1
|
Naveenkumar PM, Maheshwari H, Gundabala V, Mann S, Sharma KP. Patterning of Protein-Sequestered Liquid-Crystal Droplets Using Acoustic Wave Trapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:871-881. [PMID: 38131278 DOI: 10.1021/acs.langmuir.3c03031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Development of spatially organized structures and understanding their role in controlling kinetics of multistep chemical reactions are essential for the successful design of efficient systems and devices. While studies that showcase different types of methodologies for the spatial organization of various colloidal systems are known, design and development of well-defined hierarchical assemblies of liquid-crystal (LC) droplets and subsequent demonstration of biological reactions using such assemblies still remain elusive. Here, we show reversible and reconfigurable one-dimensional (1D) assemblies of protein-bioconjugate-sequestered monodisperse LC droplets by combining microfluidics with noninvasive acoustic wave trapping technology. Tunable spatial geometries and lattice dimensions can be achieved in an aqueous medium comprising ≈19 or 62 μm LC droplets. Different assemblies of a mixed population of larger and smaller droplets sequestered with glucose oxidase (GOx) and horseradish peroxidase (HRP), respectively, exhibit spatially localized enzyme kinetics with higher initial rates of reaction compared with GOx/HRP cascades implemented in the absence of an acoustic field. This can be attributed to the direct substrate transfer/channeling between the two complementary enzymes in close proximity. Therefore, our study provides an initial step toward the fabrication of LC-based devices for biosensing applications.
Collapse
Affiliation(s)
| | - Harsha Maheshwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Venkat Gundabala
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Stephen Mann
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, U.K
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Gao R, Yu X, Kumar BVVSP, Tian L. Hierarchical Structuration in Protocellular System. SMALL METHODS 2023; 7:e2300422. [PMID: 37438327 DOI: 10.1002/smtd.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Spatial control is one of the ubiquitous features in biological systems and the key to the functional complexity of living cells. The strategies to achieve such precise spatial control in protocellular systems are crucial to constructing complex artificial living systems with functional collective behavior. Herein, the authors review recent advances in the spatial control within a single protocell or between different protocells and discuss how such hierarchical structured protocellular system can be used to understand complex living systems or to advance the development of functional microreactors with the programmable release of various biomacromolecular payloads, or smart protocell-biological cell hybrid system.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Ultrasound, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
3
|
Yu X, Mukwaya V, Mann S, Dou H. Signal Transduction in Artificial Cells. SMALL METHODS 2023; 7:e2300231. [PMID: 37116092 DOI: 10.1002/smtd.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Indexed: 06/19/2023]
Abstract
In recent years, significant progress has been made in the emerging field of constructing biomimetic soft compartments with life-like behaviors. Given that biological activities occur under a flux of energy and matter exchange, the implementation of rudimentary signaling pathways in artificial cells (protocells) is a prerequisite for the development of adaptive sense-response phenotypes in cytomimetic models. Herein, recent approaches to the integration of signal transduction modules in model protocells prepared by bottom-up construction are discussed. The approaches are classified into two categories involving invasive biochemical signals or non-invasive physical stimuli. In the former mechanism, transducers with intrinsic recognition capability respond with high specificity, while in the latter, artificial cells respond through intra-protocellular energy transduction. Although major challenges remain in the pursuit of a sophisticated artificial signaling network for the orchestration of higher-order cytomimetic models, significant advances have been made in establishing rudimentary protocell communication networks, providing novel organizational models for the development of life-like microsystems and new avenues in protoliving technologies.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
- Max Planck Bristol Centre for Minimal Biology and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
4
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
5
|
Zhao T, Wang Z, Yang Y, Liu K, Wang X. Cyclic Macroscopic Assembly and Disassembly Driven by Ionic Strength Fuel: A Waste-Free Approach. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37402443 DOI: 10.1021/acsami.3c06995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Nonequilibrium assembling systems developed so far have relied on chemical fuels to drive the programmable pH cycles, redox reactions, and metastable bond formations. However, these methods often result in the unwanted accumulation of chemical waste. Herein, we present a novel strategy for achieving cyclic and waste-free nonequilibrium assembly and disassembly of macroscopic hydrogels, utilizing an ionic strength-mediated approach. Our strategy involves using ammonium carbonate as a chemical fuel to temporally regulate the attractions between oppositely charged hydrogels via ionic strength-controlled charge screening and hydrogel elasticity changes. This chemical fuel effectively mediates the assembly/disassembly processes and prevents waste accumulation, as ammonium carbonate can completely decompose into volatile chemical waste. The cyclic and reversible assembly process can be achieved without significant damping due to the self-clearance mechanism, as long as the chemical fuel is repeatedly supplied. This concept holds promise for creating macroscopic and microscopic nonequilibrium systems and self-adaptive materials.
