1
|
Deshmukh SH, Yadav S, Chowdhury T, Pathania A, Sapra S, Bagchi S. Probing surface interactions in CdSe quantum dots with thiocyanate ligands. NANOSCALE 2024; 16:14922-14931. [PMID: 39042097 DOI: 10.1039/d4nr01507j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Surface chemistry dictates the optoelectronic properties of semiconductor quantum dots (QDs). Tailoring these properties relies on the meticulous selection of surface ligands for efficient passivation. While long-chain organic ligands boast a well-understood passivation mechanism, the intricacies of short inorganic ionic ligands remain largely unexplored. This study sheds light on the surface-passivation mechanism of short inorganic ligands, particularly focusing on SCN- ions on CdSe QDs. Employing steady-state and time-resolved infrared spectroscopic techniques, we elucidated the surface-ligand interactions and coordination modes of SCN--capped CdSe QDs. Comparative analysis with studies on CdS QDs unveils intriguing insights into the coordination behavior and passivation efficacy of SCN- ions on Cd2+ rich QD surfaces. Our results reveal the requirement of both surface-bound (strong binding) and weakly-interacting interfacial SCN- ions for effective CdSe QD passivation. Beyond fostering a deeper understanding of surface-ligand interactions and highlighting the importance of a comprehensive exploration of ligand chemistries, this study holds implications for optimizing QD performance across diverse applications.
Collapse
Affiliation(s)
- Samadhan H Deshmukh
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sushma Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tubai Chowdhury
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Akhil Pathania
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sameer Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
2
|
Berlinger SA, Küpers V, Dudenas PJ, Schinski D, Flagg L, Lamberty ZD, McCloskey BD, Winter M, Frechette J. Cation valency in water-in-salt electrolytes alters the short- and long-range structure of the electrical double layer. Proc Natl Acad Sci U S A 2024; 121:e2404669121. [PMID: 39047037 PMCID: PMC11295052 DOI: 10.1073/pnas.2404669121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Highly concentrated aqueous electrolytes (termed water-in-salt electrolytes, WiSEs) at solid-liquid interfaces are ubiquitous in myriad applications including biological signaling, electrosynthesis, and energy storage. This interface, known as the electrical double layer (EDL), has a different structure in WiSEs than in dilute electrolytes. Here, we investigate how divalent salts [zinc bis(trifluoromethylsulfonyl)imide, Zn(TFSI)2], as well as mixtures of mono- and divalent salts [lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) mixed with Zn(TFSI)2], affect the short- and long-range structure of the EDL under confinement using a multimodal combination of scattering, spectroscopy, and surface forces measurements. Raman spectroscopy of bulk electrolytes suggests that the cation is closely associated with the anion regardless of valency. Wide-angle X-ray scattering reveals that all bulk electrolytes form ion clusters; however, the clusters are suppressed with increasing concentration of the divalent ion. To probe the EDL under confinement, we use a Surface Forces Apparatus and demonstrate that the thickness of the adsorbed layer of ions at the interface grows with increasing divalent ion concentration. Multiple interfacial layers form following this adlayer; their thicknesses appear dependent on anion size, rather than cation. Importantly, all electrolytes exhibit very long electrostatic decay lengths that are insensitive to valency. It is likely that in the WiSE regime, electrostatic screening is mediated by the formation of ion clusters rather than individual well-solvated ions. This work contributes to understanding the structure and charge-neutralization mechanism in this class of electrolytes and the interfacial behavior of mixed-electrolyte systems encountered in electrochemistry and biology.
