1
|
Tian B, Wang F, Ran P, Dai L, Lv Y, Sun Y, Mu Z, Sun Y, Tang L, Goddard WA, Ding M. Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation. Nat Commun 2024; 15:10145. [PMID: 39578431 PMCID: PMC11584659 DOI: 10.1038/s41467-024-54318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Electro-selective-oxidation using water as a green oxygen source demonstrates promising potential towards efficient and sustainable chemical upgrading. However, surface micro-kinetics regarding co-adsorption and reaction between organic and oxygen intermediates remain unclear. Here we systematically study the electro-oxidation of aldehydes, alcohols, and amines on Co/Ni-oxyhydroxides with multiple characterizations. Utilizing Fourier transformed alternating current voltammetry (FTacV) measurements, we show the identification and quantification of two key operando parameters (ΔIharmonics/IOER and ΔVharmonics) that can be fundamentally linked to the altered surface coverage ( Δ θ OH * / θ OH * OER ) and the changes in adsorption energy of vital oxygenated intermediates (Δ G OH * EOOR - Δ G OH * OER ), under the influence of organic adsorption/oxidation. Mechanistic analysis based on these descriptors reveals distinct optimal oxyhydroxide surface states for each organics, and elucidates the critical catalyst design principles: balancing organic and M3+δ-OH* coverages and fine-tuning ΔG for key elementary steps, e.g., via precise modulation of chemical compositions, crystallinity, defects, electronic structures, and/or surface bimolecular interactions.
Collapse
Affiliation(s)
- Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Fangyuan Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Pan Ran
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Luhan Dai
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Lv
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yuxia Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Lingyu Tang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - William A Goddard
- Materials and Process Simulation Center (MSC) and Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, CA, USA
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Fan J, Arrazolo LK, Du J, Xu H, Fang S, Liu Y, Wu Z, Kim JH, Wu X. Effects of Ionic Interferents on Electrocatalytic Nitrate Reduction: Mechanistic Insight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12823-12845. [PMID: 38954631 DOI: 10.1021/acs.est.4c03949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nitrate, a prevalent water pollutant, poses substantial public health concerns and environmental risks. Electrochemical reduction of nitrate (eNO3RR) has emerged as an effective alternative to conventional biological treatments. While extensive lab work has focused on designing efficient electrocatalysts, implementation of eNO3RR in practical wastewater settings requires careful consideration of the effects of various constituents in real wastewater. In this critical review, we examine the interference of ionic species commonly encountered in electrocatalytic systems and universally present in wastewater, such as halogen ions, alkali metal cations, and other divalent/trivalent ions (Ca2+, Mg2+, HCO3-/CO32-, SO42-, and PO43-). Notably, we categorize and discuss the interfering mechanisms into four groups: (1) loss of active catalytic sites caused by competitive adsorption and precipitation, (2) electrostatic interactions in the electric double layer (EDL), including ion pairs and the shielding effect, (3) effects on the selectivity of N intermediates and final products (N2 or NH3), and (4) complications by the hydrogen evolution reaction (HER) and localized pH on the cathode surface. Finally, we summarize the competition among different mechanisms and propose future directions for a deeper mechanistic understanding of ionic impacts on eNO3RR.
Collapse
Affiliation(s)
- Jinling Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Leslie K Arrazolo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huimin Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Siyu Fang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yue Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
3
|
Shah AH, Zhang Z, Wan C, Wang S, Zhang A, Wang L, Alexandrova AN, Huang Y, Duan X. Platinum Surface Water Orientation Dictates Hydrogen Evolution Reaction Kinetics in Alkaline Media. J Am Chem Soc 2024; 146:9623-9630. [PMID: 38533830 DOI: 10.1021/jacs.3c12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The fundamental understanding of sluggish hydrogen evolution reaction (HER) kinetics on a platinum (Pt) surface in alkaline media is a topic of considerable debate. Herein, we combine cyclic voltammetry (CV) and electrical transport spectroscopy (ETS) approaches to probe the Pt surface at different pH values and develop molecular-level insights into the pH-dependent HER kinetics in alkaline media. The change in HER Tafel slope from ∼110 mV/decade in pH 7-10 to ∼53 mV/decade in pH 11-13 suggests considerably enhanced kinetics at higher pH. The ETS studies reveal a similar pH-dependent switch in the ETS conductance signal at around pH 10, suggesting a notable change of surface adsorbates. Fixed-potential calculations and chemical bonding analysis suggest that this switch is attributed to a change in interfacial water orientation, shifting from primarily an O-down configuration below pH 10 to a H-down configuration above pH 10. This reorientation weakens the O-H bond in the interfacial water molecules and modifies the reaction pathway, leading to considerably accelerated HER kinetics at higher pH. Our integrated studies provide an unprecedented molecular-level understanding of the nontrivial pH-dependent HER kinetics in alkaline media.