Collapse
Affiliation(s)
- Ting Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhongrui Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
6
|
Yin C, Jiang X, Mann S, Tian L, Drinkwater BW. Acoustic Trapping: An Emerging Tool for Microfabrication Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207917. [PMID: 36942987 DOI: 10.1002/smll.202207917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The high throughput deposition of microscale objects with precise spatial arrangement represents a key step in microfabrication technology. This can be done by creating physical boundaries to guide the deposition process or using printing technologies; in both approaches, these microscale objects cannot be further modified after they are formed. The utilization of dynamic acoustic fields offers a novel approach to facilitate real-time reconfigurable miniaturized systems in a contactless manner, which can potentially be used in physics, chemistry, biology, as well as materials science. Here, the physical interactions of microscale objects in an acoustic pressure field are discussed and how to fabricate different acoustic trapping devices and how to tune the spatial arrangement of the microscale objects are explained. Moreover, different approaches that can dynamically modulate microscale objects in acoustic fields are presented, and the potential applications of the microarrays in biomedical engineering, chemical/biochemical sensing, and materials science are highlighted alongside a discussion of future research challenges.
Collapse
Affiliation(s)
- Chengying Yin
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xingyu Jiang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, BS8 1TS, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Binjiang Institute of Zhejiang University, 66 Dongxin Road, Hangzhou, 310053, China
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Bruce W Drinkwater
- Faculty of Engineering, Queen's Building, University of Bristol, Bristol, BS8 1TR, UK
| |
Collapse
|
7
|
Heidari A, Sentürk OI, Yang S, Joesaar A, Gobbo P, Mann S, de Greef TFA, Wegner SV. Orthogonal Light-Dependent Membrane Adhesion Induces Social Self-Sorting and Member-Specific DNA Communication in Synthetic Cell Communities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206474. [PMID: 36599623 DOI: 10.1002/smll.202206474] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells.
Collapse
Affiliation(s)
- Ali Heidari
- Institute of Physiological Chemistry and Pathobiochemistry University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Oya I Sentürk
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Shuo Yang
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Alex Joesaar
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Tom F A de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
8
|
López‐Cuevas P, Xu C, Severn CE, Oates TCL, Cross SJ, Toye AM, Mann S, Martin P. Macrophage Reprogramming with Anti-miR223-Loaded Artificial Protocells Enhances In Vivo Cancer Therapeutic Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202717. [PMID: 36314048 PMCID: PMC9762313 DOI: 10.1002/advs.202202717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Several immune cell-expressed miRNAs (miRs) are associated with altered prognostic outcome in cancer patients, suggesting that they may be potential targets for development of cancer therapies. Here, translucent zebrafish (Danio rerio) is utilized to demonstrate that genetic knockout or knockdown of one such miR, microRNA-223 (miR223), globally or specifically in leukocytes, does indeed lead to reduced cancer progression. As a first step toward potential translation to a clinical therapy, a novel strategy is described for reprogramming neutrophils and macrophages utilizing miniature artificial protocells (PCs) to deliver anti-miRs against the anti-inflammatory miR223. Using genetic and live imaging approaches, it is shown that phagocytic uptake of anti-miR223-loaded PCs by leukocytes in zebrafish (and by human macrophages in vitro) effectively prolongs their pro-inflammatory state by blocking the suppression of pro-inflammatory cytokines, which, in turn, drives altered immune cell-cancer cell interactions and ultimately leads to a reduced cancer burden by driving reduced proliferation and increased cell death of tumor cells. This PC cargo delivery strategy for reprogramming leukocytes toward beneficial phenotypes has implications also for treating other systemic or local immune-mediated pathologies.
Collapse
Affiliation(s)
- Paco López‐Cuevas
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| | - Can Xu
- Centre for Protolife ResearchSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Charlotte E. Severn
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Tiah C. L. Oates
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Stephen J. Cross
- Wolfson Bioimaging FacilityBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| | - Ashley M. Toye
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Stephen Mann
- Centre for Protolife ResearchSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
- Max Planck Bristol Centre for Minimal BiologySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Paul Martin
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
9
|
Wang X, Wu S, Tang TYD, Tian L. Engineering strategies for sustainable synthetic cells. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Mahato RR, Priyanka, Shandilya E, Maiti S. Perpetuating enzymatically induced spatiotemporal pH and catalytic heterogeneity of a hydrogel by nanoparticles. Chem Sci 2022; 13:8557-8566. [PMID: 35974757 PMCID: PMC9337733 DOI: 10.1039/d2sc02317b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
The attainment of spatiotemporally inhomogeneous chemical and physical properties within a system is gaining attention across disciplines due to the resemblance to environmental and biological heterogeneity. Notably, the origin of natural pH gradients and how they have been incorporated in cellular systems is one of the most important questions in understanding the prebiotic origin of life. Herein, we have demonstrated a spatiotemporal pH gradient formation pattern on a hydrogel surface by employing two different enzymatic reactions, namely, the reactions of glucose oxidase (pH decreasing) and urease (pH increasing). We found here a generic pattern of spatiotemporal change in pH and proton transfer catalytic activity that was completely altered in a cationic gold nanoparticle containing hydrogel. In the absence of nanoparticles, the gradually generated macroscopic pH gradient slowly diminished with time, whereas the presence of nanoparticles helped to perpetuate the generated gradient effect. This behavior is due to the differential responsiveness of the interface of the cationic nanoparticle in temporally changing surroundings with increasing or decreasing pH or ionic contents. Moreover, the catalytic proton transfer ability of the nanoparticle showed a concerted kinetic response following the spatiotemporal pH dynamics in the gel matrix. Notably, this nanoparticle-driven spatiotemporally resolved gel matrix will find applicability in the area of the membrane-free generation and control of spatially segregated chemistry at the macroscopic scale.