Collapse
Affiliation(s)
- Sarah A. Berlinger
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Verena Küpers
- Münster Electrochemical Energy Technology, University of Münster, Münster48149, Germany
| | - Peter J. Dudenas
- Polymer Processing Group, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD20899
| | - Devin Schinski
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Lucas Flagg
- Polymer Processing Group, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD20899
| | - Zachary D. Lamberty
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Bryan D. McCloskey
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Martin Winter
- Münster Electrochemical Energy Technology, University of Münster, Münster48149, Germany
- Helmholtz-Institute Münster Ionics in Energy Storage, Münster48149, Germany
| | - Joelle Frechette
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| |
Collapse
|
3
|
Hossain MI, Wang H, Adhikari L, Baker GA, Mezzetta A, Guazzelli L, Mussini P, Xie W, Blanchard GJ. Structure-Dependence and Mechanistic Insights into the Piezoelectric Effect in Ionic Liquids. J Phys Chem B 2024; 128:1495-1505. [PMID: 38301038 PMCID: PMC10961722 DOI: 10.1021/acs.jpcb.3c07967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
We reported recently that two imidazolium room-temperature ionic liquids (RTILs) exhibit the direct piezoelectric effect (J. Phys. Chem. Lett., 2023, 14, 2731-2735). We have subsequently investigated several other RTILs with pyrrolidinium and imidazolium cations and tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions in an effort to gain insight into the generality and mechanism of the effect. All the RTILs studied exhibit the direct piezoelectric effect, with a magnitude (d33) and threshold force that depend on the structures of both the cation and anion. The structure-dependence and existence of a threshold force for the piezoelectric effect are consistent with a pressure-induced liquid-to-crystalline solid phase transition in the RTILs, and this is consistent with experimental X-ray diffraction data.
Collapse
Affiliation(s)
- Md. Iqbal Hossain
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Haozhe Wang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Laxmi Adhikari
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A. Baker
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Andrea Mezzetta
- Department
of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Department
of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Patrizia Mussini
- Department
of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Weiwei Xie
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - G. J. Blanchard
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Abstract
The piezoelectric effect was discovered over a century ago, and it has found wide application since that time. The direct piezoelectric effect is the production of charge upon application of force to a material, and the converse piezoelectric effect is a change in the material dimension(s) upon the application of a potential. To date, piezoelectric effects have been observed only in solid-phase materials. We report here the observation of the direct piezoelectric effect in room-temperature ionic liquids (RTILs). The RTILs 1-butyl-3-methyl imidazolium bis(trifluoromethyl-sulfonyl)imide (BMIM+TFSI-) and 1-hexyl-3-methyl imidazolium bis(trifluoromethylsulfonyl) imide (HMIM+TFSI-) produce a potential upon the application of force when confined in a cell, with the magnitude of the potential being directly proportional to the force applied. The effect is one order of magnitude smaller than that seen in quartz. This is the first report to our knowledge of the direct piezoelectric effect in a neat liquid. Its discovery has fundamental implications about the organization and dynamics in ionic liquids and invites theoretical treatment.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Hossain MI, Adhikari L, Baker GA, Blanchard GJ. Relating the Induced Free Charge Density Gradient in a Room-Temperature Ionic Liquid to Molecular-Scale Organization. J Phys Chem B 2023; 127:1780-1788. [PMID: 36790441 DOI: 10.1021/acs.jpcb.2c07745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We report on dilution-dependent changes in the local environments of chromophores incorporated into room-temperature ionic liquid (RTIL)-molecular solvent binary systems where the ionic liquid cation and molecular solvent possess the same alkyl chain length. We have used the RTIL 1-decyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (DMPyrr+TFSI-) and the molecular solvent 1-decanol. Perylene was used as a non-polar probe, and cresyl violet (CV+) was used as a polar probe chromophore. We observe that in both regions there is a change in the chromophore local environments with increasing 1-decanol content. The changes in the nonpolar regions of the binary RTIL-molecular solvent system occur at a lower 1-decanol concentration than changes in the polar regions. Both chromophores reorient as oblate rotors in this binary system, allowing detailed information on the relative values of the Cartesian components of the rotational diffusion constants to be extracted from the experimental data. The induced free charge density gradient, ρf, known to exist in RTILs, persists to high 1-decanol content (1-decanol mole fraction of 0.75), with the structural details of the gradient being reflected in depth-dependent changes in the Cartesian components of the rotational diffusion constants of CV+. This is the first time that changes in molecular organization have been correlated with ρf.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Iqbal Hossain M, Blanchard G. Dilution-induced changes in room temperature ionic liquids. Persistent compositional heterogeneity and the importance of dipolar interactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Karunaratne W, Zhao M, Castner EW, Margulis CJ. Vacuum Interfacial Structure and X-ray Reflectivity of Imidazolium-Based Ionic Liquids with Perfluorinated Anions from a Theory and Simulations Perspective. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:13936-13945. [PMID: 36017361 PMCID: PMC9394757 DOI: 10.1021/acs.jpcc.2c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
We report studies of the vacuum interfacial structure of a series of 1-methyl-3-alkylimidazolium bis(perfluoroalkanesulfonyl)imide ionic liquids (ILs) and predict and explain their Fresnel-normalized X-ray reflectivity. To better interpret the results, we use a theory we recently developed dubbed "the peaks and antipeaks analysis of reflectivity" which splits the overall signal into that of different pair subcomponents. Whereas the overall reflectivity signal is not very informative, the peak and trough intensities for the pair subcomponents provide rich information for analysis. When species containing cationic alkyl or anionic fluoroalkyl tails are present at the interface, a tail layer is found next to a vacuum, and this tail layer can be composed of both alkyl and fluoroalkyl moieties. To maintain the positive-negative alternation of charged groups, alkyl and fluoroalkyl tails must necessarily be nearby and cannot segregate. Charged groups are found in the subsequent layer just below the interface and arranged to achieve lateral charge neutrality. In general, fluctuations at and away from the interface are based on polarity (i.e., heads and tails) and not on charge; when there are no significant alkyl or fluoroalkyl moieties in the IL, atomic density fluctuations away from the interface are small and appear to exist for the purpose of achieving lateral charge balance. For all the systems reported here, the persistence length of density fluctuations does not go beyond ∼7 nm.
