1
|
Das TN, Ramesh A, Ghosh A, Moyra S, Maji TK, Ghosh G. Peptide-based nanomaterials and their diverse applications. NANOSCALE HORIZONS 2024. [PMID: 39629637 DOI: 10.1039/d4nh00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The supramolecular self-assembly of peptides offers a promising avenue for both materials science and biological applications. Peptides have garnered significant attention in molecular self-assembly, forming diverse nanostructures with α-helix, β-sheet, and random coil conformations. These self-assembly processes are primarily driven by the amphiphilic nature of peptides and stabilized by non-covalent interactions, leading to complex nanoarchitectures responsive to environmental stimuli. While extensively studied in biomedical applications, including drug delivery and tissue engineering, their potential applications in the fields of piezoresponsive materials, conducting materials, catalysis and energy harvesting remain underexplored. This review comprehensively elucidates the diverse material characteristics and applications of self-assembled peptides. We discuss the multi-stimuli-responsiveness of peptide self-assemblies and their roles as energy harvesters, catalysts, liquid crystalline materials, glass materials and contributors to electrical conductivity. Additionally, we address the challenges and present future perspectives associated with peptide nanomaterials. This review aims to provide insights into the versatile applications of peptide self-assemblies while concisely summarizing their well-established biomedical roles that have previously been extensively reviewed by various research groups, including our group.
Collapse
Affiliation(s)
- Tarak Nath Das
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Arghya Ghosh
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Sourav Moyra
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), International Centre for Materials Science (ICMS), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Liu Y, Zhou Y, Hao B, Wu Z, Gao M, Liu L, Xia Q, Zheng K, Yang S, Tang Y, Gong M, Feng C, Diao H, Tan Y, Zheng H. Inhibition of ferroptosis attenuate lipopolysaccharide-induced early pregnancy loss by protecting against decidual damage of stromal cells. Biochem Biophys Res Commun 2024; 736:150904. [PMID: 39476755 DOI: 10.1016/j.bbrc.2024.150904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/10/2024]
Abstract
Endometrial decidualization is critical for successful embryo implantation. Dysregulation of the immune microenvironment can disrupt normal decidualization processes, potentially resulting in early pregnancy loss. Ferroptosis, a form of cell death dependent on iron and lipid hydroperoxides, is closely associated with inflammation. In this study, we developed an inflammatory early pregnancy loss model to elucidate the mechanisms of decidual damage induced by lipopolysaccharide (LPS) and to assess whether ferroptosis contributes to LPS-induced early pregnancy loss. Through in vivo experiments, we observed that embryo implantation was significantly inhibited and endometrial decidualization was impaired during LPS-induced early pregnancy loss. LPS exposure resulted in abnormal mitochondrial morphology, reduced antioxidant capacity, accumulation of reactive oxygen species (ROS) and disruptions in iron metabolism during decidualization in mouse endometrial stromal cells (mESCs). The administration of ferroptosis inhibitors, specifically ferrostatin-1 (Fer-1) and deferoxamine (DFO), effectively reversed embryo loss and mitigated the decidual damage associated with LPS-induced early pregnancy loss. Fer-1 and DFO exhibited resistance to ferroptosis during decidualization by modulating the antioxidant system and iron metabolism in mESCs, respectively. Our findings indicate that the inhibition of ferroptosis can confer protective effects against decidual damage during LPS-induced early pregnancy loss in mice.