Collapse
Affiliation(s)
- Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| |
Collapse
|
11
|
Mahato RR, Shandilya E, Not Applicable S, Maiti S. Regulating Spatial Localization and Reactivity Biasness of DNAzymes by Metal Ions and Oligonucleotides. Chembiochem 2022; 23:e202200154. [PMID: 35762518 DOI: 10.1002/cbic.202200154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/08/2022] [Indexed: 11/09/2022]
Abstract
Chemical gradient sensing behavior of catalytically active colloids and enzymes is an area of immense interest owing to their importance in understanding fundamental spatiotemporal complexity pattern in living systems and designing of dynamic materials. Herein, we have shown peroxidase activity of DNAzyme (G-quadruplex-hemin complex tagged in a micron-sized glass bead) can be modulated by metal ions and metal ion-binding oligonucleotides. Next we demonstrated both experimentally and theoretically that the localization and product formation ability of the DNAzyme containing particle remains biased to the more catalytically active zone where concentration of metal ion (Hg2+) inhibitor is low. Interestingly, this biased localization can be broken by introduction of Hg2+ binding oligonucleotide in the system. Additionally, macroscopically asymmetric catalytic product distributed zone has also been achieved on this process, showing possibility in regulation in autonomous spatially controlled chemical process. This demonstration of autonomous modulation of the localization pattern and spatially specific enhanced product forming ability of DNAzymes will further enable in designing of responsive nucleic acid-based motile materials and surfaces.
Collapse
Affiliation(s)
- Rishi Ram Mahato
- Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Ekta Shandilya
- Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | | | - Subhabrata Maiti
- Indian Institute of Science Education and Research Mohali, Chemical Sciences, Knowledge City, Sector-81, S.A.S. Nagar, Manauli P.O., 140306, Mohali, INDIA
| |
Collapse
|
12
|
Yin Z, Tian L, Patil AJ, Li M, Mann S. Spontaneous Membranization in a Silk‐Based Coacervate Protocell Model. Angew Chem Int Ed Engl 2022; 61:e202202302. [PMID: 35176203 PMCID: PMC9306657 DOI: 10.1002/anie.202202302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Zhuping Yin
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Liangfei Tian
- Department of Biomedical Engineering MOE Key Laboratory of Biomedical Engineering Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal Zhejiang University 310027 Hangzhou P. R. China
| | - Avinash J. Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology School of Chemistry University of Bristol Bristol BS8 1TS UK
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
13
|
Yin Z, Tian L, Patil AJ, Li M, Mann S. Spontaneous Membranization in a Silk‐Based Coacervate Protocell Model. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhuping Yin
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Liangfei Tian
- Department of Biomedical Engineering MOE Key Laboratory of Biomedical Engineering Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal Zhejiang University 310027 Hangzhou P. R. China
| | - Avinash J. Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology School of Chemistry University of Bristol Bristol BS8 1TS UK
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
14
|
Afrose SP, Mahato C, Sharma P, Roy L, Das D. Nonequilibrium Catalytic Supramolecular Assemblies of Melamine- and Imidazole-Based Dynamic Building Blocks. J Am Chem Soc 2022; 144:673-678. [PMID: 34990140 DOI: 10.1021/jacs.1c11457] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of synthetic nonequilibrium systems has gathered increasing attention due to their potential to illustrate the dynamic, complex, and emergent traits of biological systems. Simple building blocks capable of interacting via dynamic covalent chemistry and physical assembly in a reaction network under nonequilibrium conditions can contribute to our understanding of complex systems of life and its origin. Herein, we have demonstrated the nonequilibrium generation of catalytic supramolecular assemblies from simple heterocycle melamine driven by a thermodynamically activated ester. Utilizing a reversible covalent linkage, an imidazole moiety was recruited by the assemblies to access a catalytic transient state that dissipated energy via accelerated hydrolysis of the activated ester. The nonequilibrium assemblies were further capable of temporally binding to a hydrophobic guest to modulate its photophysical properties. Notably, the presence of an exogenous aromatic base augmented the lifetime of the catalytic microphases, reflecting their higher kinetic stability.