Collapse
Affiliation(s)
| | - Man Zhao
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Edward W. Castner
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Claudio J. Margulis
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
8
|
Wang Y, Adhikari L, Baker GA, Blanchard GJ. Cation structure-dependence of the induced free charge density gradient in imidazolium and pyrrolidinium ionic liquids. Phys Chem Chem Phys 2022; 24:19314-19320. [PMID: 35929735 DOI: 10.1039/d2cp01066f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the structure-dependence and magnitude of the induced free charge density gradient (ρf) seen in room-temperature ionic liquids (RTILs) with imidazolium and pyrrolidinium cations. We characterize the spatially-resolved rotational diffusion dynamics of a trace-level cationic chromophore to characterize ρf in three different pyrrolidinium RTILs and two imidazolium RTILs. Our data show that the magnitude of ρf depends primarily on the alkyl chain length of RTIL cation and the persistence length of ρf is independent of RTILs' cation structure. These findings collectively suggest that mesoscopic structure in RTILs plays a significant role in allowing charge density gradients to form.
Collapse
Affiliation(s)
- Yufeng Wang
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| | - Laxmi Adhikari
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - Gary A Baker
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - G J Blanchard
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Wang Y, Adhikari L, Baker GA, Blanchard GJ. Cation structure-dependence of the Pockels effect in aprotic ionic liquids. Phys Chem Chem Phys 2022; 24:18067-18072. [PMID: 35861617 DOI: 10.1039/d2cp01068b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the dependence of surface charge-induced birefringence (the Pockels effect) in room temperature ionic liquids (RTILs) with different cation constituents. The induced birefringence is related to the induced free charge density gradient (ρf) in the RTIL. The RTILs are confined in a lens-shaped cell and the surface charge density of the concave cell surface is controlled by the current passed through the surface ITO film. We find that, in all cases, the induced birefringence is proportional to the surface charge density and that the change in refractive index nearest the ITO surface can be on the order of 20%. Our findings indicate that the induced birefringence depends more sensitively on the cation aliphatic substituent length than on the identity of the charge-carrying headgroup.
