California 92697, United States
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Naomi J Halas
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Li X, Cheng J, Hou H, Meira DM, Liu L. Reactant-Induced Structural Evolution of Pt Catalysts Confined in Zeolite. JACS AU 2024; 4:666-679. [PMID: 38425920 PMCID: PMC10900205 DOI: 10.1021/jacsau.3c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
Reactant-induced structural evolutions of heterogeneous metal catalysts are frequently observed in numerous catalytic systems, which can be associated with the formation or deactivation of active sites. In this work, we will show the structural transformation of subnanometer Pt clusters in pure-silica MFI zeolite structure in the presence of CO, O2, and/or H2O and the catalytic consequences of the Pt-zeolite materials derived from various treatment conditions. By applying the appropriate pretreatment under a reactant atmosphere, we can precisely modulate the size distribution of Pt species spanning from single Pt atoms to small Pt nanoparticles (1-5 nm) in the zeolite matrix, resulting in the desirably active and stable Pt species for CO oxidation. We also show the incorporation of Fe into the zeolite framework greatly promotes the stability of Pt species against undesired sintering under harsh conditions (up to 650 °C in the presence of CO, O2, and moisture).
Collapse
Affiliation(s)
- Xiaoyu Li
- Engineering
Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinling Cheng
- Engineering
Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaming Hou
- National
Energy Center for Coal to Clean Fuels, Synfuels
China Co., Ltd., Huairou
District, Beijing 101407, China
| | - Debora M. Meira
- CLS@APS
sector 20, Advanced Photon Source, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
- Canadian
Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Lichen Liu
- Engineering
Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Yu J, Zhang X, Jiang R, He W, Xu M, Xu X, Xiang Q, Yin C, Xiang Z, Ma C, Liu Y, Li X, Lu C. Iron-Based Catalysts with Oxygen Vacancies Obtained by Facile Pyrolysis for Selective Hydrogenation of Nitrobenzene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8603-8615. [PMID: 38332505 DOI: 10.1021/acsami.3c14353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The development of preparation strategies for iron-based catalysts with prominent catalytic activity, stability, and cost effectiveness is greatly significant for the field of catalytic hydrogenation but still remains challenging. Herein, a method for the preparation of iron-based catalysts by the simple pyrolysis of organometallic coordination polymers is described. The catalyst Fe@C-2 with sufficient oxygen vacancies obtained in specific coordination environment exhibited superior nitro hydrogenation performance, acid resistance, and reaction stability. Through solvent effect experiments, toxicity experiments, TPSR, and DFT calculations, it was determined that the superior activity of the catalyst was derived from the contribution of sufficient oxygen vacancies to hydrogen activation and the good adsorption ability of FeO on substrate molecules.
Collapse
Affiliation(s)
- Jiaxin Yu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Xiyuan Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Ruikun Jiang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Wei He
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Miaoqi Xu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Xiaotian Xu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Qiuyuan Xiang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Chunyu Yin
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Zhenli Xiang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Chaofan Ma
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Yi Liu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Chunshan Lu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| |
Collapse
|
12
|
Zang W, Lee J, Tieu P, Yan X, Graham GW, Tran IC, Wang P, Christopher P, Pan X. Distribution of Pt single atom coordination environments on anatase TiO 2 supports controls reactivity. Nat Commun 2024; 15:998. [PMID: 38307931 PMCID: PMC10837418 DOI: 10.1038/s41467-024-45367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2 supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2 are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.
Collapse
Affiliation(s)
- Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Jaeha Lee
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - George W Graham
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ich C Tran
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA
| | - Peikui Wang
- Department of Chemistry, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA.
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
14
|
Li Z, Guo Z, Wu X, Jiang X, Li H, Xu J, Yang K, Lin D. Few-Atomic Zero-Valent Palladium Ensembles for Efficient Reductive Dehydrogenation and Dehalogenation Catalysis. ACS NANO 2023; 17:22859-22871. [PMID: 37930274 DOI: 10.1021/acsnano.3c07724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Single-atom catalysts (SACs) offer immense potential in heterogeneous catalysis due to their maximized atomic utilization and high selectivity but suffer the problem of low reactivity in catalytic reductive reactions due to their high-valent state. Here, we demonstrate that supported palladium (Pd) ensembles consisting of a few zero-valent Pd atoms (Pd1+c-red/CN) exhibit exceptional reactivity in formic acid (FA) dehydrogenation and 4-chlorophenol (4-CP) dechlorination. The initial FA dehydrogenation and 4-CP dechlorination rates of Pd1+c-red/CN are 42-104 and 16-210 times higher than that of supported Pd SACs (Pd1-ox/CN), respectively. Experimental results and density functional theory (DFT) calculations reveal that optimal adsorption sites of Pd1+c-red/CN stimulate the formation of H*, which is indispensable for 4-CP dechlorination. Moreover, direct electron transfer from Pd atoms to FA with a high electron density on Pd1+c-red/CN also contributes to the rapid 4-CP dechlorination. The superior dehalogenation capability of Pd1+c-red/CN for organohalides of great environmental and health concerns suggested its immense application potential in environmental remediation. This work highlights the pivotal roles of the structure and valence state of Pd ensembles in catalytic reductive reactions and provides a strategy to broaden the application of Pd-based catalysts for dehydrogenation and dehalogenation.