Collapse
Affiliation(s)
- Yanmei Liu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Yaping Zhou
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Binhe Hao
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Zining Wu
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, China
| | - Min Gao
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Ling Liu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Qiang Xia
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, China
| | - Kainan Zheng
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, China
| | - Shuang Yang
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, China
| | - Yaoting Tang
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, China
| | - Ming Gong
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Cun Feng
- School of Public Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Honglu Diao
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, China
| | - Yan Tan
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China; Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, China.
| | - Hongtao Zheng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China; Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
3
|
Ruppelt D, Trollmann MFW, Dema T, Wirtz SN, Flegel H, Mönnikes S, Grond S, Böckmann RA, Steinem C. The antimicrobial fibupeptide lugdunin forms water-filled channel structures in lipid membranes. Nat Commun 2024; 15:3521. [PMID: 38664456 PMCID: PMC11045845 DOI: 10.1038/s41467-024-47803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Recently, a novel cyclo-heptapeptide composed of alternating D,L-amino acids and a unique thiazolidine heterocycle, called lugdunin, was discovered, which is produced by the nasal and skin commensal Staphylococcus lugdunensis. Lugdunin displays potent antimicrobial activity against a broad spectrum of Gram-positive bacteria, including challenging-to-treat methicillin-resistant Staphylococcus aureus (MRSA). Lugdunin specifically inhibits target bacteria by dissipating their membrane potential. However, the precise mode of action of this new class of fibupeptides remains largely elusive. Here, we disclose the mechanism by which lugdunin rapidly destabilizes the bacterial membrane potential using an in vitro approach. The peptide strongly partitions into lipid compositions resembling Gram-positive bacterial membranes but less in those harboring the eukaryotic membrane component cholesterol. Upon insertion, lugdunin forms hydrogen-bonded antiparallel β-sheets by the formation of peptide nanotubes, as demonstrated by ATR-FTIR spectroscopy and molecular dynamics simulations. These hydrophilic nanotubes filled with a water wire facilitate not only the translocation of protons but also of monovalent cations as demonstrated by voltage-clamp experiments on black lipid membranes. Collectively, our results provide evidence that the natural fibupeptide lugdunin acts as a peptidic channel that is spontaneously formed by an intricate stacking mechanism, leading to the dissipation of a bacterial cell's membrane potential.
Collapse
Affiliation(s)
- Dominik Ruppelt
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Marius F W Trollmann
- Computational Biology, Department Biologie & Erlangen National High Perfomance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Taulant Dema
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Sebastian N Wirtz
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Hendrik Flegel
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Sophia Mönnikes
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department Biologie & Erlangen National High Perfomance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany.
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077, Göttingen, Germany.
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Sedighi M, Shrestha N, Mahmoudi Z, Khademi Z, Ghasempour A, Dehghan H, Talebi SF, Toolabi M, Préat V, Chen B, Guo X, Shahbazi MA. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:1160. [PMID: 36904404 PMCID: PMC10007692 DOI: 10.3390/polym15051160] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Neha Shrestha
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Biomedicine and Translational Research, Research Institute for Bioscience and Biotechnology, Kathmandu P.O. Box 7731, Nepal
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Maryam Toolabi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Bozhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xindong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
5
|
Maurya GP, Verma D, Sinha A, Brunsveld L, Haridas V. Hydrophobicity Directed Chiral Self‐Assembly and Aggregation‐Induced Emission: Diacetylene‐Cored Pseudopeptide Chiral Dopants. Angew Chem Int Ed Engl 2022; 61:e202209806. [DOI: 10.1002/anie.202209806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Govind P. Maurya
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| | - Deepak Verma
- Department of Physics Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| | - Aloka Sinha
- Department of Physics Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| | - Luc Brunsveld
- Department of Biomedical Engineering Laboratory of Chemical Biology and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - V. Haridas
