1
|
Li J, Yu X, Shu D, Liu H, Gu M, Zhang K, Mao G, Yang S, Yang R. Accelerated Activity-Based Sensing by Fluorogenic Reporter Engineering Enables to Rapidly Determine Unstable Analyte. Anal Chem 2024; 96:7723-7729. [PMID: 38695281 DOI: 10.1021/acs.analchem.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Accurate detection of labile analytes through activity based fluorogenic sensing is meaningful but remains a challenge because of nonrapid reaction kinetic. Herein, we present a signaling reporter engineering strategy to accelerate azoreduction reaction by positively charged fluorophore promoted unstable anion recognition for rapidly sensing sodium dithionite (Na2S2O4), a kind of widespread used but harmful inorganic reducing agent. Its quick decomposition often impedes application reliability of traditional fluorogenic probes in real samples because of their slow responses. In this work, four azo-based probes with different charged fluorophores (positive, zwitterionic, neutral, and negative) were synthesized and compared. Among of them, with sequestration effect of positively charged anthocyanin fluorophore for dithionite anion via electrostatic attraction, the cationic probe Azo-Pos displayed ultrafast fluorogenic response (∼2 s) with the fastest response kinetic (kpos' = 0.373 s-1) that is better than other charged ones (kzwi' = 0.031 s-1, kneu' = 0.013 s-1, kneg' = 0.003 s-1). Azo-Pos was demonstrated to be capable to directly detect labile Na2S2O4 in food samples and visualize the presence of Na2S2O4 in living systems in a timely fashion. This new probe has potential as a robust tool to fluorescently monitor excessive food additives and biological invasion of harmful Na2S2O4. Moreover, our proposed accelerating strategy would be versatile to develop more activity-based sensing probes for quickly detecting other unstable analytes of interest.
Collapse
Affiliation(s)
- Jingjing Li
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Xizi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Dunji Shu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Huihong Liu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Maoxin Gu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Kai Zhang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, P. R. China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Sheng Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Ronghua Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
2
|
Gao M, Deng H, Zhang Y, Wang H, Liu R, Hou W, Zhang W. Hyaluronan nanogel co-loaded with chloroquine to enhance intracellular cisplatin delivery through lysosomal permeabilization and lysophagy inhibition. Carbohydr Polym 2024; 323:121415. [PMID: 37940248 DOI: 10.1016/j.carbpol.2023.121415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 11/10/2023]
Abstract
Hyaluronan (HA) has been widely used to construct nanocarriers for cancer-targeted drug delivery, due to its excellent biocompatibility and intrinsic affinity towards CD44 that is overexpressed in most cancer types. However, the HA-based nanocarriers are prone to trapping in lysosomes following the HA-mediated endocytosis, which limited the delivered drug to access its pharmacological action sites and subsequently compromised the therapeutic efficacy. To overcome this intracellular obstacle, here we demonstrated the co-loading of chloroquine (CQ) in HA nanogel could efficiently promote the intracellular delivery of cisplatin. The cisplatin coordination with HA generated the nanogel that could also co-encapsulate CQ (HA/Cis/CQ nanogel). Compared with cisplatin-loaded HA nanogel (HA/Cis), HA/Cis/CQ significantly promoted the lysosomal escape of cisplatin as well as enhanced tumor inhibition in the triple-negative breast cancer model. Mechanism studies suggested that co-delivery of CQ not only induced the lysosomal membrane permeabilization but also inhibited the lysophagy, which collectively contributed to the lysosomal instability and cisplatin escape. This HA/Cis/CQ nanogel elicited less toxicity compared with the combination of free Cis and CQ, thus suggesting a promising HA nanocarrier to boost the cisplatin delivery towards cancer-targeted therapy.