Collapse
Affiliation(s)
- Zhenjie Li
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Zhongyuan Guo
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xunheng Jiang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
15
|
Lee J, Tieu P, Finzel J, Zang W, Yan X, Graham G, Pan X, Christopher P. How Pt Influences H 2 Reactions on High Surface-Area Pt/CeO 2 Powder Catalyst Surfaces. JACS AU 2023; 3:2299-2313. [PMID: 37654595 PMCID: PMC10466333 DOI: 10.1021/jacsau.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
The addition of platinum-group metals (PGMs, e.g., Pt) to CeO2 is used in heterogeneous catalysis to promote the rate of redox surface reactions. Well-defined model system studies have shown that PGMs facilitate H2 dissociation, H-spillover onto CeO2 surfaces, and CeO2 surface reduction. However, it remains unclear how the heterogeneous structures and interfaces that exist on powder catalysts influence the mechanistic picture of PGM-promoted H2 reactions on CeO2 surfaces developed from model system studies. Here, controlled catalyst synthesis, temperature-programmed reduction (TPR), in situ infrared spectroscopy (IR), and in situ electron energy loss spectroscopy (EELS) were used to interrogate the mechanisms of how Pt nanoclusters and single atoms influence H2 reactions on high-surface area Pt/CeO2 powder catalysts. TPR showed that Pt promotes H2 consumption rates on Pt/CeO2 even when Pt exists on a small fraction of CeO2 particles, suggesting that H-spillover proceeds far from Pt-CeO2 interfaces and across CeO2-CeO2 particle interfaces. IR and EELS measurements provided evidence that Pt changes the mechanism of H2 activation and the rate limiting step for Ce3+, oxygen vacancy, and water formation as compared to pure CeO2. As a result, higher-saturation surface hydroxyl coverages can be achieved on Pt/CeO2 compared to pure CeO2. Further, Ce3+ formed by spillover-H from Pt is heterogeneously distributed and localized at and around interparticle CeO2-CeO2 boundaries, while activated H2 on pure CeO2 results in homogeneously distributed Ce3+. Ce3+ localization at and around CeO2-CeO2 boundaries for Pt/CeO2 is accompanied by surface reconstruction that enables faster rates of H2 consumption. This study reconciles the materials gap between model structures and powder catalysts for H2 reactions with Pt/CeO2 and highlights how the spatial heterogeneity of powder catalysts dictates the influence of Pt on H2 reactions at CeO2 surfaces.
Collapse
Affiliation(s)
- Jaeha Lee
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Peter Tieu
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Jordan Finzel
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Wenjie Zang
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
| | - Xingxu Yan
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
| | - George Graham
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaoqing Pan
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California Irvine, Irvine, California 92697, United States
- Irvine
Materials Research Institute (IMRI), University
of California Irvine, Irvine, California 92697, United States
| | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
16
|
Tang P, Huang PY, Swallow JEN, Wang C, Gianolio D, Guo H, Warner JH, Weatherup RS, Pasta M. Structure-Property Relationship of Defect-Trapped Pt Single-Site Electrocatalysts for the Hydrogen Evolution Reaction. ACS Catal 2023; 13:9558-9566. [PMID: 37497376 PMCID: PMC10367054 DOI: 10.1021/acscatal.3c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Single-site catalysts (SSCs) have attracted significant research interest due to their high metal atom utilization. Platinum single sites trapped in the defects of carbon substrates (trapped Pt-SSCs) have been proposed as efficient and stable electrocatalysts for the hydrogen evolution reaction (HER). However, the correlation between Pt bonding environment, its evolution during operation, and catalytic activity is still unclear. Here, a trapped Pt-SSC is synthesized by pyrolysis of H2PtCl6 chemisorbed on a polyaniline substrate. In situ heated scanning transmission electron microscopy and temperature-dependent X-ray photoelectron spectroscopy clarify the thermally induced structural evolution of Pt during pyrolysis. The results show that the nitrogen in polyaniline coordinates with Pt ions and atomically disperses them before pyrolysis and traps Pt sites at pyridinic N defects generated during the substrate graphitization. Operando X-ray absorption spectroscopy confirms that the trapped Pt-SSC is stable at the HER working potentials but with inferior electrocatalytic activity compared with metallic Pt nanoparticles. First principle calculations suggest that the inferior activity of trapped Pt-SSCs is due to their unfavorable hydrogen chemisorption energy relative to metallic Pt(111) surfaces. These results further the understanding of the structure-property relationship in trapped Pt-SSCs and motivate a detailed techno-economic analysis to evaluate their commercial applicability.