Collapse
Affiliation(s)
- Aamir Hassan Shah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Chengzhang Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Sibo Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ao Zhang
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Laiyuan Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Luo W, Yan X, Pan X, Jiao J, Mai L. What Makes On-Chip Microdevices Stand Out in Electrocatalysis? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305020. [PMID: 37875658 DOI: 10.1002/smll.202305020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Indexed: 10/26/2023]
Abstract
Clean and sustainable energy conversion and storage through electrochemistry shows great promise as an alternative to traditional fuel or fossil-consumption energy systems. With regards to practical and high-efficient electrochemistry application, the rational design of active sites and the accurate description of mechanism remain a challenge. Toward this end, in this Perspective, a unique on-chip micro/nano device coupling nanofabrication and low-dimensional electrochemical materials is presented, in which material structure analysis, field-effect regulation, in situ monitoring, and simulation modeling are highlighted. The critical mechanisms that influence electrochemical response are discussed, and how on-chip micro/nano device distinguishes itself is emphasized. The key challenges and opportunities of on-chip electrochemical platforms are also provided through the Perspective.
Collapse
Affiliation(s)
- Wen Luo
- Department of Physics, School of Science, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xin Yan
- Department of Physics, School of Science, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xuelei Pan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Jinying Jiao
- Department of Physics, School of Science, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
5
|
Xia H, Sang X, Shu Z, Shi Z, Li Z, Guo S, An X, Gao C, Liu F, Duan H, Liu Z, He Y. The practice of reaction window in an electrocatalytic on-chip microcell. Nat Commun 2023; 14:6838. [PMID: 37891203 PMCID: PMC10611802 DOI: 10.1038/s41467-023-42645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
To enhance the efficiency of catalysis, it is crucial to comprehend the behavior of individual nanowires/nanosheets. A developed on-chip microcell facilitates this study by creating a reaction window that exposes the catalyst region of interest. However, this technology's potential application is limited due to frequently-observed variations in data between different cells. In this study, we identify a conductance problem in the reaction windows of non-metallic catalysts as the cause of this issue. We investigate this problem using in-situ electronic/electrochemical measurements and atom-thin nanosheets as model catalysts. Our findings show that a full-open window, which exposes the entire catalyst channel, allows for efficient modulation of conductance, which is ten times higher than a half-open window. This often-overlooked factor has the potential to significantly improve the conductivity of non-metallic catalysts during the reaction process. After examining tens of cells, we develop a vertical microcell strategy to eliminate the conductance issue and enhance measurement reproducibility. Our study offers guidelines for conducting reliable microcell measurements on non-metallic single nanowire/nanosheet catalysts.
Collapse
Affiliation(s)
- Hang Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiaoru Sang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhiwen Shu
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha, 410082, P. R. China
| | - Zude Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zefen Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shasha Guo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiuyun An
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Caitian Gao
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China.
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Yongmin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China.