Collapse
Affiliation(s)
- Menghan Gao
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Huimin Wang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Runmeng Liu
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Wei Hou
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Weiqi Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
3
|
Fogel M, Koide K. Recent Progress on One-Pot Multisubstrate Screening. Org Process Res Dev 2023; 27:1235-1247. [PMID: 37529075 PMCID: PMC10389808 DOI: 10.1021/acs.oprd.3c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 08/03/2023]
Abstract
Traditionally, new synthetic reactions have been developed using a model substrate to screen reaction conditions before testing the optimized conditions with a range of more complex substrates. In 1998, Gao and Kagan pooled multiple substrates in one pot to study the generality of an enantioselective method. Although such one-pot multisubstrate screenings may be powerful, few applications have appeared in the literature. With the advancement of various chromatography techniques, it may be time to revisit this underutilized platform. This review article discusses the applications of one-pot multisubstrate screenings as a method for developing new synthetic methods.
Collapse
|
4
|
Yu W, Chen Y, Putluri N, Osman A, Coarfa C, Putluri V, Kamal AHM, Asmussen JK, Katsonis P, Myers JN, Lai SY, Lu W, Stephan CC, Powell RT, Johnson FM, Skinner HD, Kazi J, Ahmed KM, Hu L, Threet A, Meyer MD, Bankson JA, Wang T, Davis J, Parker KR, Harris MA, Baek ML, Echeverria GV, Qi X, Wang J, Frederick AI, Walsh AJ, Lichtarge O, Frederick MJ, Sandulache VC. Evolution of cisplatin resistance through coordinated metabolic reprogramming of the cellular reductive state. Br J Cancer 2023; 128:2013-2024. [PMID: 37012319 PMCID: PMC10205814 DOI: 10.1038/s41416-023-02253-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Cisplatin (CDDP) is a mainstay treatment for advanced head and neck squamous cell carcinomas (HNSCC) despite a high frequency of innate and acquired resistance. We hypothesised that tumours acquire CDDP resistance through an enhanced reductive state dependent on metabolic rewiring. METHODS To validate this model and understand how an adaptive metabolic programme might be imprinted, we performed an integrated analysis of CDDP-resistant HNSCC clones from multiple genomic backgrounds by whole-exome sequencing, RNA-seq, mass spectrometry, steady state and flux metabolomics. RESULTS Inactivating KEAP1 mutations or reductions in KEAP1 RNA correlated with Nrf2 activation in CDDP-resistant cells, which functionally contributed to resistance. Proteomics identified elevation of downstream Nrf2 targets and the enrichment of enzymes involved in generation of biomass and reducing equivalents, metabolism of glucose, glutathione, NAD(P), and oxoacids. This was accompanied by biochemical and metabolic evidence of an enhanced reductive state dependent on coordinated glucose and glutamine catabolism, associated with reduced energy production and proliferation, despite normal mitochondrial structure and function. CONCLUSIONS Our analysis identified coordinated metabolic changes associated with CDDP resistance that may provide new therapeutic avenues through targeting of these convergent pathways.
Collapse
Affiliation(s)
- Wangie Yu
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Yunyun Chen
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Abdullah Osman
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Advanced Technology core, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Abu H M Kamal
- Advanced Technology core, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer Kay Asmussen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Y Lai
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wuhao Lu
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Clifford C Stephan
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Reid T Powell
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Faye M Johnson
- Department of Thoracic Head and Neck Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heath D Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jawad Kazi
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Kazi Mokim Ahmed
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Linghao Hu
- Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Addison Threet
- Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tony Wang
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Jack Davis
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Kirby R Parker
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Madison A Harris
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Mokryun L Baek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Gloria V Echeverria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoli Qi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jin Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Andy I Frederick
- School of Electrical and Computer Engineering Undergraduate Department, Cornell University, NY, USA
| | - Alex J Walsh
- Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Mitchell J Frederick
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Vlad C Sandulache
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.