Collapse
Affiliation(s)
- Peng Tang
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Po-Yuan Huang
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jack E. N. Swallow
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Chenbo Wang
- Oxford
Suzhou Centre for Advanced Research, 388 Ruoshui Road, Suzhou 215123, Jiangsu Province, P. R. China
| | - Diego Gianolio
- Diamond
Light Source Ltd., Harwell Science and Innovation
Campus, Chilton, Didcot, OX11 0DE, U.K.
| | - Hua Guo
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jamie H. Warner
- Materials
Graduate Program, Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas, 78712, United States
- Walker
Department of Mechanical Engineering, The
University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas, 78712, United States
| | - Robert S. Weatherup
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Mauro Pasta
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Oxford
Suzhou Centre for Advanced Research, 388 Ruoshui Road, Suzhou 215123, Jiangsu Province, P. R. China
| |
Collapse
|
17
|
Gao W, Liu S, Sun G, Zhang C, Pan Y. Single-Atom Catalysts for Hydrogen Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300956. [PMID: 36950768 DOI: 10.1002/smll.202300956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Selective hydrogenation is one of the most important reactions in fine chemical industry, and the activation of H2 is the key step for hydrogenation. Catalysts play a critical role in selective hydrogenation, and some single-atom catalysts (SACs) are highly capable of activating H2 in selective hydrogenation by virtue of the maximized atom utilization and the highly uniform active sites. Therefore, more research efforts are needed for the rational design of SACs with superior H2 -activating capabilities. Herein, the research progress on H2 activation in typical hydrogenation systems (such as alkyne hydrogenation, hydroformylation, hydrodechlorination, hydrodeoxygenation, nitroaromatics hydrogenation, and polycyclic aromatics hydrogenation) is reviewed, the mechanisms of SACs for H2 activation are summarized, and the structural regulation strategies for SACs are proposed to promote H2 activation and provide schemes for the design of high-selectivity hydrogenation catalysts from the atomic scale. At the end of this review, an outlook on the opportunities and challenges for SACs to be developed for selective hydrogenation is presented.
Collapse
Affiliation(s)
- Wenwen Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Shihuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| |
Collapse
|
18
|
Giulimondi V, Mitchell S, Pérez-Ramírez J. Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts. ACS Catal 2023; 13:2981-2997. [PMID: 36910873 PMCID: PMC9990067 DOI: 10.1021/acscatal.2c05992] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 02/16/2023]
Abstract
Controlling the electronic structure of transition-metal single-atom heterogeneous catalysts (SACs) is crucial to unlocking their full potential. The ability to do this with increasing precision offers a rational strategy to optimize processes associated with the adsorption and activation of reactive intermediates, charge transfer dynamics, and light absorption. While several methods have been proposed to alter the electronic characteristics of SACs, such as the oxidation state, band structure, orbital occupancy, and associated spin, the lack of a systematic approach to their application makes it difficult to control their effects. In this Perspective, we examine how the electronic configuration of SACs can be engineered for thermochemical, electrochemical, and photochemical applications, exploring the relationship with their activity, selectivity, and stability. We discuss synthetic and analytical challenges in controlling and discriminating the electronic structure of SACs and possible directions toward closing the gap between computational and experimental efforts. By bringing this topic to the center, we hope to stimulate research to understand, control, and exploit electronic effects in SACs and ultimately spur technological developments.