Collapse
Affiliation(s)
- Yufeng Wang
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| | - Laxmi Adhikari
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - Gary A Baker
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - G J Blanchard
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Hossain MI, Blanchard GJ. The effect of dilution on induced free charge density gradients in room temperature ionic liquids. Phys Chem Chem Phys 2022; 24:3844-3853. [PMID: 35088776 DOI: 10.1039/d1cp05027c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on changes in the magnitude and length scale of the induced free charge density gradient, ρf, in three imidazolium room temperature ionic liquids (RTILs) with dilution by methanol and acetonitrile. Using depth- and time-resolved fluorescence measurements of cresyl violet rotational diffusion, we find that ρf persists in RTILs to varying degrees depending on RTIL and diluent identity, and in all cases the functional form of ρf is not a smooth monotonic diminution in either magnitude or persistence length with increasing diluent, but a stepwise collapse. This finding is consistent with changes in the bulk RTIL as a function of dilution seen using rotational diffusion measurements that show the rotating entity in bulk RTILs exhibits a larger effective hydrodynamic volume than would be expected based on bulk viscosity data for the diluted RTILs. This excess hydrodynamic volume can be understood in the context of aggregation of RTIL ion pairs in the diluted RTIL system. The size of the aggregates is seen to depend on RTIL identity and diluent, and in all cases aggregate size increases with increasing dilution. This finding is consistent with the ρf dependence on dilution data. The collapse of ρf is seen to correlate with the onset of RTIL ion pair dimer formation, a condition that may facilitate dissociated RTIL ion mobility in the binary system.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| | - G J Blanchard
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| |
Collapse
|
11
|
Limits in the Enhancement Factor in Near-Brewster Angle Reflection Pump-Probe Two-Dimensional Infrared Spectroscopy. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
12
|
Dereka B, Lewis NHC, Keim JH, Snyder SA, Tokmakoff A. Characterization of Acetonitrile Isotopologues as Vibrational Probes of Electrolytes. J Phys Chem B 2021; 126:278-291. [PMID: 34962409 PMCID: PMC8762666 DOI: 10.1021/acs.jpcb.1c09572] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetonitrile has emerged as a solvent candidate for novel electrolyte formulations in metal-ion batteries and supercapacitors. It features a bright local C≡N stretch vibrational mode whose infrared (IR) signature is sensitive to battery-relevant cations (Li+, Mg2+, Zn2+, Ca2+) both in pure form and in the presence of water admixture across a full possible range of concentrations from the dilute to the superconcentrated regime. Stationary and time-resolved IR spectroscopy thus emerges as a natural tool to study site-specific intermolecular interactions from the solvent perspective without introducing an extrinsic probe that perturbs solution morphology and may not represent the intrinsic dynamics in these electrolytes. The metal-coordinated acetonitrile, water-separated metal-acetonitrile pair, and free solvent each have a distinct vibrational signature that allows their unambiguous differentiation. The IR band frequency of the metal-coordinated acetonitrile depends on the ion charge density. To study the ion transport dynamics, it is necessary to differentiate energy-transfer processes from structural interconversions in these electrolytes. Isotope labeling the solvent is a necessary prerequisite to separate these processes. We discuss the design principles and choice of the CD313CN label and characterize its vibrational spectroscopy in these electrolytes. The Fermi resonance between 13C≡N and C-D stretches complicates the spectral response but does not prevent its effective utilization. Time-resolved two-dimensional (2D) IR spectroscopy can be performed on a mixture of acetonitrile isotopologues and much can be learned about the structural dynamics of various species in these formulations.
Collapse
Affiliation(s)
- Bogdan Dereka
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| | - Nicholas H C Lewis
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| | - Jonathan H Keim
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Scott A Snyder
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| |
Collapse
|
13
|
Lewis NHC, Tokmakoff A. Lineshape Distortions in Internal Reflection Two-Dimensional Infrared Spectroscopy: Tuning across the Critical Angle. J Phys Chem Lett 2021; 12:11843-11849. [PMID: 34871004 PMCID: PMC8686116 DOI: 10.1021/acs.jpclett.1c03432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Reflection mode two-dimensional infrared spectroscopy (R-2DIR) has recently emerged as a tool that expands the utility of ultrafast IR spectroscopy toward a broader class of materials. The impact of experimental configurations on the potential distortions of the transient reflectance (TR) spectra has not been fully explored, particularly in the vicinity of the critical angle θc and through the crossover from total internal reflection to partial reflection. Here we study the impact on the spectral lineshape of a dilute bulk solution as θc is varied across the incident angle by tuning the refractive index of the solvent. We demonstrate the significance of several distortions, including the appearance of phase twisted lineshapes and apparent changes in the spectral inhomogeneity, and show how these distortions impact the interpretation of the TR and R-2DIR spectroscopies.
Collapse
|
14
|
Abstract
Abstract
Beta-detected NMR is a type of nuclear magnetic resonance that uses the asymmetric property of radioactive beta decay to provide a “nuclear” detection scheme. It is vastly more sensitive than conventional NMR on a per nuclear spin basis but requires a suitable radioisotope. I briefly present the general aspects of the method and its implementation at TRIUMF, where ion implantation of the NMR radioisotope is used to study a variety of samples including crystalline solids and thin films, and more recently, soft matter and even room temperature ionic liquids. Finally, I review the progress of the TRIUMF βNMR program in the period 2015–2021.
