1
|
Zhou Z, Tang R, Fang Y, Lv T, Liu J, Wang X. Facile Synthesis of FimH Antagonist and Its Analogues: Simple Entry to Complex C-Mannoside Inhibitors of E. coli Adhesion. ACS Med Chem Lett 2024; 15:1724-1730. [PMID: 39411527 PMCID: PMC11472460 DOI: 10.1021/acsmedchemlett.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Synthesizing FimH antagonists is challenging because of their densely functionalized and stereochemically complex C-mannoside structures, resulting in low yields and lengthy processes. We present an efficient method for synthesizing C-mannoside FimH antagonists by nickel-catalyzed reductive coupling and stereocontrolled reduction, thereby significantly simplifying the process and enabling the synthesis of FimH antagonists in just four steps with an overall yield of 34-50%. This efficient synthesis holds significant potential for the rapid development of analogues targeting the treatment of urinary tract infections or Crohn's disease caused by Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Zhaobo Zhou
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Renpeng Tang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ya Fang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tinghong Lv
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jian Liu
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Xu S, Ping Y, Xu M, Wu G, Ke Y, Miao R, Qi X, Kong W. Stereoselective and site-divergent synthesis of C-glycosides. Nat Chem 2024:10.1038/s41557-024-01629-3. [PMID: 39271916 DOI: 10.1038/s41557-024-01629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Carbohydrates play important roles in medicinal chemistry and biochemistry. However, their synthesis relies on specially designed glycosyl donors, which are often unstable and require multi-step synthesis. Furthermore, the catalytic and stereoselective installation of arylated quaternary stereocentres on sugar rings remains a formidable challenge. Here we report a facile and versatile method for the synthesis of diverse C-R (where R is an aryl, heteroaryl, alkenyl, alkynyl or alkyl) glycosides from readily available and bench-stable 1-deoxyglycosides. The reaction proceeds under mild conditions and exhibits high stereoselectivity across a broad range of glycosyl units. This protocol can be used to synthesize challenging 2-deoxyglycosides, unprotected glycosides, non-classical glycosides and deuterated glycosides. We further developed the catalyst-controlled site-divergent functionalization of carbohydrates for the synthesis of various unexplored carbohydrates containing arylated quaternary stereocentres that are inaccessible by existing methods. The synthetic utility of this strategy is further demonstrated in the synthesis of pharmaceutically relevant molecules and carbohydrates.
Collapse
Affiliation(s)
- Sheng Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Minghao Xu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Guozhen Wu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yang Ke
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Rui Miao
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xiaotian Qi
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Wuhan Institute of Photochemistry and Technology, Wuhan, China.
| |
Collapse
|
3
|
Miyamoto Y, Murakami S, Sumida Y, Hirai G, Ohmiya H. Radical C-Glycosylation Using Photoexcitable Unprotected Glycosyl Borate. Chemistry 2024; 30:e202402256. [PMID: 38980084 DOI: 10.1002/chem.202402256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024]
Abstract
We have developed radical C-glycosylation using photoexcitable unprotected glycosyl borate. The direct excitation of glycosyl borate under visible light irradiation enabled the generation of anomeric radical without any photoredox catalysts. The in situ generated anomeric radical was applicable to the radical addition such as Giese-type addition and Minisci-type reaction to introduce alkyl and heteroaryl groups at the anomeric position. In addition, the radical-radical coupling between the glycosyl borate and acyl imidazolide provided unprotected acyl C-glycosides.
Collapse
Affiliation(s)
- Yusuke Miyamoto
- Institute for Chemical Research Kyoto University, 611-0011, Gokasho, Uji, Kyoto, Japan
| | - Sho Murakami
- Institute for Chemical Research Kyoto University, 611-0011, Gokasho, Uji, Kyoto, Japan
| | - Yuto Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 101-0062, Kanda- Surugadai, Chiyoda-ku Tokyo, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 812-8582, Maidashi, Higashiku, Fukuoka, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research Kyoto University, 611-0011, Gokasho, Uji, Kyoto, Japan
| |
Collapse
|
4
|
Wu X, Li S, Chen L, Ma S, Ma B, Song L, Qian D. Stereoselective Construction of Multifunctional C-Glycosides Enabled by Nickel-Catalyzed Tandem Borylation/Glycosylation. J Am Chem Soc 2024; 146:22413-22423. [PMID: 39096292 DOI: 10.1021/jacs.4c05485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Stereochemically pure saccharides have indispensable roles in fields ranging from medicinal chemistry to materials science and organic synthesis. However, the development of a simple, stereoselective, and efficient glycosylation protocol to access α- and β-C-glycosides (particularly 2-deoxy entities) remains a persistent challenge. Existing studies have primarily focused on C1 modification of carbohydrates and transformation of glycosyl radical precursors. Here, we innovate by harnessing the in situ generated glycosyl-Ni species to achieve one-pot borylation and glycosylation in a cascade manner, which is enabled by an earth-abundant nickel-catalyzed carboboration of readily accessible glycals without any ligand. This work reveals the potential for the development of a modular and multifunctional glycosylation platform to facilitate the simultaneous introduction of C-C and C-B bonds at the stereogenic center of saccharides, a largely unexploited research area. Preliminary experimental and computational studies indicate that the endocyclic O and the C3 group play important roles in stereoseclectively forging glycosidic bonds. As a result, a diverse range of C-R (R = alkyl, aryl, and alkenyl) and 2-deoxygenated glycosides bearing modifiable boron groups could be rapidly made with excellent stereocontrol and exhibit remarkable functional group tolerance. The synthetic potential is underscored in the late-stage glycosylation of natural products and commercial drugs as well as the facile preparation of various rare sugars, bioactive conjugates, and key intermediates to prorocentin, phomonol, and aspergillide A.