Collapse
Affiliation(s)
- Vera Giulimondi
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
19
|
Li G, Marinkovic N, Wang B, Komarneni MR, Resasco DE. Manipulating the Microenvironment of Surfactant-Encapsulated Pt Nanoparticles to Promote Activity and Selectivity. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gengnan Li
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Nebojsa Marinkovic
- Synchrotron Catalysis Consortium and Department of Chemical Engineering, Columbia University, New York, New York10027, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Mallikharjuna Rao Komarneni
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Daniel E. Resasco
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| |
Collapse
|
20
|
Chen X, Peng M, Xiao D, Liu H, Ma D. Fully Exposed Metal Clusters: Fabrication and Application in Alkane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
21
|
Differentiating supported platinum single atoms, clusters and nanoparticles by styrene hydrogenation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Cui B, Wang H, Han J, Ge Q, Zhu X. Crystal-phase-depended strong metal-support interactions enhancing hydrodeoxygenation of m-cresol on Ni/TiO2 catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Felvey N, Guo J, Rana R, Xu L, Bare SR, Gates BC, Katz A, Kulkarni AR, Runnebaum RC, Kronawitter CX. Interconversion of Atomically Dispersed Platinum Cations and Platinum Clusters in Zeolite ZSM-5 and Formation of Platinum gem-Dicarbonyls. J Am Chem Soc 2022; 144:13874-13887. [PMID: 35854402 DOI: 10.1021/jacs.2c05386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Catalysts composed of platinum dispersed on zeolite supports are widely applied in industry, and coking and sintering of platinum during operation under reactive conditions require their oxidative regeneration, with the platinum cycling between clusters and cations. The intermediate platinum species have remained only incompletely understood. Here, we report an experimental and theoretical investigation of the structure, bonding, and local environment of cationic platinum species in zeolite ZSM-5, which are key intermediates in this cycling. Upon exposure of platinum clusters to O2 at 700 °C, oxidative fragmentation occurs, and Pt2+ ions are stabilized at six-membered rings in the zeolite that contain paired aluminum sites. When exposed to CO under mild conditions, these Pt2+ ions form highly uniform platinum gem-dicarbonyls, which can be converted in H2 to Ptδ+ monocarbonyls. This conversion, which weakens the platinum-zeolite bonding, is a first step toward platinum migration and aggregation into clusters. X-ray absorption and infrared spectra provide evidence of the reductive and oxidative transformations in various gas environments. The chemistry is general, as shown by the observation of platinum gem-dicarbonyls in several commercially used zeolites (ZSM-5, Beta, mordenite, and Y).
Collapse
Affiliation(s)
- Noah Felvey
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Jiawei Guo
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Le Xu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Ambarish R Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ron C Runnebaum
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
24
|
Dong C, Gao Z, Li Y, Peng M, Wang M, Xu Y, Li C, Xu M, Deng Y, Qin X, Huang F, Wei X, Wang YG, Liu H, Zhou W, Ma D. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat Catal 2022. [DOI: 10.1038/s41929-022-00769-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Wang H, Zhao W, Rehman MU, Liu W, Xu Y, Huang H, Wang S, Zhao Y, Mei D, Ma X. Copper Phyllosilicate Nanotube Catalysts for the Chemosynthesis of Cyclohexane via Hydrodeoxygenation of Phenol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hui Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenru Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Mooeez Ur Rehman
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wei Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuxi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huijiang Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shengping Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Donghai Mei
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
26
|
Zhang Y, Zhao J, Fan G, Yang L, Li F. Robust MOF-derived carbon-supported bimetallic Ni-Co catalysts for aqueous phase hydrodeoxygenation of vanillin. Dalton Trans 2022; 51:2238-2249. [PMID: 35048094 DOI: 10.1039/d1dt03970a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, rapidly increasing consumption of fossil resources has propelled the upgrading of biomass as an alternative and sustainable technology to produce important chemicals and bio-oils. In this regard, the rational design of low-cost and robust supported metal-based catalysts that exhibit excellent catalytic hydrodeoxygenation (HDO) performance for the conversion of biomass is quite necessary. Herein, we developed hierarchical flower-like nitrogen-doped carbon layer-coated bimetallic Ni-Co nanoparticles, which were distributed over the carbonaceous matrix (NixCo@NC@C), via a metal-organic framework (MOF) ZIF-67 precursor approach, assisted by the etching of Ni2+ ions, hydrothermal treatment together with glucose, and following carbonization processes. The as-fabricated Ni3Co@NC@C catalyst bearing a 3 : 1 Ni/Co molar ratio showed a superior catalytic HDO activity towards aqueous phase HDO of vanillin to other bimetallic NiCo catalysts with different Ni/Co molar ratios under mild reaction conditions, along with a 100% selectivity to 2-methoxy-4-methylphenol at a full vanillin conversion, despite its smaller number of exposed metallic sites. It was revealed that over the Ni3Co@NC@C catalyst, the surface abundant defective oxygen vacancies and electron-rich Co0 species were conducive to the adsorption and activation of vanillin and the reaction intermediate, thereby giving rise to the outstanding catalytic activity. Moreover, for Ni3Co@NC@C, the adequate protection effect of surface carbon layers, as well as the unique hierarchical flower-like microstructure, could significantly inhibit the leaching of active metal species in the reaction medium, thereby leading to high structural stability. The present findings afford a promising strategy for constructing low-cost and robust carbon-supported bimetallic catalysts for the HDO of lignin-derived derivatives.