| |
Collapse
|
6
|
Wang W, Qi J, Wu Z, Zhai W, Pan Y, Bao K, Zhai L, Wu J, Ke C, Wang L, Ding M, He Q. On-chip electrocatalytic microdevices. Nat Protoc 2023; 18:2891-2926. [PMID: 37596356 DOI: 10.1038/s41596-023-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/25/2023] [Indexed: 08/20/2023]
Abstract
On-chip electrocatalytic microdevices (OCEMs) are an emerging electrochemical platform specialized for investigating nanocatalysts at the microscopic level. The OCEM platform allows high-precision electrochemical measurements at the individual nanomaterial level and, more importantly, offers unique perspectives inaccessible with conventional electrochemical methods. This protocol describes the critical concepts, experimental standardization, operational principles and data analysis of OCEMs. Specifically, standard protocols for the measurement of the electrocatalytic hydrogen evolution reaction of individual 2D nanosheets are introduced with data validation, interpretation and benchmarking. A series of factors (e.g., the exposed area of material, the choice of passivation layer and current leakage) that could have effects on the accuracy and reliability of measurement are discussed. In addition, as an example of the high adaptability of OCEMs, the protocol for in situ electrical transport measurement is detailed. We believe that this protocol will promote the general adoption of the OCEM platform and inspire further development in the near future. This protocol requires essential knowledge in chemical synthesis, device fabrication and electrochemistry.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Junlei Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zongxiao Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Kai Bao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jingkun Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chengxuan Ke
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lingzhi Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
7
|
Wang Y, Wang Y, Frisbie CD. Electrochemistry at Back-Gated, Ultrathin ZnO Electrodes: Field-Effect Modulation of Heterogeneous Electron Transfer Rate Constants by 30× with Enhanced Gate Capacitance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9554-9562. [PMID: 36780640 DOI: 10.1021/acsami.2c18549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report steady-state voltammetry of outer-sphere redox species at back-gated ultrathin ZnO working electrodes in order to determine electron transfer rate constants kET as a function of independently controlled gate bias, VG. We demonstrate that kET can be modulated as much as 30-fold by application of VG ≤ 8 V. The key to this demonstration was integrating the ultrathin (5 nm) ZnO on a high dielectric constant (k) insulator, HfO2 (30 nm), which was grown on a Pd metal gate. The high-k HfO2 dramatically decreased the required VG values and increased the gate-induced charge in ZnO compared to previous studies. Importantly, the enhanced gating power of the Pd/HfO2/ZnO stack meant it was possible to observe a nonmonotonic dependence of kET on VG, which reflects the inherent density of redox acceptor states in solution. This work adds to the growing body of literature demonstrating that electrochemical kinetics (i.e., rate constants and overpotentials) at ultrathin working electrodes can be tuned by VG, independent of the conventional electrochemical working electrode potential.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Yan Wang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Zhao J, Lian J, Zhao Z, Wang X, Zhang J. A Review of In-Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions. NANO-MICRO LETTERS 2022; 15:19. [PMID: 36580130 PMCID: PMC9800687 DOI: 10.1007/s40820-022-00984-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/16/2022] [Indexed: 06/03/2023]
Abstract
Electrocatalytic oxygen reduction reaction (ORR) is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal-O2/air batteries, etc. However, the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process, and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction. This makes them difficult to be accurately captured, making the identification of ORR active sites and the elucidation of ORR mechanisms difficult. Thus, it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR. This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts. Specifically, the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized, such as phase, valence, electronic transfer, coordination, and spin states varies. In-situ revelation of intermediate adsorption/desorption behavior, and the real-time monitoring of the product nucleation, growth, and reconstruction evolution are equally emphasized in the discussion. Other interference factors, as well as in-situ signal assignment with the aid of theoretical calculations, are also covered. Finally, some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.
Collapse
Affiliation(s)
- Jinyu Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Jie Lian
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Zhenxin Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Xiaomin Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Jiujun Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
9
|
Lv Y, Su J, Gu Y, Tian B, Ma J, Zuo JL, Ding M. Atomically Precise Integration of Multiple Functional Motifs in Catalytic Metal-Organic Frameworks for Highly Efficient Nitrate Electroreduction. JACS AU 2022; 2:2765-2777. [PMID: 36590266 PMCID: PMC9795565 DOI: 10.1021/jacsau.2c00502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/09/2023]
Abstract
Ammonia production plays a central role in modern industry and agriculture with a continuous surge in its demand, yet the current industrial Haber-Bosch process suffers from low energy efficiency and accounts for high carbon emissions. Direct electrochemical conversion of nitrate to ammonia therefore emerges as an appealing approach with satisfactory sustainability while reducing the environmental impact from nitrate pollution. To this end, electrocatalysts for efficient conversion of eight-electron nitrate to ammonia require collective contributions at least from high-density reactive sites, selective reaction pathways, efficient multielectron transfer, and multiproton transport processes. Here, we report a catalytic metal-organic framework (two-dimensional (2D) In-MOF In8) catalyst integrated with multiple functional motifs with atomic precision, including uniformly dispersed, high-density, single-atom catalytic sites, high proton conductivity (efficient proton transport channel), high electron conductivity (promoted by the redox-active ligands), and confined microporous environments. These eventually lead to a direct and efficient electrochemical reduction of nitrate to ammonia and record high yield rate, FE, and selectivity for NH3 production. A novel "dynamic ligand dissociation" mechanism provides an unprecedented working principle that allows for the use of a high-quality MOF crystalline structure to function as highly ordered, high-density, single-atom catalyst (SAC)-like catalytic systems and ensures the maximum utilization of the metal centers within the MOF structure. Further, the atomically precise assembly of multiple functional motifs within a MOF catalyst offers an effective and facile strategy for the future development of framework-based enzyme-mimic systems.