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| |
Collapse
|
6
|
Maurya GP, Verma D, Sinha A, Brunsveld L, Haridas V. Hydrophobicity directed chiral self‐assembly and aggregation induced emission: Diacetylene‐cored pseudopeptide chiral dopants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Govind P. Maurya
- Indian Institute of Technology Delhi Department of Chemistry Chemistry Hauz Khas 110016 New Delhi INDIA
| | - Deepak Verma
- Indian Institute of Technology Delhi Physics Hauz Khas 110016 New Delhi INDIA
| | - Aloka Sinha
- Indian Institute of Technology Delhi Physics Hauz Khas 110016 New Delhi INDIA
| | - Luc Brunsveld
- Eindhoven University of Technology: Technische Universiteit Eindhoven Chemical Biology 5600 MB Eindhoven 5600 MB Eindhovan NETHERLANDS
| | - V Haridas
- Indian Institute of Technology Chemistry Hauz KhasNew Delhi 110016 New Delhi INDIA
| |
Collapse
|
7
|
|
8
|
Zhang G, Liang Y, Wang Y, Li Q, Qi W, Zhang W, Su R, He Z. Chirality-Dependent Copper-Diphenylalanine Assemblies with Tough Layered Structure and Enhanced Catalytic Performance. ACS NANO 2022; 16:6866-6877. [PMID: 35319863 DOI: 10.1021/acsnano.2c01912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral regulation to prepare functional materials has aroused considerable interest in recent years. However, little is known on the effect of chirality of ligands in the metal-organic coordination assembly process. We report the self-assembly of diphenylalanine peptide (Phe-Phe, FF), the core fragment of Aβ protein, with metal copper ion (Cu2+) into metal-organic assemblies with chirality-encoded structures and properties. The chirality-dependent metal-dipeptide assembles with different morphologies and supramolecular chirality were obtained by facile changing of the FF chirality. Single-crystal results indicate that (L)-FF coordinated with Cu2+ into a cross-chain structure with a five-coordinated style, while the racemates of (L+D)-FF with Cu2+ crystallized into an (L)-Cu2+-(D)-Cu2+ alternated four-coordinating structure, enabling a higher mechanical and catalytic performance. The Young's modulus of (L+D)-FF-Cu is as high as 34.36 GPa, which is 2.45 times higher than that of (L)-FF-Cu. Furthermore, both of them follow the characteristic enzyme kinetics and show higher catalytic activity than natural laccase at the same mass concentration. Specifically, the calculated catalytic efficiency (kcat/KM) of (L+D)-FF-Cu is 1.14 times higher than that of (L)-FF-Cu, and the (L+D)-FF-Cu shows significantly enhanced stability and reusability compared with (L)-FF-Cu. The results reveal that highly functional materials could be constructed by encoding the chirality of molecular building blocks.
Collapse
Affiliation(s)
- Gong Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, People's Republic of China
| | - Yaoyu Liang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Qing Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, People's Republic of China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
9
|
Klose D, Vemulapalli SPB, Richman M, Rudnick S, Aisha V, Abayev M, Chemerovski M, Shviro M, Zitoun D, Majer K, Wili N, Goobes G, Griesinger C, Jeschke G, Rahimipour S. Cu 2+-Induced self-assembly and amyloid formation of a cyclic D,L-α-peptide: structure and function. Phys Chem Chem Phys 2022; 24:6699-6715. [PMID: 35234757 DOI: 10.1039/d1cp05415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a wide spectrum of neurodegenerative diseases, self-assembly of pathogenic proteins to cytotoxic intermediates is accelerated by the presence of metal ions such as Cu2+. Only low concentrations of these early transient oligomeric intermediates are present in a mixture of species during fibril formation, and hence information on the extent of structuring of these oligomers is still largely unknown. Here, we investigate dimers as the first intermediates in the Cu2+-driven aggregation of a cyclic D,L-α-peptide architecture. The unique structural and functional properties of this model system recapitulate the self-assembling properties of amyloidogenic proteins including β-sheet conformation and cross-interaction with pathogenic amyloids. We show that a histidine-rich cyclic D,L-α-octapeptide binds Cu2+ with high affinity and selectivity to generate amyloid-like cross-β-sheet structures. By taking advantage of backbone amide methylation to arrest the self-assembly at the dimeric stage, we obtain structural information and characterize the degree of local order for the dimer. We found that, while catalytic amounts of Cu2+ promote aggregation of the peptide to fibrillar structures, higher concentrations dose-dependently reduce fibrillization and lead to formation of spherical particles, showing self-assembly to different polymorphs. For the initial self-assembly step to the dimers, we found that Cu2+ is coordinated on average by two histidines, similar to self-assembled peptides, indicating that a similar binding interface is perpetuated during Cu2+-driven oligomerization. The dimer itself is found in heterogeneous conformations that undergo dynamic exchange, leading to the formation of different polymorphs at the initial stage of the aggregation process.