Collapse
Affiliation(s)
- Yunpeng Zhang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jingwen Zhao
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Guoli Fan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lan Yang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Feng Li
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
27
|
Lin F, Lu Y, Unocic KA, Habas SE, Griffin MB, Schaidle JA, Meyer HM, Wang Y, Wang H. Deactivation by Potassium Accumulation on a Pt/TiO2 Bifunctional Catalyst for Biomass Catalytic Fast Pyrolysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fan Lin
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yubing Lu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kinga A. Unocic
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Susan E. Habas
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael B. Griffin
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Joshua A. Schaidle
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Harry M. Meyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
28
|
Ning H, Chen Y, Wang Z, Mao S, Chen Z, Gong Y, Wang Y. Selective upgrading of biomass-derived benzylic ketones by (formic acid)–Pd/HPC–NH2 system with high efficiency under ambient conditions. Chem 2021. [DOI: 10.1016/j.chempr.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Zhang J, Duan F, Xie Y, Ning P, Zhao H, Shi Y. Encapsulated Ni Nanoparticles within Silicalite-1 Crystals for Upgrading Phenolic Compounds to Arenes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jimei Zhang
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Duan
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbing Xie
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Pengge Ning
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanchun Shi
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Liu S, Xu H, Liu D, Yu H, Zhang F, Zhang P, Zhang R, Liu W. Identify the Activity Origin of Pt Single-Atom Catalyst via Atom-by-Atom Counting. J Am Chem Soc 2021; 143:15243-15249. [PMID: 34495666 DOI: 10.1021/jacs.1c06381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Atom dispersion in metal supported catalysts is vital as it structurally accounts for their catalytic performances. Since practical catalysts normally present structural diversity, such as the coexistence of single atoms, clusters, and particles, traditional spectroscopy methods including chemisorption, titration, and X-ray absorption, however, provide only an averaged description about the atom dispersion but are not able to distinguish localized structural divergence. In this work, through developing a methodology of electron-microscopy-based atom recognition statistics (EMARS), catalyst dispersion has been redefined at atomic precision in real space via the statistically counting 18 000+ Pt atoms for a Pt/Al2O3 industrial reforming catalyst. The EMARS results combined with in situ microscopy evidence disclose that the activity for aromatics production quantitatively correlates with the density of Pt single-atoms, while Pt clusters contribute no direct activity but could kinetically transform into single-atoms when being heated under an oxidative atmosphere. Compared to EMARS, the traditional hydrogen-oxygen titration method is found to induce serious bias in the Pt dispersion in reference to actual activity. This distinctive capability of EMARS for metal dispersion quantification offers a possibility of directly identifying the catalysis roles of different metal species in a practical catalyst via atom-resolved statistics.
Collapse
Affiliation(s)
- Shuhui Liu
- Dalian Jiaotong University, 794 Huanghe Road, Dalian, Liaoning 116028, China
| | - Hua Xu
- China National Petroleum Corporation, Petrochemical Research Institute, 100007 Beijing, China
| | - Dongdong Liu
- Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Hao Yu
- China National Petroleum Corporation, Petrochemical Research Institute, 100007 Beijing, China
| | - Fan Zhang
- Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Peng Zhang
- China National Petroleum Corporation, Petrochemical Research Institute, 100007 Beijing, China
| | - Ruolin Zhang
- China National Petroleum Corporation, Petrochemical Research Institute, 100007 Beijing, China
| | - Wei Liu
- Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| |
Collapse
|
31
|
The Effect of Gold Nanoparticles on the Catalytic Activity of NiTiO3 for Hydrodeoxygenation of Guaiacol. Catalysts 2021. [DOI: 10.3390/catal11080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Guaiacol is a typical model compound used to investigate and understand the hydrodeoxygenation behaviour of bio-oils, which is critical to their application as an alternative to fossil resources. While extensive research has been carried out on developing catalysts for guaiacol hydrodeoxygenation, the true active sites in these catalysts are often illusive. This study investigated the effect of Au-loading on the catalytic activity of NiTiO3 for the hydrodeoxygenation of guaiacol. It showed that metallic Ni formed by the partial reduction in NiTiO3 was responsible for its catalytic activity. Au-loading in NiTiO3 effectively reduces the temperature required for the NiTiO3 reduction from 400 °C to 300 °C. Consequently, at an Au-loading of 0.86 wt%, the 0.86 Au/NiTiO3-300 °C catalyst was found to deliver a guaiacol conversion of ~32%, more than 6 times higher than that of the pure NiTiO3-300 °C catalyst.
Collapse
|
32
|
Zhao W, Li Y, Shen W. Tuning the shape and crystal phase of TiO 2 nanoparticles for catalysis. Chem Commun (Camb) 2021; 57:6838-6850. [PMID: 34137748 DOI: 10.1039/d1cc01523k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis of TiO2 nanoparticles with tunable shape and crystal phase has attracted considerable attention for the design of highly efficient heterogeneous catalysts. Tailoring the shape of TiO2, in the crystal phases of anatase, rutile, brookite and TiO2(B), allows tuning of the atomic configurations on the dominantly exposed facets for maximizing the active sites and regulating the reaction route towards a specific channel for achieving high selectivity. Moreover, the shape and crystal phase of TiO2 nanoparticles alter their interactions with metal species, which are commonly termed as strong metal-support interactions involving interfacial strain and charge transfer. On the other hand, metal particles, clusters and single atoms interact differently with TiO2, because of the variation of the electronic structure, while the surface of TiO2 determines the interfacial bonding via a geometric effect. The dynamic behavior of the metal-titania interfaces, driven by the chemisorption of the reactive molecules at elevated temperatures, also plays a decisive role in elaborating the structure-reactivity relationship.