Collapse
Affiliation(s)
- Yang Lv
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Su
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yuming Gu
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu
Key Laboratory of Advanced Organic Materials, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bailin Tian
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu
Key Laboratory of Advanced Organic Materials, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Lin Zuo
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengning Ding
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Beijing
National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations. Nat Commun 2022; 13:6911. [PMCID: PMC9663515 DOI: 10.1038/s41467-022-34685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPrecise understanding of interfacial metal−hydrogen interactions, especially under in operando conditions, is crucial to advancing the application of metal catalysts in clean energy technologies. To this end, while Pd-based catalysts are widely utilized for electrochemical hydrogen production and hydrogenation, the interaction of Pd with hydrogen during active electrochemical processes is complex, distinct from most other metals, and yet to be clarified. In this report, the hydrogen surface adsorption and sub-surface absorption (phase transition) features of Pd and its alloy nanocatalysts are identified and quantified under operando electrocatalytic conditions via on-chip electrical transport measurements, and the competitive relationship between electrochemical carbon dioxide reduction (CO2RR) and hydrogen sorption kinetics is investigated. Systematic dynamic and steady-state evaluations reveal the key impacts of local electrolyte environment (such as proton donors with different pKa) on the hydrogen sorption kinetics during CO2RR, which offer additional insights into the electrochemical interfaces and optimization of the catalytic systems.
Collapse
|
11
|
Liu S, Tian B, Wang X, Sun Y, Wang Y, Ma J, Ding M. The Critical Role of Initial/Operando Oxygen Loading in General Bismuth-Based Catalysts for Electroreduction of Carbon Dioxide. J Phys Chem Lett 2022; 13:9607-9617. [PMID: 36206518 DOI: 10.1021/acs.jpclett.2c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Operando reconstruction of solid catalyst into a distinct active state frequently occurs during electrocatalytic processes. The correlation between initial and operando states, if ever existing, is critical for the understanding and precise design of a catalytic system. Inspired by recently established intermediate metallic state of Bi-based catalysts during electrocatalytic carbon dioxide reduction (CO2RR), here we investigate a series of Bi oxide catalysts (Bi, Bi2O3, BiO2) and demonstrate that the operando surface/subsurface oxygen loading, positively correlated to the initial oxygen content, plays a critical role in determining Bi-based CO2RR performance. Higher initial oxygen loading indicates a better electrocatalytic efficiency. Further analysis shows that this conclusion generally applies to all Bi-based electrocatalysts reported up to date. Following this principle, cost-effective BiO2 nanocrystals demonstrated the highest formate Faradaic efficiency (FE) and current density compared to Bi/Bi2O3, further allowing a pair-electrolysis system with 800 mA/cm2 current density and an overall 175% FE for formate production.