Collapse
Affiliation(s)
- Daniel Klose
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Sahithya Phani Babu Vemulapalli
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. .,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| | - Michal Richman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Safra Rudnick
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Vered Aisha
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Meital Abayev
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Marina Chemerovski
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Meital Shviro
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - David Zitoun
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Katharina Majer
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Nino Wili
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Gil Goobes
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Christian Griesinger
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
10
|
Méndez-Ardoy A, Insua I, Granja JR, Montenegro J. Cyclization and Self-Assembly of Cyclic Peptides. Methods Mol Biol 2022; 2371:449-466. [PMID: 34596863 DOI: 10.1007/978-1-0716-1689-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Cyclic peptides are a fascinating class of molecules that can be programmed to fold or self-assemble into diverse mono- and multidimensional structures with potential applications in biomedicine, nanoelectronics, or catalysis. Herein we describe on-resin procedures to carry out head-to-tail peptide cyclization based on orthogonal protected linear structures. We also present essential characterization tools for obtaining dynamic and structural information, including the visualization cyclic peptide assembly into nanotubes (AFM, TEM) as well as the use of fluorescence microscopy.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Song Q, Cheng Z, Kariuki M, Hall SCL, Hill SK, Rho JY, Perrier S. Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides. Chem Rev 2021; 121:13936-13995. [PMID: 33938738 PMCID: PMC8824434 DOI: 10.1021/acs.chemrev.0c01291] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/19/2023]
Abstract
This Review focuses on the establishment and development of self-assemblies governed by the supramolecular interactions between cyclic peptides. The Review first describes the type of cyclic peptides able to assemble into tubular structures to form supramolecular cyclic peptide nanotubes. A range of cyclic peptides have been identified to have such properties, including α-peptides, β-peptides, α,γ-peptides, and peptides based on δ- and ε-amino acids. The Review covers the design and functionalization of these cyclic peptides and expands to a recent advance in the design and application of these materials through their conjugation to polymer chains to generate cyclic peptide-polymer conjugates nanostructures. The Review, then, concentrates on the challenges in characterizing these systems and presents an overview of the various analytical and characterization techniques used to date. This overview concludes with a critical survey of the various applications of the nanomaterials obtained from supramolecular cyclic peptide nanotubes, with a focus on biological and medical applications, ranging from ion channels and membrane insertion to antibacterial materials, anticancer drug delivery, gene delivery, and antiviral applications.
Collapse
Affiliation(s)
- Qiao Song
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Zihe Cheng
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Maria Kariuki
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Sophie K. Hill
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Julia Y. Rho
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick Medical
School, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
12
|
Wolska A, Reimund M, Sviridov DO, Amar MJ, Remaley AT. Apolipoprotein Mimetic Peptides: Potential New Therapies for Cardiovascular Diseases. Cells 2021; 10:597. [PMID: 33800446 PMCID: PMC8000854 DOI: 10.3390/cells10030597] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Since the seminal breakthrough of treating diabetic patients with insulin in the 1920s, there has been great interest in developing other proteins and their peptide mimetics as therapies for a wide variety of other medical disorders. Currently, there are at least 60 different peptides that have been approved for human use and over 150 peptides that are in various stages of clinical development. Peptides mimetic of the major proteins on lipoproteins, namely apolipoproteins, have also been developed first as tools for understanding apolipoprotein structure and more recently as potential therapeutics. In this review, we discuss the biochemistry, peptide mimetics design and clinical trials for peptides based on apoA-I, apoE and apoC-II. We primarily focus on applications of peptide mimetics related to cardiovascular diseases. We conclude with a discussion on the limitations of peptides as therapeutic agents and the challenges that need to be overcome before apolipoprotein mimetic peptides can be developed into new drugs.