Collapse
Affiliation(s)
- Wenning Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
33
|
Huang R, Kwon O, Lin C, Gorte RJ. The effects of SMSI on m-Cresol hydrodeoxygenation over Pt/Nb2O5 and Pt/TiO2. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Guo M, Kong X, Li C, Yang Q. Hydrogenation of benzoic acid derivatives over Pt/TiO 2 under mild conditions. Commun Chem 2021; 4:54. [PMID: 36697567 PMCID: PMC9814562 DOI: 10.1038/s42004-021-00489-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/09/2021] [Indexed: 01/28/2023] Open
Abstract
Hydrogenation of benzoic acid (BA) to cyclohexanecarboxylic acid (CCA) has important industrial and academic significance, however, the electron deficient aromatic ring and catalyst poisoning by carboxyl groups make BA hydrogenation a challenging transformation. Herein, we report that Pt/TiO2 is very effective for BA hydrogenation with, to our knowledge, a record TOF of 4490 h-1 at 80 °C and 50 bar H2, one order higher than previously reported results. Pt/TiO2 catalysts with electron-deficient and electron-enriched Pt sites are obtained by modifying the electron transfer direction between Pt and TiO2. Electron-deficient Pt sites interact with BA more strongly than electron-rich Pt sites, helping the dissociated H of the carboxyl group to participate in BA hydrogenation, thus enhancing its activity. The wide substrate scope, including bi- and tri-benzoic acids, further demonstrates the high efficiency of Pt/TiO2 for hydrogenation of BA derivatives.
Collapse
Affiliation(s)
- Miao Guo
- grid.9227.e0000000119573309State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiangtao Kong
- grid.459341.e0000 0004 1758 9923College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, China
| | - Chunzhi Li
- grid.9227.e0000000119573309State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Qihua Yang
- grid.9227.e0000000119573309State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
35
|
Abstract
The discussion concerning cooperativity in supported single-atom (SA) catalysis is often limited to the metal-support interaction, which is certainly important, but which is not the only lever for modifying the catalytic performance. Indeed, if the interaction between the SA and the support, which can be seen as a solid ligand presenting its own specificities that fix the first coordination sphere of the metal, plays a central role as in homogeneous catalysis, other factors can strongly contribute to modification of the activity, selectivity and stability of SAs. Therefore, in this mini-review, we briefly summarize the importance of the support (oxide, carbon or a second metal) in SA photo- electro- and thermal-catalysis (support-assisted operation), and concentrate on other types of cooperativities that in some cases enable previously impossible reaction pathways on supported metal SAs. This includes topics that are not specific to SA catalysis, such as metal-ligand or heterobimetallic cooperativity, and cooperativity which is SA-specific such as nanoparticle-SA or mixed-valence SA cooperativity.
Collapse
Affiliation(s)
- Philippe Serp
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France.
| |
Collapse
|
36
|
Liu L, Corma A. Structural transformations of solid electrocatalysts and photocatalysts. Nat Rev Chem 2021; 5:256-276. [PMID: 37117283 DOI: 10.1038/s41570-021-00255-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/13/2023]
Abstract
Heterogeneous catalysts often undergo structural transformations when they operate under thermal reaction conditions. These transformations are reflected in their evolving catalytic activity, and a fundamental understanding of the changing nature of active sites is vital for the rational design of solid materials for applications. Beyond thermal catalysis, both photocatalysis and electrocatalysis are topical because they can harness renewable energy to drive uphill reactions that afford commodity chemicals and fuels. Although structural transformations of photocatalysts and electrocatalysts have been observed in operando, the resulting implications for catalytic behaviour are not fully understood. In this Review, we summarize and compare the structural evolution of solid thermal catalysts, electrocatalysts and photocatalysts. We suggest that well-established knowledge of thermal catalysis offers a good basis to understand emerging photocatalysis and electrocatalysis research.