Collapse
Affiliation(s)
- Syed Pavel Afrose
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Chiranjit Mahato
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Pooja Sharma
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
15
|
Pal S, Reja A, Bal S, Tikader B, Das D. Emergence of a Promiscuous Peroxidase Under Non-Equilibrium Conditions. Angew Chem Int Ed Engl 2022; 61:e202111857. [PMID: 34767668 DOI: 10.1002/anie.202111857] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 11/07/2022]
Abstract
Herein, we report the substrate induced generation of a transient catalytic microenvironment from a single amino acid functionalized fatty acid in presence of a cofactor hemin. The catalytic state accessed under non-equilibrium conditions showed acceleration of peroxidase activity resulting in degradation of the substrate and subsequently led to disassembly. Equilibrated systems could not access the three-dimensional microphases and showed substantially lower catalytic activity. Further, the assembled state showed latent catalytic function (promiscuity) to hydrolyze a precursor to yield the same substrate. Consequently, the assembly demonstrated protometabolism by exploiting the peroxidase-hydrolase cascade to augment the lifetime and the mechanical properties of the catalytic state.
Collapse
Affiliation(s)
- Sumit Pal
- Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Antara Reja
- Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Subhajit Bal
- Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Baishakhi Tikader
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Dibyendu Das
- Department of Chemical Sciences &, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
16
|
Pal S, Reja A, Bal S, Tikader B, Das D. Emergence of a Promiscuous Peroxidase Under Non‐Equilibrium Conditions**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumit Pal
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Antara Reja
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Subhajit Bal
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Baishakhi Tikader
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| |
Collapse
|
17
|
Smith JM, Chowdhry R, Booth MJ. Controlling Synthetic Cell-Cell Communication. Front Mol Biosci 2022; 8:809945. [PMID: 35071327 PMCID: PMC8766733 DOI: 10.3389/fmolb.2021.809945] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Synthetic cells, which mimic cellular function within a minimal compartment, are finding wide application, for instance in studying cellular communication and as delivery devices to living cells. However, to fully realise the potential of synthetic cells, control of their function is vital. An array of tools has already been developed to control the communication of synthetic cells to neighbouring synthetic cells or living cells. These tools use either chemical inputs, such as small molecules, or physical inputs, such as light. Here, we examine these current methods of controlling synthetic cell communication and consider alternative mechanisms for future use.
Collapse
Affiliation(s)
| | | | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Zhang P, Fischer A, Ouyang Y, Wang J, Sohn YS, Karmi O, Nechushtai R, Willner I. Biocatalytic cascades and intercommunicated biocatalytic cascades in microcapsule systems. Chem Sci 2022; 13:7437-7448. [PMID: 35872834 PMCID: PMC9241983 DOI: 10.1039/d2sc01542k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Dynamic dimerization of GOx-loaded microcapsules with β-gal//hemin/G-quadruplex-bridged T1/T2-loaded microcapsules guides the bi-directional intercommunication of the three catalysts cascade.
Collapse
Affiliation(s)
- Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
19
|
Grimes PJ, Galanti A, Gobbo P. Bioinspired Networks of Communicating Synthetic Protocells. Front Mol Biosci 2021; 8:804717. [PMID: 35004855 PMCID: PMC8740067 DOI: 10.3389/fmolb.2021.804717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
The bottom-up synthesis of cell-like entities or protocells from inanimate molecules and materials is one of the grand challenges of our time. In the past decade, researchers in the emerging field of bottom-up synthetic biology have developed different protocell models and engineered them to mimic one or more abilities of biological cells, such as information transcription and translation, adhesion, and enzyme-mediated metabolism. Whilst thus far efforts have focused on increasing the biochemical complexity of individual protocells, an emerging challenge in bottom-up synthetic biology is the development of networks of communicating synthetic protocells. The possibility of engineering multi-protocellular systems capable of sending and receiving chemical signals to trigger individual or collective programmed cell-like behaviours or for communicating with living cells and tissues would lead to major scientific breakthroughs with important applications in biotechnology, tissue engineering and regenerative medicine. This mini-review will discuss this new, emerging area of bottom-up synthetic biology and will introduce three types of bioinspired networks of communicating synthetic protocells that have recently emerged.