Collapse
Affiliation(s)
- Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.R.); (D.O.S.); (M.J.A.); (A.T.R.)
| | | | | | | | | |
Collapse
|
13
|
Chibh S, Mishra J, Kour A, Chauhan VS, Panda JJ. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures. Nanomedicine (Lond) 2021; 16:139-163. [PMID: 33480272 DOI: 10.2217/nnm-2020-0314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular self-assembly is a widespread natural phenomenon and has inspired several researchers to synthesize a compendium of nano/microstructures with widespread applications. Biomolecules like proteins, peptides and lipids are used as building blocks to fabricate various nanomaterials. Supramolecular peptide self-assembly continue to play a significant role in forming diverse nanostructures with numerous biomedical applications; however, dipeptides offer distinctive supremacy in their ability to self-assemble and produce a variety of nanostructures. Though several reviews have articulated the progress in the field of longer peptides or polymers and their self-assembling behavior, there is a paucity of reviews or literature covering the emerging field of dipeptide-based nanostructures. In this review, our goal is to present the recent advancements in dipeptide-based nanostructures with their potential applications.
Collapse
Affiliation(s)
- Sonika Chibh
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| | - Jibanananda Mishra
- Cell and Molecular Biology Division, AAL Research & Solutions Pvt. Ltd., Panchkula, Haryana 134113, India
| | - Avneet Kour
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| | - Virander S Chauhan
- International Centre for Genetic Engineering & Biotechnology, New Delhi 110067, India
| | - Jiban J Panda
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| |
Collapse
|
14
|
Castillo-Díaz LA, Ruiz-Pacheco JA, Elsawy MA, Reyes-Martínez JE, Enríquez-Rodríguez AI. Self-Assembling Peptides as an Emerging Platform for the Treatment of Metabolic Syndrome. Int J Nanomedicine 2020; 15:10349-10370. [PMID: 33376325 PMCID: PMC7762440 DOI: 10.2147/ijn.s278189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome comprises a cluster of comorbidities that represent a major risk of developing chronic diseases, such as type II diabetes, cardiovascular diseases, and stroke. Alarmingly, metabolic syndrome reaches epidemic proportions worldwide. Today, lifestyle changes and multiple drug-based therapies represent the gold standard to address metabolic syndrome. However, such approaches face two major limitations: complicated drug therapeutic regimes, which in most cases could lead to patient incompliance, and limited drug efficacy. This has encouraged scientists to search for novel routes to deal with metabolic syndrome and related diseases. Within such approaches, self-assembled peptide formulations have emerged as a promising alternative for treating metabolic syndrome. In particular, self-assembled peptide hydrogels, either as acellular or cell-load three-dimensional scaffoldings have reached significant relevance in the biomedical field to prevent and restore euglycemia, as well as for controlling cardiovascular diseases and obesity. This has been possible thanks to the physicochemical tunability of peptides, which are developed from a chemical toolbox of versatile amino acids enabling flexibility of designing a wide range of self-assembled/co-assembled nanostructures forming biocompatible viscoelastic hydrogels. Peptide hydrogels can be combined with several biological entities, such as extracellular matrix proteins, drugs or cells, forming functional biologics with therapeutic ability for treatment of metabolic syndrome-comorbidities. Additionally, self-assembly peptides combine safety, tolerability, and effectivity attributes; by this presenting a promising platform for the development of novel pharmaceuticals capable of addressing unmet therapeutic needs for diabetes, cardiovascular disorders and obesity. In this review, recent advances in developing self-assembly peptide nanostructures tailored for improving treatment of metabolic syndrome and related diseases will be discussed from basic research to preclinical research studies. Challenges facing the development of approved medicinal products based on self-assembling peptide nanomaterials will be discussed in light of regulatory requirement for clinical authorization.