Collapse
|
37
|
Mirhosseyni MS, Nemati F. Fe/N co-doped mesoporous carbon derived from cellulose-based ionic liquid as an efficient heterogeneous catalyst toward nitro aromatic compound reduction reaction. Int J Biol Macromol 2021; 175:432-442. [PMID: 33549670 DOI: 10.1016/j.ijbiomac.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
Iron and nitrogen-doped carbon substances with abundant active sites that related to dispersion of heteroatom species (Fe and N) on the surface of carbonous structure, are promising choice for eco-friendly catalytic reactions. Herein, cellulose-based ionic liquid (IL) derivative not only employed as the both nitrogen and iron heteroatom precursors, but also has been used as the green and biodegradable substrate. The non-noble Fe-NC@550, was successfully fabricated by convenient carbonization of cellulose-based IL. Further, the FeCl4- anion was used as the iron precursor and also it has been applied to elevate the SSA (specific surface area) of catalyst (from 40.96 to 160.42 m2/g) due to the presence of chlorine. On the basis of several pertinent physicochemical and experimental outcomes, the structure of the catalyst was successfully proved in different synthetic steps. As expected, the Fe-NC@550 exhibited the substantial efficiency toward hydrogenation of nitroarenes with high TOF value and also remarkable reusability.
Collapse
Affiliation(s)
| | - Firouzeh Nemati
- Department of Chemistry, Semnan University, Semnan 35131-19111, Iran.
| |
Collapse
|
38
|
Rivera-Cárcamo C, Gerber IC, del Rosal I, Guicheret B, Castro Contreras R, Vanoye L, Favre-Réguillon A, Machado BF, Audevard J, de Bellefon C, Philippe R, Serp P. Control of the single atom/nanoparticle ratio in Pd/C catalysts to optimize the cooperative hydrogenation of alkenes. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01938k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Control of the single atom/nanoparticle ratio allows preparation of highly active Pd/C hydrogenation catalysts integrating the ultra-rational use of Pd.
Collapse
Affiliation(s)
| | | | | | - B. Guicheret
- LGPC
- Université de Lyon
- UMR 5285 CNRS
- CPE Lyon
- Université Claude Bernard Lyon
| | | | - L. Vanoye
- LGPC
- Université de Lyon
- UMR 5285 CNRS
- CPE Lyon
- Université Claude Bernard Lyon
| | - A. Favre-Réguillon
- LGPC
- Université de Lyon
- UMR 5285 CNRS
- CPE Lyon
- Université Claude Bernard Lyon
| | - B. F. Machado
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM)
- University of Porto
- 4200-465 Porto
- Portugal
| | - J. Audevard
- LCC-CNRS
- Université de Toulouse
- UPR 8241 CNRS
- INPT
- Toulouse
| | - C. de Bellefon
- LGPC
- Université de Lyon
- UMR 5285 CNRS
- CPE Lyon
- Université Claude Bernard Lyon
| | - R. Philippe
- LGPC
- Université de Lyon
- UMR 5285 CNRS
- CPE Lyon
- Université Claude Bernard Lyon
| | - P. Serp
- LCC-CNRS
- Université de Toulouse
- UPR 8241 CNRS
- INPT
- Toulouse
| |
Collapse
|
39
|
Resasco J, Christopher P. Atomically Dispersed Pt-group Catalysts: Reactivity, Uniformity, Structural Evolution, and Paths to Increased Functionality. J Phys Chem Lett 2020; 11:10114-10123. [PMID: 33191757 DOI: 10.1021/acs.jpclett.0c02904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of experimental and computational tools that give accurate and visual active site descriptions has renewed research interest in atomically dispersed metal catalysts. In this perspective, we describe our approach to synthesizing and understanding atomically dispersed Pt-group metals on oxide supports. Using site-specific characterization, we show that these metal species have distinct reactivity from metal clusters. We argue that producing materials where all metal sites have identical local coordination is key to both accurately assessing catalytic properties and achieving single-site behavior. Methods for assessing site uniformity are considered. We show that producing uniform metal species allows us to describe their structure at the atomic scale and understand how this structure evolves under different conditions. Finally, we suggest pathways to increased functionality for atomically dispersed catalysts, through control of their local coordination and steric environment and through cooperativity with different sites.
Collapse
Affiliation(s)
- Joaquin Resasco
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
40
|
Calorimetric metal vapor adsorption energies for characterizing industrial catalyst support materials. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Shivhare A, Hunns JA, Durndell LJ, Parlett CMA, Isaacs MA, Lee AF, Wilson K. Metal-Acid Synergy: Hydrodeoxygenation of Anisole over Pt/Al-SBA-15. CHEMSUSCHEM 2020; 13:4945-4953. [PMID: 32449298 DOI: 10.1002/cssc.202000764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Hydrodeoxygenation (HDO) is a promising technology to upgrade fast pyrolysis bio-oils but it requires active and selective catalysts. Here we explore the synergy between the metal and acid sites in the HDO of anisole, a model pyrolysis bio-oil compound, over mono- and bi-functional Pt/(Al)-SBA-15 catalysts. Ring hydrogenation of anisole to methoxycyclohexane occurs over metal sites and is structure sensitive; it is favored over small (4 nm) Pt nanoparticles, which confer a turnover frequency (TOF) of approximately 2000 h-1 and a methoxycyclohexane selectivity of approximately 90 % at 200 °C and 20 bar H2 ; in contrast, the formation of benzene and the desired cyclohexane product appears to be structure insensitive. The introduction of acidity to the SBA-15 support promotes the demethyoxylation of the methoxycyclohexane intermediate, which increases the selectivity to cyclohexane from 15 to 92 % and the cyclohexane productivity by two orders of magnitude (from 15 to 6500 mmol gPt -1 h-1 ). Optimization of the metal-acid synergy confers an 865-fold increase in the cyclohexane production per gram of Pt and a 28-fold reduction in precious metal loading. These findings demonstrate that tuning the metal-acid synergy provides a strategy to direct complex catalytic reaction networks and minimize precious metal use in the production of bio-fuels.