Collapse
Affiliation(s)
- Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Kowloon, 999077 Hong Kong SAR, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Liqin Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Siwei Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Bin Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| |
Collapse
|
5
|
Wu J, Purushothaman R, Kallert F, Homölle SL, Ackermann L. Electrochemical Glycosylation via Halogen-Atom-Transfer for C-Glycoside Assembly. ACS Catal 2024; 14:11532-11544. [PMID: 39114086 PMCID: PMC11301629 DOI: 10.1021/acscatal.4c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Glycosyl donor activation emerged as an enabling technology for anomeric functionalization, but aimed primarily at O-glycosylation. In contrast, we herein disclose mechanistically distinct electrochemical glycosyl bromide donor activations via halogen-atom transfer and anomeric C-glycosylation. The anomeric radical addition to alkenes led to C-alkyl glycoside synthesis under precious metal-free reaction conditions from readily available glycosyl bromides. The robustness of our e-XAT strategy was further mirrored by C-aryl and C-acyl glycosides assembly through nickela-electrocatalysis. Our approach provides an orthogonal strategy for glycosyl donor activation with expedient scope, hence representing a general method for direct C-glycosides assembly.
Collapse
Affiliation(s)
| | | | - Felix Kallert
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| |
Collapse
|
6
|
Sharma MK, Tiwari B, Hussain N. Pd-catalyzed stereoselective synthesis of chromone C-glycosides. Chem Commun (Camb) 2024; 60:4838-4841. [PMID: 38619439 DOI: 10.1039/d4cc00486h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Herein, we present an efficient Pd-catalysed method for stereoselective synthesis of chromone C-glycosides from various glycals. We successfully applied this method to various glycals with different protecting groups, yielding the corresponding glycosides in 41-78% yields. Additionally, we investigated the potential of this approach for the late-stage modification of natural products and pharmaceutical compounds linked to glycals, leading to the synthesis of their respective glycosides. Furthermore, we extended our research to gram-scale synthesis and demonstrated its applicability in producing various valuable products, including 2-deoxy-chromone C-glycosides. In summary, our work introduces a novel library of chromone glycosides, which holds promise for advancing drug discovery efforts.
Collapse
Affiliation(s)
- Manish Kumar Sharma
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India.
| | - Bindu Tiwari
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India.
| | - Nazar Hussain
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
7
|
Zhang L, Zeng W, Xie D, Li J, Ma X. Nickel and Chiral Phosphoric Acid Cocatalysis Enables Synthesis of C-Acyl Glycosides. Org Lett 2024; 26:1332-1337. [PMID: 38330288 DOI: 10.1021/acs.orglett.3c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
We disclosed a Ni/CPA cocatalyzed protocol to access diverse C-acyl glycosides under mild conditions with broad functional group compatibility through the coupling of readily available glycosyl bromides and carboxylic esters. The potential application of the methodology was demonstrated by the C-acyl glycosylation of bioactive molecules and the transformation of products to a variety of value-added molecules. Mechanistic studies revealed that CPA might serve as a bifunctional H-bond catalyst to activate carboxylic esters and nickel catalyst.