Collapse
Affiliation(s)
| | - Juan Alberto Ruiz-Pacheco
- West Biomedical Research Center, National Council of Science and Technology, Guadalajara, Jalisco, Mexico
| | - Mohamed Ahmed Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, Leicestershire, UK
| | | | | |
Collapse
|
15
|
Roy S, Giri RS, Dolai G, Mandal B. Role of side-chain and chirality of the amino acids on the supramolecular assemblies of dipeptides. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Calvelo M, Lamas A, Guerra A, Amorín M, Garcia-Fandino R, Granja JR. Parallel Versus Antiparallel β-Sheet Structure in Cyclic Peptide Hybrids Containing γ- or δ-Cyclic Amino Acids. Chemistry 2020; 26:5846-5858. [PMID: 31999874 DOI: 10.1002/chem.201905554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/07/2022]
Abstract
Cyclic peptides with disc-shaped structures have emerged as potent building blocks for the preparation of new biomaterials in fields ranging from biological to material science. In this work, we analyze in depth the self-assembling properties of a new type of cyclic peptides based on the alternation of α-residues and cyclic δ-amino acids (α,δ-CPs). To examine the preferred stacking properties adopted by cyclic peptides bearing this type of amino acids, we carried out a synergistic in vitro/in silico approximation by using simple dimeric models and then extended to nanotubes. Although these new cyclic peptides (α,δ-CPs) can interact either in a parallel or antiparallel fashion, our results confirm that although the parallel β-sheet is more stable, it can be switched to the antiparallel stacking by choosing residues that can establish favorable cross-strand interactions. Moreover, the subsequent comparison by using the same methodology but applied to α,γ-CPs models, up to the moment assumed as antiparallel-like d,l-α-CPs, led to unforeseen conclusions that put into question preliminary conjectures about these systems. Surprisingly, they tend to adopt a parallel β-sheet directed by the skeleton interactions. These results imply a change of paradigm with respect to cyclic peptide designs that should be considered for dimers and nanotubes.
Collapse
Affiliation(s)
- Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Lamas
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Arcadio Guerra
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandino
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
17
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Bera S, Xue B, Rehak P, Jacoby G, Ji W, Shimon LJW, Beck R, Král P, Cao Y, Gazit E. Self-Assembly of Aromatic Amino Acid Enantiomers into Supramolecular Materials of High Rigidity. ACS NANO 2020; 14:1694-1706. [PMID: 31944667 PMCID: PMC7123433 DOI: 10.1021/acsnano.9b07307] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/16/2020] [Indexed: 05/12/2023]
Abstract
Most natural biomolecules may exist in either of two enantiomeric forms. Although in nature, amino acid biopolymers are characterized by l-type homochirality, incorporation of d-amino acids in the design of self-assembling peptide motifs has been shown to significantly alter enzyme stability, conformation, self-assembly behavior, cytotoxicity, and even therapeutic activity. However, while functional metabolite assemblies are ubiquitous throughout nature and play numerous important roles including physiological, structural, or catalytic functions, the effect of chirality on the self-assembly nature and function of single amino acids is not yet explored. Herein, we investigated the self-assembly mechanism of amyloid-like structure formation by two aromatic amino acids, phenylalanine (Phe) and tryptophan (Trp), both previously found as extremely important for the nucleation and self-assembly of aggregation-prone peptide regions into functional structures. Employing d-enantiomers, we demonstrate the critical role that amino acid chirality plays in their self-assembly process. The kinetics and morphology of pure enantiomers is completely altered upon their coassembly, allowing to fabricate different nanostructures that are mechanically more robust. Using diverse experimental techniques, we reveal the different molecular arrangement and self-assembly mechanism of the dl-racemic mixtures that resulted in the formation of advanced supramolecular materials. This study provides a simple yet sophisticated engineering model for the fabrication of attractive materials with bionanotechnological applications.