| |
Collapse
|
5
|
Dal Forno GM, Latocheski E, Beatriz Machado A, Becher J, Dunsmore L, St John AL, Oliveira BL, Navo CD, Jiménez-Osés G, Fior R, Domingos JB, Bernardes GJL. Expanding Transition Metal-Mediated Bioorthogonal Decaging to Include C-C Bond Cleavage Reactions. J Am Chem Soc 2023; 145:10790-10799. [PMID: 37133984 DOI: 10.1021/jacs.3c01960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ability to control the activation of prodrugs by transition metals has been shown to have great potential for controlled drug release in cancer cells. However, the strategies developed so far promote the cleavage of C-O or C-N bonds, which limits the scope of drugs to only those that present amino or hydroxyl groups. Here, we report the decaging of an ortho-quinone prodrug, a propargylated β-lapachone derivative, through a palladium-mediated C-C bond cleavage. The reaction's kinetic and mechanistic behavior was studied under biological conditions along with computer modeling. The results indicate that palladium (II) is the active species for the depropargylation reaction, activating the triple bond for nucleophilic attack by a water molecule before the C-C bond cleavage takes place. Palladium iodide nanoparticles were found to efficiently trigger the C-C bond cleavage reaction under biocompatible conditions. In drug activation assays in cells, the protected analogue of β-lapachone was activated by nontoxic amounts of nanoparticles, which restored drug toxicity. The palladium-mediated ortho-quinone prodrug activation was further demonstrated in zebrafish tumor xenografts, which resulted in a significant anti-tumoral effect. This work expands the transition-metal-mediated bioorthogonal decaging toolbox to include cleavage of C-C bonds and payloads that were previously not accessible by conventional strategies.
Collapse
Affiliation(s)
- Gean M Dal Forno
- Department of Chemistry, Federal University of Santa Catarina─UFSC, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Eloah Latocheski
- Department of Chemistry, Federal University of Santa Catarina─UFSC, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Ana Beatriz Machado
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Av. Brasilia, Lisboa 1400-038, Portugal
| | - Julie Becher
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Lavinia Dunsmore
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Albert L St John
- Department of Chemistry, Federal University of Santa Catarina─UFSC, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Bruno L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - Rita Fior
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Av. Brasilia, Lisboa 1400-038, Portugal
| | - Josiel B Domingos
- Department of Chemistry, Federal University of Santa Catarina─UFSC, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal
| |
Collapse
|
6
|
Li J, Liu B, Liu L, Luo Y, Zeng F, Qin C, Liang C, Huang C, Yao S. Pretreatment of poplar with eco-friendly levulinic acid to achieve efficient utilization of biomass. BIORESOURCE TECHNOLOGY 2023; 376:128855. [PMID: 36898555 DOI: 10.1016/j.biortech.2023.128855] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Organic acid pretreatment is an effective method for green separation of lignocellulosic biomass. However, repolymerization of lignin seriously affects the dissolution of hemicellulose and the conversion of cellulose during organic acid pretreatment. Therefore, a new organic acid pretreatment, levulinic acid (Lev) pretreatment, was studied for the deconstruction of lignocellulosic biomass without adding additional additives. The preferred separation of hemicellulose was realized at Lev concentration 7.0%, temperature 170 °C, and time 100 min. The separation of hemicellulose increased from 58.38% to 82.05% compared with acetic acid pretreatment. It was found that the repolymerization of lignin was effectively inhibited in the efficient separation of hemicellulose. This was attributed to the fact that γ-valerolactone (GVL) is a good green scavenger of lignin fragments. The lignin fragments in the hydrolysate were effectively dissolved. The results provided theoretical support for creating green and efficient organic acid pretreatment and effectively inhibiting lignin repolymerization.