Collapse
Affiliation(s)
- Patrick J. Grimes
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
| | - Agostino Galanti
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Pierangelo Gobbo
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
20
|
Chen C, Wang X, Wang Y, Tian L, Cao J. Construction of protocell-based artificial signal transduction pathways. Chem Commun (Camb) 2021; 57:12754-12763. [PMID: 34755716 DOI: 10.1039/d1cc03775g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The maintenance of an orderly and controllable multicellular society depends on the communication and signal regulation between various types of biological cells. How to replicate complicated signal transduction pathways in synthetic protocellular communities remains a key challenge in bottom-up synthetic biology. Herein, we review recent advances in the design and construction of interactive protocell communities, or protocell communities and biological communities, and explore the ways of designing and constructing artificial paracrine-like signaling pathways and juxtacrine-like signaling pathways. Key molecules involved in the signaling pathways that can be used to connect two or more spatially separated communities, and diverse signal outputs generated by the communication are summarized. We also propose the limitations, challenges and opportunities in this field.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Xuejing Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Ying Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China. .,Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Binjiang Institute of Zhejiang University, 66 Dongxin Road, Hangzhou, 310053, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
21
|
Chemical communication at the synthetic cell/living cell interface. Commun Chem 2021; 4:161. [PMID: 36697795 PMCID: PMC9814394 DOI: 10.1038/s42004-021-00597-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 01/28/2023] Open
Abstract
Although the complexity of synthetic cells has continued to increase in recent years, chemical communication between protocell models and living organisms remains a key challenge in bottom-up synthetic biology and bioengineering. In this Review, we discuss how communication channels and modes of signal processing can be established between living cells and cytomimetic agents such as giant unilamellar lipid vesicles, proteinosomes, polysaccharidosomes, polymer-based giant vesicles and membrane-less coacervate micro-droplets. We describe three potential modes of chemical communication in consortia of synthetic and living cells based on mechanisms of distributed communication and signal processing, physical embodiment and nested communication, and network-based contact-dependent communication. We survey the potential for applying synthetic cell/living cell communication systems in biomedicine, including the in situ production of therapeutics and development of new bioreactors. Finally, we present a short summary of our findings.
Collapse
|
22
|
Green DW, Watson JA, Ben-Nissan B, Watson GS, Stamboulis A. Synthetic tissue engineering with smart, cytomimetic protocells. Biomaterials 2021; 276:120941. [PMID: 34298445 DOI: 10.1016/j.biomaterials.2021.120941] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/24/2022]
Abstract
Synthetic protocells are rudimentary origin-of-life versions of natural cell counterparts. Protocells are widely engineered to advance efforts and useful accepted outcomes in synthetic biology, soft matter chemistry and bioinspired materials chemistry. Protocells in collective symbiosis generate synthetic proto-tissues that display unprecedented autonomy and yield advanced materials with desirable life-like features for smart multi-drug delivery, micro bioreactors, renewable fuel production, environmental clean-up, and medicine. Current levels of protocell and proto-tissue functionality and adaptivity are just sufficient to apply them in tissue engineering and regenerative medicine, where they animate biomaterials and increase therapeutic cell productivity. As of now, structural biomaterials for tissue engineering lack the properties of living biomaterials such as self-repair, stochasticity, cell synergy and the sequencing of molecular and cellular events. Future protocell-based biomaterials provide these core properties of living organisms, but excluding evolution. Most importantly, protocells are programmable for a broad array of cell functions and behaviors and collectively in consortia are tunable for multivariate functions. Inspired by upcoming designs of smart protocells, we review their developmental background and cover the most recently reported developments in this promising field of synthetic proto-biology. Our emphasis is on manufacturing proto-tissues for tissue engineering of organoids, stem cell niches and reprogramming and tissue formation through stages of embryonic development. We also highlight the exciting reported developments arising from fusing living cells and tissues, in a valuable hybrid symbiosis, with synthetic counterparts to bring about novel functions, and living tissue products for a new synthetic tissue engineering discipline.
Collapse
Affiliation(s)
- David William Green
- School of Metallurgy and Materials, Biomaterials Research Group, Proto-cellular Biomaterials Unit, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jolanta Anna Watson
- School of Science and Engineering, University of the Sunshine Coast, Fraser Coast Campus, Hervey Bay, QLD 4655, Australia
| | - Besim Ben-Nissan
- Faculty of Science, University of Technology, PO BOX 123, Broadway, NSW 2007, Sydney, Australia
| | - Gregory Shaun Watson
- School of Science and Engineering, University of the Sunshine Coast, Fraser Coast Campus, Hervey Bay, QLD 4655, Australia
| | - Artemis Stamboulis
- School of Metallurgy and Materials, Biomaterials Research Group, Proto-cellular Biomaterials Unit, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
23
|
Gao N, Li M, Tian L, Patil AJ, Pavan Kumar BVVS, Mann S. Chemical-mediated translocation in protocell-based microactuators. Nat Chem 2021; 13:868-879. [PMID: 34168327 DOI: 10.1038/s41557-021-00728-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
Artificial cell-like communities participate in diverse modes of chemical interaction but exhibit minimal interfacing with their local environment. Here we develop an interactive microsystem based on the immobilization of a population of enzyme-active semipermeable proteinosomes within a helical hydrogel filament to implement signal-induced movement. We attach large single-polynucleotide/peptide microcapsules at one or both ends of the helical protocell filament to produce free-standing soft microactuators that sense and process chemical signals to perform mechanical work. Different modes of translocation are achieved by synergistic or antagonistic enzyme reactions located within the helical connector or inside the attached microcapsule loads. Mounting the microactuators on a ratchet-like surface produces a directional push-pull movement. Our methodology opens up a route to protocell-based chemical systems capable of utilizing mechanical work and provides a step towards the engineering of soft microscale objects with increased levels of operational autonomy.