Collapse
Affiliation(s)
- Santu Bera
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Bin Xue
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Pavel Rehak
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Guy Jacoby
- The
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wei Ji
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Roy Beck
- The
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Petr Král
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
- Department
of Biopharmaceutical Sciences, University
of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yi Cao
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Ehud Gazit
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
19
|
Panciera M, González‐Freire E, Calvelo M, Amorín M, Granja JR. Induced α,γ‐cyclic peptide rotodimer recognition by nucleobase scaffolds. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michele Panciera
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry DepartmentUniversidade de Santiago de Compostela (USC) Santiago de Compostela Spain
| | - Eva González‐Freire
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry DepartmentUniversidade de Santiago de Compostela (USC) Santiago de Compostela Spain
| | - Martín Calvelo
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry DepartmentUniversidade de Santiago de Compostela (USC) Santiago de Compostela Spain
| | - Manuel Amorín
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry DepartmentUniversidade de Santiago de Compostela (USC) Santiago de Compostela Spain
| | - Juan R. Granja
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry DepartmentUniversidade de Santiago de Compostela (USC) Santiago de Compostela Spain
| |
Collapse
|
20
|
Lou S, Wang X, Yu Z, Shi L. Peptide Tectonics: Encoded Structural Complementarity Dictates Programmable Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802043. [PMID: 31380179 PMCID: PMC6662064 DOI: 10.1002/advs.201802043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/20/2019] [Indexed: 05/23/2023]
Abstract
Programmable self-assembly of peptides into well-defined nanostructures represents one promising approach for bioinspired and biomimetic synthesis of artificial complex systems and functional materials. Despite the progress made over the past two decades in the development of strategies for precise manipulation of the self-assembly of peptides, there is a remarkable gap between current peptide assemblies and biological systems in terms of structural complexity and functions. Here, the concept of peptide tectonics for the creation of well-defined nanostructures predominately driven by the complementary association at the interacting interfaces of tectons is introduced. Peptide tectons are defined as peptide building blocks exhibiting structural complementarity at the interacting interfaces of commensurate domains and undergoing programmable self-assembly into defined supramolecular structures promoted by complementary interactions. Peptide tectons are categorized based on their conformational entropy and the underlying mechanism for the programmable self-assembly of peptide tectons is highlighted focusing on the approaches for incorporating the structural complementarity within tectons. Peptide tectonics not only provides an alternative perspective to understand the self-assembly of peptides, but also allows for precise manipulation of peptide interactions, thus leading to artificial systems with advanced complexity and functions and paves the way toward peptide-related functional materials resembling natural systems.
Collapse
Affiliation(s)
- Shaofeng Lou
- Key Laboratory of Functional Polymer Materials, Ministryof EducationState Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityWeijin Road 94Tianjin300071China
| | - Xinmou Wang
- Key Laboratory of Functional Polymer Materials, Ministryof EducationState Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityWeijin Road 94Tianjin300071China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministryof EducationState Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityWeijin Road 94Tianjin300071China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministryof EducationState Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityWeijin Road 94Tianjin300071China
| |
Collapse
|
21
|
Elnaggar IZ, Hussein S, Amin MI, Abdelaziz EA. Association of 584C/T polymorphism in endothelial lipase gene with risk of coronary artery disease. J Cell Biochem 2019; 120:14414-14420. [PMID: 31020688 DOI: 10.1002/jcb.28697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) is one of the cardiovascular diseases, which is caused by a reduced amount of oxygen and blood that goes to the heart. CAD includes stable angina, unstable angina, myocardial infarction, and sudden cardiac death. It is a common cause of death in both men and women. The environmental and genetic factors are involved in the development of CAD. Multiple gene polymorphisms are risk factors of CAD. OBJECTIVE To evaluate the association between EL 584C/T polymorphism, CAD risk, and lipid profile in an Egyptian population. METHODS This is a case-control study. The patients were classified into three groups: Group A: Control group, this group included 42 apparently healthy people. Group B: included 42 subjects diagnosed with previous myocardial infarction (MI). Group C: included 42 subjects diagnosed with unstable angina (UA). RESULTS The frequencies of TT and CT genotypes and T allele were higher in control healthy individuals than CAD patients. In addition, the risk of CAD was significantly lower in individuals carrying T allele (P = 0.001). Serum high-density lipoprotein (HDL) levels were significantly higher in healthy individuals and CAD patients (MI and UA patients) carrying EL 584 T allele compared with those carrying CC genotype (P ≤ 0.001). By multiple logistic regression, we found that the protective effect of T allele remained significant (P = 0.005) and it decreased the risk of CAD independent of plasma HDL levels. CONCLUSION There was a significant difference between 584C/T polymorphism in the EL gene and CAD and HDL level. T-allele carriers had a higher HDL level and were protected from CAD. T allele was significantly associated with the decreased risk of CAD independent of plasma HDL levels.