Collapse
Affiliation(s)
- Jiao Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yadan Luo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fanyan Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
7
|
Osman AA, Arslan E, Bartels M, Michikawa C, Lindemann A, Tomczak K, Yu W, Sandulache V, Ma W, Shen L, Wang J, Singh AK, Frederick MJ, Spencer ND, Kovacs J, Heffernan T, Symmans WF, Rai K, Myers JN. Dysregulation and Epigenetic Reprogramming of NRF2 Signaling Axis Promote Acquisition of Cisplatin Resistance and Metastasis in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2023; 29:1344-1359. [PMID: 36689560 PMCID: PMC10068451 DOI: 10.1158/1078-0432.ccr-22-2747] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE Cisplatin (CDDP)-based chemotherapy is a first-line treatment for patients with advanced head and neck squamous cell carcinomas (HNSCC), despite a high rate of treatment failures, acquired resistance, and subsequent aggressive behavior. The purpose of this study was to study the mechanism of CDDP resistance and metastasis in HNSCC. We investigated the role of NRF2 pathway activation as a driven event for tumor progression and metastasis of HNSCC. EXPERIMENTAL DESIGN Human HNSCC cell lines that are highly resistant to CDDP were generated. Clonogenic survival assays and a mouse model of oral cancer were used to examine the impact of NRF2 activation in vitro and in vivo on CDDP sensitivity and development of metastasis. Western blotting, immunostaining, whole-exome sequencing, single-cell transcriptomic and epigenomic profiling platforms were performed to dissect clonal evolution and molecular mechanisms. RESULTS Implantation of CDDP-resistant HNSCC cells into the tongues of nude mice resulted in a very high rate of distant metastases. The CDDP-resistant cells had significantly higher expression of NRF2 pathway genes in the presence of newly acquired KEAP1 mutations, or via epigenomic activation of target genes. Knockdown of NRF2 or restoration of the wild-type KEAP1 genes resensitized resistant cells to CDDP and decreased distant metastasis (DM). Finally, treatment with inhibitor of glutaminase-1, a NRF2 target gene, alleviated CDDP resistance. CONCLUSIONS CDDP resistance and development of DM are associated with dysregulated and epigenetically reprogrammed KEAP1-NRF2 signaling pathway. A strategy targeting KEAP1/NRF2 pathway or glutamine metabolism deserves further clinical investigation in patients with CDDP-resistant head and neck tumors.
Collapse
Affiliation(s)
- Abdullah A. Osman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emre Arslan
- Department of Genomic Medicine and MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mason Bartels
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chieko Michikawa
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Antje Lindemann
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katarzyna Tomczak
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wangjie Yu
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Vlad Sandulache
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anand K. Singh
- Department of Genomic Medicine and MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mitchell J. Frederick
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Nakia D. Spencer
- TRACTION Platform, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Jeffery Kovacs
- TRACTION Platform, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Timothy Heffernan
- TRACTION Platform, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - William F. Symmans
- Department of Pathology, Division of Pathology and Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kunal Rai
- Department of Genomic Medicine and MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
East AK, Lee MC, Jiang C, Sikander Q, Chan J. Biomimetic Approach to Promote Cellular Uptake and Enhance Photoacoustic Properties of Tumor-Seeking Dyes. J Am Chem Soc 2023; 145:7313-7322. [PMID: 36973171 PMCID: PMC10120057 DOI: 10.1021/jacs.2c13489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The attachment of glucose to drugs and imaging agents enables cancer cell targeting via interactions with GLUT1 overexpressed on the cell surface. While an added benefit of this modification is the solubilizing effect of carbohydrates, in the context of imaging agents, aqueous solubility does not guarantee decreased π-stacking or aggregation. The resulting broadening of the absorbance spectrum is a detriment to photoacoustic (PA) imaging since the signal intensity, accuracy, and image quality all rely on reliable spectral unmixing. To address this major limitation and further enhance the tumor-targeting ability of imaging agents, we have taken a biomimetic approach to design a multivalent glucose moiety (mvGlu). We showcase the utility of this new group by developing aza-BODIPY-based contrast agents boasting a significant PA signal enhancement greater than 11-fold after spectral unmixing. Moreover, when applied to targeting cancer cells, effective staining could be achieved with ultra-low dye concentrations (50 nM) and compared to a non-targeted analogue, the signal intensity was >1000-fold higher. Lastly, we employed the mvGlu technology to develop a logic-gated acoustogenic probe to detect intratumoral copper (i.e., Cu(I)), which is an emerging cancer biomarker, in a murine model of breast cancer. This exciting application was not possible using other acoustogenic probes previously developed for copper sensing.