Collapse
Affiliation(s)
- Shengtang Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinzhu Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiqi Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat Catal 2022. [DOI: 10.1038/s41929-022-00851-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Sun Y, Tian J, Mu Z, Tian B, Zhou Q, Liu C, Liu S, Wu Q, Ding M. Unravelling the critical role of surface Nafion adsorption in Pt-catalyzed oxygen reduction reaction by in situ electrical transport spectroscopy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Zhong G, Cheng T, Shah AH, Wan C, Huang Z, Wang S, Leng T, Huang Y, Goddard WA, Duan X. Determining the hydronium pK[Formula: see text] at platinum surfaces and the effect on pH-dependent hydrogen evolution reaction kinetics. Proc Natl Acad Sci U S A 2022; 119:e2208187119. [PMID: 36122216 PMCID: PMC9522355 DOI: 10.1073/pnas.2208187119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is critical for green hydrogen generation and exhibits distinct pH-dependent kinetics that have been elusive to understand. A molecular-level understanding of the electrochemical interfaces is essential for developing more efficient electrochemical processes. Here we exploit an exclusively surface-specific electrical transport spectroscopy (ETS) approach to probe the Pt-surface water protonation status and experimentally determine the surface hydronium pKa [Formula: see text] 4.3. Quantum mechanics (QM) and reactive dynamics using a reactive force field (ReaxFF) molecular dynamics (RMD) calculations confirm the enrichment of hydroniums (H3O[Formula: see text]) near Pt surface and predict a surface hydronium pKa of 2.5 to 4.4, corroborating the experimental results. Importantly, the observed Pt-surface hydronium pKa correlates well with the pH-dependent HER kinetics, with the protonated surface state at lower pH favoring fast Tafel kinetics with a Tafel slope of 30 mV per decade and the deprotonated surface state at higher pH following Volmer-step limited kinetics with a much higher Tafel slope of 120 mV per decade, offering a robust and precise interpretation of the pH-dependent HER kinetics. These insights may help design improved electrocatalysts for renewable energy conversion.
Collapse
Affiliation(s)
- Guangyan Zhong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
| | - Aamir Hassan Shah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Chengzhang Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Zhihong Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
| | - Sibo Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tianle Leng
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
- Liquid Sunlight Alliance, California Institute of Technology, Pasadena, CA 91125
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
15
|
Xiang H, Zheng Y, Chen Y, Xu Y, Hu TS, Feng Y, Zhou Y, Liu S, Chen X. Self-gating enhanced carrier transfer in semiconductor electrocatalyst verified in microdevice. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Kamat GA, Zamora Zeledón JA, Gunasooriya GTKK, Dull SM, Perryman JT, Nørskov JK, Stevens MB, Jaramillo TF. Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis. Commun Chem 2022; 5:20. [PMID: 36697647 PMCID: PMC9814610 DOI: 10.1038/s42004-022-00635-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/20/2022] [Indexed: 01/28/2023] Open
Abstract
Platinum is an important material with applications in oxygen and hydrogen electrocatalysis. To better understand how its activity can be modulated through electrolyte effects in the double layer microenvironment, herein we investigate the effects of different acid anions on platinum for the oxygen reduction/evolution reaction (ORR/OER) and hydrogen evolution/oxidation reaction (HER/HOR) in pH 1 electrolytes. Experimentally, we see the ORR activity trend of HClO4 > HNO3 > H2SO4, and the OER activity trend of HClO4 [Formula: see text] HNO3 ∼ H2SO4. HER/HOR performance is similar across all three electrolytes. Notably, we demonstrate that ORR performance can be improved 4-fold in nitric acid compared to in sulfuric acid. Assessing the potential-dependent role of relative anion competitive adsorption with density functional theory, we calculate unfavorable adsorption on Pt(111) for all the anions at HER/HOR conditions while under ORR/OER conditions [Formula: see text] binds the weakest followed by [Formula: see text] and [Formula: see text]. Our combined experimental-theoretical work highlights the importance of understanding the role of anions across a large potential range and reveals nitrate-like electrolyte microenvironments as interesting possible sulfonate alternatives to mitigate the catalyst poisoning effects of polymer membranes/ionomers in electrochemical systems. These findings help inform rational design approaches to further enhance catalyst activity via microenvironment engineering.