Collapse
Affiliation(s)
- Ning Gao
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.,Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK. .,School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.,Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Avinash J Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - B V V S Pavan Kumar
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.,Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK. .,Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK. .,School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| |
Collapse
|
24
|
Wang X, Zhang P, Tian L. Spatiotemporal organization of coacervate microdroplets. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
de Luis B, Morellá-Aucejo Á, Llopis-Lorente A, Godoy-Reyes TM, Villalonga R, Aznar E, Sancenón F, Martínez-Máñez R. A chemical circular communication network at the nanoscale. Chem Sci 2020; 12:1551-1559. [PMID: 34163918 PMCID: PMC8179104 DOI: 10.1039/d0sc04743k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
In nature, coordinated communication between different entities enables a group to accomplish sophisticated functionalities that go beyond those carried out by individual agents. The possibility of programming and developing coordinated communication networks at the nanoscale-based on the exchange of chemical messengers-may open new approaches in biomedical and communication areas. Here, a stimulus-responsive circular model of communication between three nanodevices based on enzyme-functionalized Janus Au-mesoporous silica capped nanoparticles is presented. The output in the community of nanoparticles is only observed after a hierarchically programmed flow of chemical information between the members.
Collapse
Affiliation(s)
- Beatriz de Luis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Ángela Morellá-Aucejo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Tania M Godoy-Reyes
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Reynaldo Villalonga
- Nanosensors & Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid Madrid Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe Valencia Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe Valencia Spain
| |
Collapse
|
26
|
Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat Chem 2020; 12:1165-1173. [DOI: 10.1038/s41557-020-00585-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
|
27
|
Luan J, Wang D, Wilson DA. Leveraging synthetic particles for communication: from passive to active systems. NANOSCALE 2020; 12:21015-21033. [PMID: 33073819 DOI: 10.1039/d0nr05675h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Communication is one of the most remarkable behaviors in the living world. It is an important prerequisite for building an artificial cell which can be considered as alive. Achieving complex communicative behaviors leveraging synthetic particles will likely fill the gap between artificial vesicles and natural counterpart of cells and allow for the discovery of new therapies in medicine. In this review, we highlight recent endeavors for constructing communication with synthetic particles by revealing the principles underlying the communicative behaviors. Emergent progress using active particles to achieve communication is also discussed, which resembles the dynamic and out-of-equilibrium properties of communication in nature.
Collapse
Affiliation(s)
- Jiabin Luan
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Danni Wang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
28
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
29
|
Wang X, Tian L, Ren Y, Zhao Z, Du H, Zhang Z, Drinkwater BW, Mann S, Han X. Chemical Information Exchange in Organized Protocells and Natural Cell Assemblies with Controllable Spatial Positions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906394. [PMID: 32105404 DOI: 10.1002/smll.201906394] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/12/2020] [Indexed: 06/10/2023]
Abstract
An ultrasound-based platform is established to prepare homogenous arrays of giant unilamellar vesicles (GUVs) or red blood cell (RBCs), or hybrid assemblies of GUV/RBCs. Due to different responses to the modulation of the acoustic standing wave pressure field between the GUVs and RBCs, various types of protocell/natural cell hybrid assemblies are prepared with the ability to undergo reversible dynamic reconfigurations from vertical to horizontal alignments, or from 1D to 2D arrangements. A two-step enzymatic cascade reaction between transmitter glucose oxidase-containing GUVs and peroxidase-active receiver RBCs is used to implement chemical signal transduction in the different hybrid micro-arrays. Taken together, the obtained results suggest that the ultrasound-based micro-array technology can be used as an alternative platform to explore chemical communication pathways between protocells and natural cells, providing new opportunities for bottom-up synthetic biology.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liangfei Tian
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhongyang Zhao
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shandong Province, Weihai, 264209, China
| | - Zhizhou Zhang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shandong Province, Weihai, 264209, China
| | - Bruce W Drinkwater
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
30
|
Buddingh' BC, Elzinga J, van Hest JCM. Intercellular communication between artificial cells by allosteric amplification of a molecular signal. Nat Commun 2020; 11:1652. [PMID: 32246068 PMCID: PMC7125153 DOI: 10.1038/s41467-020-15482-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
Multicellular organisms rely on intercellular communication to coordinate the behaviour of individual cells, which enables their differentiation and hierarchical organization. Various cell mimics have been developed to establish fundamental engineering principles for the construction of artificial cells displaying cell-like organization, behaviour and complexity. However, collective phenomena, although of great importance for a better understanding of life-like behaviour, are underexplored. Here, we construct collectives of giant vesicles that can communicate with each other through diffusing chemical signals that are recognized and processed by synthetic enzymatic cascades. Similar to biological cells, the Receiver vesicles can transduce a weak signal originating from Sender vesicles into a strong response by virtue of a signal amplification step, which facilitates the propagation of signals over long distances within the artificial cell consortia. This design advances the development of interconnected artificial cells that can exchange metabolic and positional information to coordinate their higher-order organization.