Collapse
Affiliation(s)
- Amanda K East
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael C Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chang Jiang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Qasim Sikander
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Peng M, Zhu J, Luo Y, Li T, Xia X, Qin C, Liang C, Bian H, Yao S. Enhancement of separation selectivity of hemicellulose from bamboo using freeze-thaw-assisted p-toluenesulfonic acid treatment at low acid concentration and high temperature. BIORESOURCE TECHNOLOGY 2022; 363:127879. [PMID: 36058537 DOI: 10.1016/j.biortech.2022.127879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The cellulose-rich residual solids are obtained with p-toluenesulfonic acid (p-TsOH) treatment. However, better fractionation of hemicellulose and separation is difficult to obtain during treatment. This study aims at investigating the separation selectivity of bamboo hemicellulose using freeze-thaw-assisted p-TsOH (F/p-TsOH) treatment. The desired separation effect was achieved at freezing temperature -40 °C, freezing time 20 h, p-TsOH concentration 3.0 %, treatment temperature 130 °C and time 80 min. 93.26 % hemicellulose separation was found, which was 32.88 % higher than that of conventional p-TsOH treatment. Furthermore, the separation yield of lignin decreased significantly from 69.29 % to 13.98 %. The distinct lignin characteristic absorption peaks were found, while that of hemicellulose was difficult to observe. The fiber crystallinity index increased from 50.42 to 56.55 %. Furthermore, greater selectivity for hemicellulose separation was achieved. The results provide a new research thinking for efficient fractionation of lignocellulosic biomass by organic acid treatment.
Collapse
Affiliation(s)
- Meijiao Peng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yadan Luo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Tao Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xuelian Xia
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
10
|
Vinod JK, Koide K. Mono‐
O
‐functionalizations of Pittsburgh Green and Their Applications. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jincy K. Vinod
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue 15260 Pittsburgh Pennsylvania United States
| | - Kazunori Koide
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue 15260 Pittsburgh Pennsylvania United States
| |
Collapse
|
11
|
Feng C, Zhu J, Hou Y, Qin C, Chen W, Nong Y, Liao Z, Liang C, Bian H, Yao S. Effect of temperature on simultaneous separation and extraction of hemicellulose using p-toluenesulfonic acid treatment at atmospheric pressure. BIORESOURCE TECHNOLOGY 2022; 348:126793. [PMID: 35121097 DOI: 10.1016/j.biortech.2022.126793] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Hemicelluloses were effectively separated using p-toluenesulfonic acid (p-TsOH) treatment at high temperature. High temperature and pressure promoted hydrolysis of hemicellulose, which limited its value upon recovery. In this study, bagasse hemicellulose was separated and extracted by p-TsOH treatment at atmospheric pressure. The effects of temperature, p-TsOH concentration, and time on hemicellulose separation and extraction were investigated. The optimal conditions were 80 °C, 3.0% p-TsOH, and 120 min. The separation and extraction yield of hemicellulose was 73.23% and 36.02%, respectively. Extraction hemicellulose with 95.60% purity was obtained. In addition, the dissolution mechanism of hemicellulose was analyzed. Degradation of β-glycosidic bonds was inhibited. Benzyl ether bond between carbohydrates and lignin was selectively cleaved. The skeleton structure of xylan in hemicellulose was protected while the functional groups of branch chain were severely damaged. It provides a valuable theoretical basis for the efficient separation and extraction of hemicellulose.