Collapse
Affiliation(s)
- Gaurav Ashish Kamat
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - José A Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | | | - Samuel M Dull
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Joseph T Perryman
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Jens K Nørskov
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Michaela Burke Stevens
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
17
|
Liu S, Wang C, Wu J, Tian B, Sun Y, Lv Y, Mu Z, Sun Y, Li X, Wang F, Wang Y, Tang L, Wang P, Li Y, Ding M. Efficient CO 2 Electroreduction with a Monolayer Bi 2WO 6 through a Metallic Intermediate Surface State. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shengtang Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chun Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jianghua Wu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yang Lv
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuxia Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoshan Li
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fangyuan Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiqi Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lingyu Tang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Tian B, Shin H, Liu S, Fei M, Mu Z, Liu C, Pan Y, Sun Y, Goddard WA, Ding M. Double-Exchange-Induced in situ Conductivity in Nickel-Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angew Chem Int Ed Engl 2021; 60:16448-16456. [PMID: 33973312 DOI: 10.1002/anie.202101906] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/25/2021] [Indexed: 11/09/2022]
Abstract
Motivated by in silico predictions that Co, Rh, and Ir dopants would lead to low overpotentials to improve OER activity of Ni-based hydroxides, we report here an experimental confirmation on the altered OER activities for a series of metals (Mo, W, Fe, Ru, Co, Rh, Ir) doped into γ-NiOOH. The in situ electrical conductivity for metal doped γ-NiOOH correlates well with the trend in enhanced OER activities. Density functional theory (DFT) calculations were used to rationalize the in situ conductivity of the key intermediate states of metal doped γ-NiOOH during OER. The simultaneous increase of OER activity with intermediate conductivity was later rationalized by their intrinsic connections to the double exchange (DE) interaction between adjacent metal ions with various d orbital occupancies, serving as an indicator for the key metal-oxo radical character, and an effective descriptor for the mechanistic evaluation and theoretical guidance in design and screening of efficient OER catalysts.
Collapse
Affiliation(s)
- Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hyeyoung Shin
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP), California Institute of Technology, Pasadena, CA, 91125, USA.,Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon, 34134, Korea
| | - Shengtang Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Muchun Fei
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cheng Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - William A Goddard
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
19
|
Tian B, Shin H, Liu S, Fei M, Mu Z, Liu C, Pan Y, Sun Y, Goddard WA, Ding M. Double‐Exchange‐Induced in situ Conductivity in Nickel‐Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bailin Tian
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hyeyoung Shin
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP) California Institute of Technology Pasadena CA 91125 USA
- Graduate School of Energy Science and Technology (GEST) Chungnam National University Daejeon 34134 Korea
| | - Shengtang Liu
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Muchun Fei
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Cheng Liu
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - William A. Goddard
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP) California Institute of Technology Pasadena CA 91125 USA
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
20
|
Li Y, Morel A, Gallant D, Mauzeroll J. Ag + Interference from Ag/AgCl Wire Quasi-Reference Counter Electrode Inducing Corrosion Potential Shift in an Oil-Immersed Scanning Micropipette Contact Method Measurement. Anal Chem 2021; 93:9657-9662. [PMID: 34236831 DOI: 10.1021/acs.analchem.1c01045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantitative scanning micropipette contact method measurements are subject to the deleterious effects of reference electrode interference. The commonly used Ag/AgCl wire quasi-reference counter electrode in the miniaturized electrochemical cell of the scanning micropipette contact method was found to leak Ag+ into the electrolyte solution. The reduction of these Ag+ species at the working electrode surface generates a faradaic current, which significantly affects the low magnitude currents inherently measured in the scanning micropipette contact method. We demonstrate that, during the microscopic corrosion investigation of the AA7075-T73 alloy using the oil-immersed scanning micropipette contact method, the cathodic current was increased by the Ag+ reduction, resulting in positive shifts of corrosion potentials. The use of a leak-free Ag/AgCl electrode or an extended distance between the Ag/AgCl wire and micropipette tip droplet eliminated the Ag+ contamination, making it possible to measure accurate corrosion potentials during the oil-immersed scanning micropipette contact method measurements.