Collapse
Affiliation(s)
- Bastiaan C Buddingh'
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Janneke Elzinga
- Radboud University, PO Box 9102, 6500 HC, Nijmegen, the Netherlands
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands.
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
31
|
Catalytic processing in ruthenium-based polyoxometalate coacervate protocells. Nat Commun 2020; 11:41. [PMID: 31900396 PMCID: PMC6941959 DOI: 10.1038/s41467-019-13759-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/19/2019] [Indexed: 01/26/2023] Open
Abstract
The development of programmable microscale materials with cell-like functions, dynamics and collective behaviour is an important milestone in systems chemistry, soft matter bioengineering and synthetic protobiology. Here, polymer/nucleotide coacervate micro-droplets are reconfigured into membrane-bounded polyoxometalate coacervate vesicles (PCVs) in the presence of a bio-inspired Ru-based polyoxometalate catalyst to produce synzyme protocells (Ru4PCVs) with catalase-like activity. We exploit the synthetic protocells for the implementation of multi-compartmentalized cell-like models capable of collective synzyme-mediated buoyancy, parallel catalytic processing in individual horseradish peroxidase-containing Ru4PCVs, and chemical signalling in distributed or encapsulated multi-catalytic protocell communities. Our results highlight a new type of catalytic micro-compartment with multi-functional activity and provide a step towards the development of protocell reaction networks. The development of microscale materials with cell-like functions and collective behaviors is an important milestone in bottom-up synthetic biology. Here the authors employ a bio-inspired inorganic synzyme to construct a micro-compartment with multi-functional activity providing a step towards the development of protocell reaction networks.
Collapse
|
32
|
Qiao Y, Li M, Qiu D, Mann S. Response‐Retaliation Behavior in Synthetic Protocell Communities. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yan Qiao
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| |
Collapse
|
33
|
Qiao Y, Li M, Qiu D, Mann S. Response-Retaliation Behavior in Synthetic Protocell Communities. Angew Chem Int Ed Engl 2019; 58:17758-17763. [PMID: 31584748 DOI: 10.1002/anie.201909313] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 01/12/2023]
Abstract
Two different artificial predation strategies are spatially and temporally coupled to generate a simple tit-for-tat mechanism in a ternary protocell network capable of antagonistic enzyme-mediated interactions. The consortium initially consists of protease-sensitive glucose-oxidase-containing proteinosomes (1), non-interacting pH-sensitive polypeptide/mononucleotide coacervate droplets containing proteinase K (2), and proteinosome-adhered pH-resistant polymer/polysaccharide coacervate droplets (3). On receiving a glucose signal, secretion of protons from 1 triggers the disassembly of 2 and the released protease is transferred to 3 to initiate a delayed contact-dependent killing of the proteinosomes and cessation of glucose oxidase activity. Our results provide a step towards complex mesoscale dynamics based on programmable response-retaliation behavior in artificial protocell consortia.
Collapse
Affiliation(s)
- Yan Qiao
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
34
|
Wang X, Tian L, Du H, Li M, Mu W, Drinkwater BW, Han X, Mann S. Chemical communication in spatially organized protocell colonies and protocell/living cell micro-arrays. Chem Sci 2019; 10:9446-9453. [PMID: 32055320 PMCID: PMC6991169 DOI: 10.1039/c9sc04522h] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Arrays of giant unilamellar vesicles (GUVs) with controllable geometries and occupancies are prepared by acoustic trapping and used to implement chemical signaling in protocell colonies and protocell/living cell consortia.
Micro-arrays of discrete or hemifused giant unilamellar lipid vesicles (GUVs) with controllable spatial geometries, lattice dimensions, trapped occupancies and compositions are prepared by acoustic standing wave patterning, and employed as platforms to implement chemical signaling in GUV colonies and protocell/living cell consortia. The methodology offers an alternative approach to GUV micro-array fabrication and provides new opportunities in protocell research and bottom-up synthetic biology.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment , School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , 150001 , China . .,Centre for Protolife Research and Centre for Organized Matter Chemistry , School of Chemistry University of Bristol , Bristol , BS8 1TS UK .
| | - Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry , School of Chemistry University of Bristol , Bristol , BS8 1TS UK .
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment , School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , 150001 , China .
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry , School of Chemistry University of Bristol , Bristol , BS8 1TS UK .
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment , School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , 150001 , China .
| | | | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment , School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , 150001 , China .