Collapse
Affiliation(s)
- Chengqi Feng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yajun Hou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Wangqian Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuhao Nong
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhangpeng Liao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
12
|
Konč J, Sabatino V, Jiménez‐Moreno E, Latocheski E, Pérez LR, Day J, Domingos JB, Bernardes GJL. Controlled In‐Cell Generation of Active Palladium(0) Species for Bioorthogonal Decaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juraj Konč
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Valerio Sabatino
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Ester Jiménez‐Moreno
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Eloah Latocheski
- LaCBio—Laboratory of Biomimetic Catalysis Department of Chemistry Federal University of Santa Catarina—UFSC Campus Trindade SC 88040–900 Florianópolis Brazil
| | - Laura Rodríguez Pérez
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Jason Day
- Department of Earth Sciences University of Cambridge Downing Street CB2 3EQ Cambridge UK
| | - Josiel B. Domingos
- LaCBio—Laboratory of Biomimetic Catalysis Department of Chemistry Federal University of Santa Catarina—UFSC Campus Trindade SC 88040–900 Florianópolis Brazil
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road CB2 1EW Cambridge UK
- Instituto de Medicina Molecular João Lobo Antunes Faculdade de Medicina Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
13
|
Konč J, Sabatino V, Jiménez-Moreno E, Latocheski E, Pérez LR, Day J, Domingos JB, Bernardes GJL. Controlled In-Cell Generation of Active Palladium(0) Species for Bioorthogonal Decaging. Angew Chem Int Ed Engl 2021; 61:e202113519. [PMID: 34739737 DOI: 10.1002/anie.202113519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 11/07/2022]
Abstract
Owing to their bioorthogonality, transition metals have become very popular in the development of biocompatible bond-cleavage reactions. However, many approaches require design and synthesis of complex ligands or formulation of nanoparticles which often perform poorly in living cells. This work reports on a method for the generation of an active palladium species that triggers bond-cleaving reactions inside living cells. We utilized the water-soluble Na2PdCl4 as a simple source of Pd(II) which can be intracellularly reduced by sodium ascorbate to the active Pd(0) species. Once generated, Pd(0) triggers the cleavage of allyl ether and carbamate caging groups leading to the release of biologically active molecules. These findings do not only expand the toolbox of available bioorthogonal dissociative reactions but also provide an additional strategy for controlling the reactivity of Pd species involved in Pd-mediated bioorthogonal reactions.
Collapse
Affiliation(s)
- Juraj Konč
- University of Cambridge, Chemistry, UNITED KINGDOM
| | | | | | | | | | - Jason Day
- University of Cambridge, Earth Sciences, UNITED KINGDOM
| | | | - Gonçalo J L Bernardes
- University of Cambridge, Yusuf Hamied Department of Chemistry, Lensfield Road, CB21EW, Cambridge, UNITED KINGDOM
| |
Collapse
|
14
|
Wang J, Wang X, Fan X, Chen PR. Unleashing the Power of Bond Cleavage Chemistry in Living Systems. ACS CENTRAL SCIENCE 2021; 7:929-943. [PMID: 34235254 PMCID: PMC8227596 DOI: 10.1021/acscentsci.1c00124] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 05/02/2023]
Abstract
Bioorthogonal cleavage chemistry has been rapidly emerging as a powerful tool for manipulation and gain-of-function studies of biomolecules in living systems. While the initial bond formation-centered bioorthogonal reactions have been widely adopted for labeling, tracing, and capturing biomolecules, the newly developed bond cleavage-enabled bioorthogonal reactions have opened new possibilities for rescuing small molecules as well as biomacromolecules in living systems, allowing multidimensional controls over biological processes in vitro and in vivo. In this Outlook, we first summarized the development and applications of bioorthogonal cleavage reactions (BCRs) that restore the functions of chemical structures as well as more complex networks, including the liberation of prodrugs, release of bioconjugates, and in situ reactivation of intracellular proteins. As we embarked on this fruitful progress, we outlined the unmet scientific needs and future directions along this exciting avenue. We believe that the potential of BCRs will be further unleashed when combined with other frontier technologies, such as genetic code expansion and proximity-enabled chemical labeling.
Collapse
Affiliation(s)
- Jie Wang
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Xin Wang
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Peng R. Chen
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
- Peking−Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
16
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|