Collapse
Affiliation(s)
- Yuanjiao Li
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Alban Morel
- Automotive and Surface Transportation Research Centre, Division of Transportation and Manufacturing, National Research Council Canada, Aluminum Technology Center, 501 University Blvd. East, Saguenay, Quebec G7H 8C3, Canada
| | - Danick Gallant
- Automotive and Surface Transportation Research Centre, Division of Transportation and Manufacturing, National Research Council Canada, Aluminum Technology Center, 501 University Blvd. East, Saguenay, Quebec G7H 8C3, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
21
|
Liu L, Corma A. Structural transformations of solid electrocatalysts and photocatalysts. Nat Rev Chem 2021; 5:256-276. [PMID: 37117283 DOI: 10.1038/s41570-021-00255-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/13/2023]
Abstract
Heterogeneous catalysts often undergo structural transformations when they operate under thermal reaction conditions. These transformations are reflected in their evolving catalytic activity, and a fundamental understanding of the changing nature of active sites is vital for the rational design of solid materials for applications. Beyond thermal catalysis, both photocatalysis and electrocatalysis are topical because they can harness renewable energy to drive uphill reactions that afford commodity chemicals and fuels. Although structural transformations of photocatalysts and electrocatalysts have been observed in operando, the resulting implications for catalytic behaviour are not fully understood. In this Review, we summarize and compare the structural evolution of solid thermal catalysts, electrocatalysts and photocatalysts. We suggest that well-established knowledge of thermal catalysis offers a good basis to understand emerging photocatalysis and electrocatalysis research.
Collapse
|
22
|
Zhang H, Lu XF, Wu ZP, Lou XWD. Emerging Multifunctional Single-Atom Catalysts/Nanozymes. ACS CENTRAL SCIENCE 2020; 6:1288-1301. [PMID: 32875072 PMCID: PMC7453415 DOI: 10.1021/acscentsci.0c00512] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 05/09/2023]
Abstract
Single-atom catalysts (SACs), in which the metal active sites are isolated on the support and stabilized by coordinated atoms such as oxygen, nitrogen, sulfur, etc., represent the maximum usage efficiency of the metal atoms. Benefiting from the recent progress in synthetic strategies, characterization methods, and computational models, many SACs that deliver an impressive catalytic performance for a variety of reactions have been developed. The catalytic selectivity and activity are critical issues that need to be optimized and augmented in the areas of nanotechnology and biomedicine. This review summarizes some recent experimental and theoretical progress aimed at clarifying the structure of SACs and how they influence the catalytic performance. The examples described here elaborate on the utility of SACs and highlight the strengths of these catalysts in the applications of biomedicine, environmental protection, and energy conversion. Finally, some current challenges and future perspectives for SACs are also discussed.
Collapse
Affiliation(s)
- Huabin Zhang
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xue Feng Lu
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Zhi-Peng Wu
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Green
Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiong Wen David Lou
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- E-mail:
| |
Collapse
|
23
|
Mu Z, Yang M, He W, Pan Y, Zhang P, Li X, Wu X, Ding M. On-Chip Electrical Transport Investigation of Metal Nanoparticles: Characteristic Acidic and Alkaline Adsorptions Revealed on Pt and Au Surface. J Phys Chem Lett 2020; 11:5798-5806. [PMID: 32597655 DOI: 10.1021/acs.jpclett.0c01282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal nanocrystals have been extensively explored as efficient and tailorable electrocatalysts for various sustainable energy technologies. Precise understanding of molecular interactions at the electrode-electrolyte interfaces during electrochemical processes, which mostly relies on the interpretation of spectroscopic surface information, is crucial to the innovations in catalyst design and optimization of reaction conditions. Here, we demonstrate the first in situ electrical transport evidence of pH-dependent surface anionic adsorptions on metal nanoparticles (MNPs), enabled by the on-chip electrical transport spectroscopy (ETS) of continuous nanoparticle (NP) thin films. Our results on platinum and gold NPs reveal the significant (and distinct) impacts of acid-base environments on their surface adsorption features, which contributes to the further understanding of gold- and platinum-based electrocatalytic systems. The successful employment of ETS on metal nanoparticles achieves a more general transport-based signaling technique that conveniently fits the abundance of catalytic materials with zero-dimension morphology.
Collapse
Affiliation(s)
- Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Miao Yang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen He
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuefei Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuejun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Yang H, He Q, Liu Y, Li H, Zhang H, Zhai T. On-chip electrocatalytic microdevice: an emerging platform for expanding the insight into electrochemical processes. Chem Soc Rev 2020; 49:2916-2936. [DOI: 10.1039/c9cs00601j] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This comprehensive summary of on-chip electrocatalytic microdevices will expand the insight into electrochemical processes, ranging from dynamic exploration to performance optimization.