Collapse
Affiliation(s)
- W. Andrew MacFarlane
- Department of Chemistry , University of British Columbia , Vancouver , BC , 2036, Main Mall, V6T 1Z1 , Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, , Vancouver , BC , 2355, East Mall, V6T 1Z4 , Canada
- TRUMF, , Vancouver , BC , 4004 , Wesbrook Mall , V6T 2A3 , Canada
| |
Collapse
|
15
|
Ntim S, Sulpizi M. Effects of shear flow on the structure and dynamics of ionic liquids in a metallic nanoconfinement. Phys Chem Chem Phys 2021; 23:24357-24364. [PMID: 34676844 DOI: 10.1039/d1cp01055g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It has been shown that a weak shear can induce crystallisation in a disordered, glassy state. In this study, we use molecular dynamics simulations in order to investigate the out-of-equilibrium properties of [BMIM][BF4] confined between metal slabs. In particular, we want to understand the extent to which the shear flow modifies the interfacial properties. In particular, the questions we address here are (i) is the shear able to promote the crystalline phase in [BMIM][BF4]? (ii) Can, as a consequence of shear flow, a solid-like layer develop at the interface with a metallic surface? (iii) What are the tribological properties of nanoconfined [BMIM][BF4]? We find that the system behaves quite differently from the ideal linear Couette flow. Indeed, the portion of fluid closer to the shearing slabs behaves as a disordered, solid-like layer, which, under the investigated conditions extends to a few nanometres. The linear velocity regime is only recovered in the central region of the ionic liquid slab. The formation of such a solid-like glassy rather than crystalline layer is in agreement with recent mechanical impedance measurements performed on nano-confined ionic liquids.
Collapse
Affiliation(s)
- Samuel Ntim
- Institut für Physik, Johannes Gutenberg Universität, Staudingerweg 7, 55128-Mainz, Germany.
| | - Marialore Sulpizi
- Institut für Physik, Johannes Gutenberg Universität, Staudingerweg 7, 55128-Mainz, Germany.
| |
Collapse
|
16
|
Greco R, Lloret V, Rivero-Crespo MÁ, Hirsch A, Doménech-Carbó A, Abellán G, Leyva-Pérez A. Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids. JACS AU 2021; 1:786-794. [PMID: 34240079 PMCID: PMC8243323 DOI: 10.1021/jacsau.1c00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 05/05/2023]
Abstract
Ionic liquids are composed of an organic cation and a highly delocalized perfluorinated anion, which remain tight to each other and neutral across the extended liquid framework. Here we show that n-alkanes in millimolar amounts enable a sufficient ion charge separation to release the innate acidity of the ionic liquid and catalyze the industrially relevant alkylation of phenol, after generating homogeneous, self-stabilized, and surfactant-free microdroplets (1-5 μm). This extremely mild and simple protocol circumvents any external additive or potential ionic liquid degradation and can be extended to water, which spontaneously generates microdroplets (ca. 3 μm) and catalyzes Brönsted rather than Lewis acid reactions. These results open new avenues not only in the use of ionic liquids as acid catalysts/solvents but also in the preparation of surfactant-free, well-defined ionic liquid microemulsions.
Collapse
Affiliation(s)
- Rossella Greco
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
| | - Vicent Lloret
- Department
of Chemistry and Pharmacy, Friedrich−Alexander−Universität
Erlangen−Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint
Institute of Advanced Materials and Processes (ZMP), Friedrich−Alexander−Universität Erlangen−Nürnberg
(FAU), Dr.-Mack Strasse 81, 90762 Fürth, Germany
| | - Miguel Ángel Rivero-Crespo
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
| | - Andreas Hirsch
- Department
of Chemistry and Pharmacy, Friedrich−Alexander−Universität
Erlangen−Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint
Institute of Advanced Materials and Processes (ZMP), Friedrich−Alexander−Universität Erlangen−Nürnberg
(FAU), Dr.-Mack Strasse 81, 90762 Fürth, Germany
| | - Antonio Doménech-Carbó
- Departament
de Química Analítica, Universitat
de València, Dr.
Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Abellán
- Instituto
de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Valencia, Spain
- . Phone: +34963544074. Fax: +34963543273
| | - Antonio Leyva-Pérez
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
- . Phone: +34963877800. Fax: +349638 77809
| |
Collapse
|
17
|
Wang Y, Swain GM, Blanchard GJ. Charge-Induced Birefringence in a Room-Temperature Ionic Liquid. J Phys Chem B 2021; 125:950-955. [PMID: 33464907 DOI: 10.1021/acs.jpcb.0c10045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have reported previously on the existence of a surface charge-induced free charge density gradient (ρf) in room-temperature ionic liquids (RTILs) with a characteristic persistence length of ca. 50 μm [Ma, K. Langmuir 2016, 32, 9507-9512]. The free charge density gradient is related to the dielectric response of the RTIL. We report here on the existence of a surface charge-induced gradient in the RTIL refractive index and quantify the relationship between the index gradient and ρf. Because ρf is uniaxial, the induced refractive index gradient is manifested as an induced birefringence. The RTIL sample holder has a curved surface such that the RTIL can function as a lens, and ρf is controlled by the surface charge density (σs) of the (concave) RTIL support. Current passed through an indium-doped tin oxide (ITO) surface layer on the support surface controls σs. The far-field image of light passed through the RTIL lens as a function of σs is used to measure the charge-induced changes of n in the RTIL. We demonstrate a modulation of the refractive index on the order of 15%, proportional to σs. This report places the relationship between ρf and RTIL dielectric response on a quantitative footing and suggests the utility of RTILs for electro-optic applications.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - Greg M Swain
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
18
|
Wang Y, Parvis F, Hossain MI, Ma K, Jarošová R, Swain GM, Blanchard GJ. Local and Long-Range Organization in Room Temperature Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:605-615. [PMID: 33411540 DOI: 10.1021/acs.langmuir.9b03995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Room temperature ionic liquids (RTILs) have a wide range of current and potential applications, in areas ranging from supercapacitor energy storage to sequestration of toxic gas phase species and use as reusable solvents for selected organic reactions. All these applications stem from their unique physical and chemical properties, which remain understood to only a limited extent. Among the issues of greatest importance is the extent to which RTILs exist as dissociated ionic species and the length scales over which some types of organizations are seen to exist in them. In this Invited Feature Article, we review the current understanding of organization in this family of materials, where opportunities lie in terms of deepening our understanding, and what potential applications would benefit from gaining such knowledge.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Fatemeh Parvis
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Md Iqbal Hossain
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Ke Ma
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Romana Jarošová
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Greg M Swain
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
19
|
Lu Y, Chen W, Wang Y, Huo F, Dong Y, Wei L, He H. Research Progress on the Preparation and Properties of Two Dimensional Structure of Ionic Liquids. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Wu B, Breen JP, Xing X, Fayer MD. Controlling the Dynamics of Ionic Liquid Thin Films via Multilayer Surface Functionalization. J Am Chem Soc 2020; 142:9482-9492. [PMID: 32349470 DOI: 10.1021/jacs.0c03044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The structural dynamics of planar thin films of an ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2) as a function of surface charge density and thickness were investigated using two-dimensional infrared (2D IR) spectroscopy. The films were made by spin coating a methanol solution of the IL on silica substrates that were functionalized with alkyl chains containing head groups that mimic the IL cation. The thicknesses of the ionic liquid films ranged from ∼50 to ∼250 nm. The dynamics of the films are slower than those in the bulk IL, becoming increasingly slow as the films become thinner. Control of the dynamics of the IL films can be achieved by adjusting the charge density on substrates through multilayer network surface functionalization. The charge density of the surface (number of positively charged groups in the network bound to the surface per unit area) is controlled by the duration of the functionalization reaction. As the charge density is increased, the IL dynamics become slower. For comparison, the surface was functionalized with three different neutral groups. Dynamics of the IL films on the functionalized neutral surfaces are faster than on any of the ionic surfaces but still slower than the bulk IL, even for the thickest films. These results can have implications in applications that employ ILs that have electrodes, such as batteries, as the electrode surface charge density will influence properties like diffusion close to the surface.
Collapse
Affiliation(s)
- Boning Wu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - John P Breen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiangyu Xing
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Yamada SA, Hung ST, Thompson WH, Fayer MD. Effects of pore size on water dynamics in mesoporous silica. J Chem Phys 2020; 152:154704. [DOI: 10.1063/1.5145326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Samantha T. Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
22
|
Charge reduction in ions in the ionic liquid 1-ethy-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide on the Au(111) surface. Theor Chem Acc 2020. [DOI: 10.1007/s00214-019-2527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|