Collapse
Affiliation(s)
- Atal Shivhare
- European Bioenergy Research Institute, Aston University, Birmingham, B4 7ET, UK
| | - James A Hunns
- European Bioenergy Research Institute, Aston University, Birmingham, B4 7ET, UK
| | - Lee J Durndell
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Christopher M A Parlett
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester, M13 9PL, UK
- University of Manchester at Harwell, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Spectroscopy Village, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Mark A Isaacs
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Laboratories, Didcot, OX11 0FA, UK
| | - Adam F Lee
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Karen Wilson
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
42
|
Dong C, Li Y, Cheng D, Zhang M, Liu J, Wang YG, Xiao D, Ma D. Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02818] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chunyang Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Yinlong Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Danyang Cheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Mengtao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing 101400, China
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| |
Collapse
|
43
|
Yun R, Zhan F, Li N, Zhang B, Ma W, Hong L, Sheng T, Du L, Zheng B, Liu S. Fe Single Atoms and Fe 2O 3 Clusters Liberated from N-Doped Polyhedral Carbon for Chemoselective Hydrogenation under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34122-34129. [PMID: 32631045 DOI: 10.1021/acsami.0c09124] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the area of catalysis, selective reduction of nitro compounds to amino compounds is a colossal challenge due to the existence of competitive reducible functional groups. Herein, an Fe-based catalyst FeSAs/Fe2O3ACs/N-doped polyhedral carbon (NPC) has been designed and synthesized. As we expected, compared with FeSAs and FeNPs, FeSAs/Fe2O3ACs/NPC shows excellent catalytic performance (turnover frequency up to 1923 h-1, calculated with nitrobenzene), chemoselectivity, and tolerance during the hydrogenation reaction of nitro compounds under room temperature because of the synergistic effects between FeSAs and Fe2O3ACs. The theoretical calculations show that FeSAs prefers to undergo hydrazine decomposition to generate hydrogen and the Fe2O3ACs surface is more active toward the nitrobenzene reduction to aniline.
Collapse
Affiliation(s)
- Ruirui Yun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Feiyang Zhan
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Na Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Beibei Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Wanjiao Ma
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Lirui Hong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Tian Sheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Liting Du
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Baishu Zheng
- Key Laboratory of Theoretical Chemistry and Molecular Simulation, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Shoujie Liu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| |
Collapse
|
44
|
Bi Q, Yuan X, Lu Y, Wang D, Huang J, Si R, Sui M, Huang F. One-Step High-Temperature-Synthesized Single-Atom Platinum Catalyst for Efficient Selective Hydrogenation. RESEARCH 2020; 2020:9140841. [PMID: 32426729 PMCID: PMC7206892 DOI: 10.34133/2020/9140841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/22/2020] [Indexed: 12/27/2022]
Abstract
Although single-atom catalysts significantly improve the atom utilization efficiency, the multistep preparation procedures are complicated and difficult to control. Herein, we demonstrate that one-step in situ synthesis of the single-atom Pt anchored in single-crystal MoC (Pt1/MoC) by using facile and controllable arc-discharge strategy under extreme conditions. The high temperature (up to 4000°C) provides the sufficient energy for atom dispersion and overall stability by forming thermodynamically favourable metal-support interactions. The high-temperature-stabilized Pt1/MoC exhibits outstanding performance and excellent thermal stability as durable catalyst for selective quinoline hydrogenation. The initial turnover frequency of 3710 h-1 is greater than those of previously reported samples by an order of magnitude under 2 MPa H2 at 100°C. The catalyst also shows broad scope activity toward hydrogenation containing unsaturated groups of C=C, C=N, and C=O. The facile, one-step, and fast arc-discharge method provides an effective avenue for single-atom catalyst fabrication that is conventionally challenging.
Collapse
Affiliation(s)
- Qingyuan Bi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaotao Yuan
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yue Lu
- Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Dong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jian Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Manling Sui
- Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|