Collapse
Affiliation(s)
- Huan Yang
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Qiyuan He
- Department of Materials Science and Engineering
- City University of Hong Kong
- Hong Kong
- P. R. China
| | - Youwen Liu
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Hua Zhang
- Department of Chemistry
- City University of Hong Kong
- Hong Kong
- P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| |
Collapse
|
25
|
He Q, Lin Z, Ding M, Yin A, Halim U, Wang C, Liu Y, Cheng HC, Huang Y, Duan X. In Situ Probing Molecular Intercalation in Two-Dimensional Layered Semiconductors. NANO LETTERS 2019; 19:6819-6826. [PMID: 31498650 DOI: 10.1021/acs.nanolett.9b01898] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electrochemical molecular intercalation of two-dimensional layered materials (2DLMs) produces stable and highly tunable superlattices between monolayer 2DLMs and self-assembled molecular layers. This process allows unprecedented flexibility in integrating highly distinct materials with atomic/molecular precision to produce a new generation of organic/inorganic superlattices with tunable chemical, electronic, and optical properties. To better understand the intercalation process, we developed an on-chip platform based on MoS2 model devices and used optical, electrochemical, and in situ electronic characterizations to resolve the intermediate stages during the intercalation process and monitor the evolution of the molecular superlattices. With sufficient charge injection, the organic cetyltrimethylammonium bromide (CTAB) intercalation induces the phase transition of MoS2 from semiconducting 2H phase to semimetallic 1T phase, resulting in a dramatic increase of electrical conductivity. Therefore, in situ monitoring the evolution of the device conductance reveals the electrochemical intercalation dynamics with an abrupt conductivity change, signifying the onset of the molecule intercalation. In contrast, the intercalation of tetraheptylammonium bromide (THAB), a branched molecule in a larger size, resulting in a much smaller number of charges injected to avoid the 2H to 1T phase transition. Our study demonstrates a powerful platform for in situ monitoring the molecular intercalation of many 2DLMs (MoS2, WSe2, ReS2, PdSe2, TiS2, and graphene) and systematically probing electronic, optical, and optoelectronic properties at the single-nanosheet level.
Collapse
|
26
|
Zhao Z, Chen C, Liu Z, Huang J, Wu M, Liu H, Li Y, Huang Y. Pt-Based Nanocrystal for Electrocatalytic Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808115. [PMID: 31183932 DOI: 10.1002/adma.201808115] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Currently, Pt-based electrocatalysts are adopted in the practical proton exchange membrane fuel cell (PEMFC), which converts the energy stored in hydrogen and oxygen into electrical power. However, the broad implementation of the PEMFC, like replacing the internal combustion engine in the present automobile fleet, sets a requirement for less Pt loading compared to current devices. In principle, the requirement needs the Pt-based catalyst to be more active and stable. Two main strategies, engineering of the electronic (d-band) structure (including controlling surface facet, tuning surface composition, and engineering surface strain) and optimizing the reactant adsorption sites are discussed and categorized based on the fundamental working principle. In addition, general routes for improving the electrochemical surface area, which improves activity normalized by the unit mass of precious group metal/platinum group metal, and stability of the electrocatalyst are also discussed. Furthermore, the recent progress of full fuel cell tests of novel electrocatalysts is summarized. It is suggested that a better understanding of the reactant/intermediate adsorption, electron transfer, and desorption occurring at the electrolyte-electrode interface is necessary to fully comprehend these electrified surface reactions, and standardized membrane electrode assembly (MEA) testing protocols should be practiced, and data with full parameters detailed, for reliable evaluation of catalyst functions in devices.
Collapse
Affiliation(s)
- Zipeng Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Changli Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zeyan Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jin Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Menghao Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haotian Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Yujing Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
27
|
Yan C, Li HR, Chen X, Zhang XQ, Cheng XB, Xu R, Huang JQ, Zhang Q. Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes. J Am Chem Soc 2019; 141:9422-9429. [DOI: 10.1021/jacs.9b05029] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chong Yan
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hao-Ran Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xue-Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xin-Bing Cheng
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Rui Xu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jia-Qi Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|