Collapse
Affiliation(s)
- Ismail Zaki Elnaggar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Ibrahem Amin
- Department of Cardiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Ahmed Abdelaziz
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
22
|
Lamas A, Guerra A, Amorín M, Granja JR. New self-assembling peptide nanotubes of large diameter using δ-amino acids. Chem Sci 2018; 9:8228-8233. [PMID: 30542571 PMCID: PMC6240800 DOI: 10.1039/c8sc02276c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/26/2018] [Indexed: 11/21/2022] Open
Abstract
Here we show that 4-aminocyclohexanecarboxylic acid is a rigid stretcher building block for the preparation of cyclic peptides that self-assemble to form peptide nanotubes with large diameter and hydrophobic pores. The hydrophobic properties of the resulting nanotubes provided by the two methylene groups per δ-residue allow the encapsulation of C60 moieties forming a new type of bionanopeapod structure.
Collapse
Affiliation(s)
- Alejandro Lamas
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS) , Organic Chemistry Department , University of Santiago de Compostela (USC) , 15782 Santiago de Compostela , Spain . ;
| | - Arcadio Guerra
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS) , Organic Chemistry Department , University of Santiago de Compostela (USC) , 15782 Santiago de Compostela , Spain . ;
| | - Manuel Amorín
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS) , Organic Chemistry Department , University of Santiago de Compostela (USC) , 15782 Santiago de Compostela , Spain . ;
| | - Juan R Granja
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS) , Organic Chemistry Department , University of Santiago de Compostela (USC) , 15782 Santiago de Compostela , Spain . ;
| |
Collapse
|
23
|
Novelli F, De Santis S, Morosetti S, Titubante M, Masci G, Scipioni A. Peptides with regularly alternating enantiomeric sequence: From ion channel models to bioinspired nanotechnological applications. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Federica Novelli
- Dipartimento di ChimicaUniversità La Sapienza, Piazzale A. MoroRome5‐00185 Italy
| | - Serena De Santis
- Dipartimento di ChimicaUniversità La Sapienza, Piazzale A. MoroRome5‐00185 Italy
| | - Stefano Morosetti
- Dipartimento di ChimicaUniversità La Sapienza, Piazzale A. MoroRome5‐00185 Italy
| | - Mattia Titubante
- Dipartimento di ChimicaUniversità La Sapienza, Piazzale A. MoroRome5‐00185 Italy
| | - Giancarlo Masci
- Dipartimento di ChimicaUniversità La Sapienza, Piazzale A. MoroRome5‐00185 Italy
| | - Anita Scipioni
- Dipartimento di ChimicaUniversità La Sapienza, Piazzale A. MoroRome5‐00185 Italy
| |
Collapse
|
24
|
Novelli F, De Santis S, Diociaiuti M, Giordano C, Morosetti S, Punzi P, Sciubba F, Viali V, Masci G, Scipioni A. Curcumin loaded nanocarriers obtained by self-assembly of a linear d,l-octapeptide-poly(ethylene glycol) conjugate. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|