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry , School of Chemistry University of Bristol , Bristol , BS8 1TS UK .
| |
Collapse
|
35
|
Multifaceted cell mimicry in coacervate-based synthetic cells. Emerg Top Life Sci 2019; 3:567-571. [DOI: 10.1042/etls20190094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022]
Abstract
Cells, the discrete living systems that comprise all life on Earth, are a boundless source of inspiration and motivation for many researchers in the natural sciences. In the field of bottom-up synthetic cells, researchers seek to create multifaceted, self-assembled, chemical systems that mimic the properties and behaviours of natural life. In this perspective, we will describe the relatively recent application of complex coacervates to synthetic cells, and how they have been used to model an expanding range of biologically relevant phenomena. Furthermore, we will explore the unique advantages and disadvantages of coacervate-based synthetic cells, and their potential impact on the field in the years to come.
Collapse
|
36
|
Martin N. Dynamic Synthetic Cells Based on Liquid-Liquid Phase Separation. Chembiochem 2019; 20:2553-2568. [PMID: 31039282 DOI: 10.1002/cbic.201900183] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 12/16/2022]
Abstract
Living cells have long been a source of inspiration for chemists. Their capacity of performing complex tasks relies on the spatiotemporal coordination of matter and energy fluxes. Recent years have witnessed growing interest in the bottom-up construction of cell-like models capable of reproducing aspects of such dynamic organisation. Liquid-liquid phase-separation (LLPS) processes in water are increasingly recognised as representing a viable compartmentalisation strategy through which to produce dynamic synthetic cells. Herein, we highlight examples of the dynamic properties of LLPS used to assemble synthetic cells, including their biocatalytic activity, reversible condensation and dissolution, growth and division, and recent directions towards the design of higher-order structures and behaviour.
Collapse
Affiliation(s)
- Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 Avenue du Dr. Albert Schweitzer, 33600, Pessac, France
| |
Collapse
|
37
|
Tian L, Li M, Patil AJ, Drinkwater BW, Mann S. Artificial morphogen-mediated differentiation in synthetic protocells. Nat Commun 2019; 10:3321. [PMID: 31346180 PMCID: PMC6658542 DOI: 10.1038/s41467-019-11316-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/02/2019] [Indexed: 11/09/2022] Open
Abstract
The design and assembly of artificial protocell consortia displaying dynamical behaviours and systems-based properties are emerging challenges in bottom-up synthetic biology. Cellular processes such as morphogenesis and differentiation rely in part on reaction-diffusion gradients, and the ability to mimic rudimentary aspects of these non-equilibrium processes in communities of artificial cells could provide a step to life-like systems capable of complex spatiotemporal transformations. Here we expose acoustically formed arrays of initially identical coacervate micro-droplets to uni-directional or counter-directional reaction-diffusion gradients of artificial morphogens to induce morphological differentiation and spatial patterning in single populations of model protocells. Dynamic reconfiguration of the droplets in the morphogen gradients produces a diversity of membrane-bounded vesicles that are spontaneously segregated into multimodal populations with differentiated enzyme activities. Our results highlight the opportunities for constructing protocell arrays with graded structure and functionality and provide a step towards the development of artificial cell platforms capable of multiple operations. The ability to mimic aspects of cellular process that rely on reaction-diffusion gradients could provide a step to building life-like systems capable of complex behaviour. Here the authors demonstrate morphological differentiation in coacervate micro-droplets.
Collapse
Affiliation(s)
- Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Avinash J Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Bruce W Drinkwater
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| |
Collapse
|
38
|
Rodríguez‐Arco L, Kumar BVVSP, Li M, Patil AJ, Mann S. Modulation of Higher-order Behaviour in Model Protocell Communities by Artificial Phagocytosis. Angew Chem Int Ed Engl 2019; 58:6333-6337. [PMID: 30861271 PMCID: PMC6519160 DOI: 10.1002/anie.201901469] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 11/08/2022]
Abstract
Collective behaviour in mixed populations of synthetic protocells is an unexplored area of bottom-up synthetic biology. The dynamics of a model protocell community is exploited to modulate the function and higher-order behaviour of mixed populations of bioinorganic protocells in response to a process of artificial phagocytosis. Enzyme-loaded silica colloidosomes are spontaneously engulfed by magnetic Pickering emulsion (MPE) droplets containing complementary enzyme substrates to initiate a range of processes within the host/guest protocells. Specifically, catalase, lipase, or alkaline phosphatase-filled colloidosomes are used to trigger phagocytosis-induced buoyancy, membrane reconstruction, or hydrogelation, respectively, within the MPE droplets. The results highlight the potential for exploiting surface-contact interactions between different membrane-bounded droplets to transfer and co-locate discrete chemical packages (artificial organelles) in communities of synthetic protocells.
Collapse
Affiliation(s)
- Laura Rodríguez‐Arco
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - B. V. V. S. Pavan Kumar
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Avinash J. Patil
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| |
Collapse
|
39
|
Rodríguez‐Arco L, Kumar BVVSP, Li M, Patil AJ, Mann S. Modulation of Higher‐order Behaviour in Model Protocell Communities by Artificial Phagocytosis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Rodríguez‐Arco
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - B. V. V. S. Pavan Kumar
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Avinash J. Patil
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| |
Collapse
|