Collapse
Affiliation(s)
- Li Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, No. 9, South Renmin Road, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Zeng
- Natural Products Research Centre, Chengdu Institute of Biology, No. 9, South Renmin Road, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Demeng Xie
- Natural Products Research Centre, Chengdu Institute of Biology, No. 9, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Jiangtao Li
- Natural Products Research Centre, Chengdu Institute of Biology, No. 9, South Renmin Road, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, No. 9, South Renmin Road, Chengdu, 610041, People's Republic of China
| |
Collapse
|
8
|
Moriyama T, Yoritate M, Kato N, Saika A, Kusuhara W, Ono S, Nagatake T, Koshino H, Kiya N, Moritsuka N, Tanabe R, Hidaka Y, Usui K, Chiba S, Kudo N, Nakahashi R, Igawa K, Matoba H, Tomooka K, Ishikawa E, Takahashi S, Kunisawa J, Yamasaki S, Hirai G. Linkage-Editing Pseudo-Glycans: A Reductive α-Fluorovinyl- C-Glycosylation Strategy to Create Glycan Analogs with Altered Biological Activities. J Am Chem Soc 2024; 146:2237-2247. [PMID: 38196121 DOI: 10.1021/jacs.3c12581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The acetal (O-glycoside) bonds of glycans and glycoconjugates are chemically and biologically vulnerable, and therefore C-glycosides are of interest as more stable analogs. We hypothesized that, if the O-glycoside linkage plays a vital role in glycan function, the biological activities of C-glycoside analogs would vary depending on their substituents. Based on this idea, we adopted a "linkage-editing strategy" for the creation of glycan analogs (pseudo-glycans). We designed three types of pseudo-glycans with CH2 and CHF linkages, which resemble the O-glycoside linkage in terms of bond lengths, angles, and bulkiness, and synthesized them efficiently by means of fluorovinyl C-glycosylation and selective hydrogenation reactions. Application of this strategy to isomaltose (IM), an inducer of amylase expression, and α-GalCer, which activates iNKT cells, resulted in the discovery of CH2-IM, which shows increased amylase production ability, and CHF-α-GalCer, which shows activity opposite that of native α-GalCer, serving as an antagonist of iNKT cells.
Collapse
Affiliation(s)
- Takahiro Moriyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Kato
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Azusa Saika
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| | - Wakana Kusuhara
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunsuke Ono
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiro Nagatake
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Noriaki Kiya
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Natsuho Moritsuka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riko Tanabe
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yu Hidaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Suzuka Chiba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noyuri Kudo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Rintaro Nakahashi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Eri Ishikawa
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunji Takahashi
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jun Kunisawa
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Wei Y, Lin LQH, Lee BC, Koh MJ. Recent Advances in First-Row Transition Metal-Catalyzed Reductive Coupling Reactions for π-Bond Functionalization and C-Glycosylation. Acc Chem Res 2023; 56:3292-3312. [PMID: 37917928 DOI: 10.1021/acs.accounts.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
ConspectusEfficient construction of ubiquitous carbon-carbon bonds between two electrophiles has garnered interest in recent decades, particularly if it is mediated by nonprecious, first-row transition metals. Reductive coupling has advantages over traditional cross-coupling by obviating the need for stoichiometric air- and moisture-sensitive organometallic reagents. By harnessing transition metal-catalyzed reductive coupling as a powerful tool, intricate molecular architectures can be readily assembled through the installation of two C-C bonds across π systems (alkenes/alkynes) via reaction with two appropriate electrophiles. Despite advances in reductive alkene difunctionalization, there remains significant potential for the discovery of novel reaction pathways. In this regard, development of reductive protocols that enable the union of challenging alkyl/alkynyl electrophiles in high regio- and chemoselectivity remains a highly sought-after goal.Apart from π-bond functionalization, reductive coupling has found application in carbohydrate chemistry, particularly in the synthesis of valuable C-glycosyl compounds. In this vein, suitable glycosyl donors can be used to generate reactive glycosyl radical intermediates under reductive conditions. Through elaborately designed reactions, these intermediates can be trapped to furnish pharmaceutically relevant glycoconjugates. Consequently, diversification in C-glycosyl compound synthesis using first-row transition metal catalysis holds strong appeal.In this Account, we summarize our efforts in the development of first-row transition metal-catalyzed reductive coupling reactions for applications in alkene/alkyne functionalization and C-glycosylation. We will first discuss the nickel (Ni)-catalyzed reductive difunctionalization of alkenes, aided by an 8-aminoquinoline (AQ) directing auxiliary. Next, we highlight the Ni-catalyzed hydroalkylation of alkenyl amides tethered with a similar AQ-derived directing auxiliary. Lastly, we discuss an efficient synthesis of 1,3-enynes involving site- and stereoselective reductive coupling of terminal alkynes with alkynyl halides and NHPI esters.Beyond alkene dicarbofunctionalization, we extended the paradigm of transition metal-catalyzed reductive coupling toward the construction of C-glycosidic linkages in carbohydrates. By employing an earth-abundant iron (Fe)-based catalyst, we show that useful glycosyl radicals can be generated from glycosyl chlorides under reductive conditions. These intermediates can be captured in C-C bond formation to furnish valuable C-aryl, C-alkenyl, and C-alkynyl glycosyl compounds with high diastereoselectivity. Our Ni-catalyzed multicomponent union of glycosyl chlorides, aryl/alkyl iodides, and isobutyl chloroformate under reductive conditions led to the stereoselective synthesis of C-acyl glycosides. In addition to Fe and Ni, we discovered a Ti-catalyzed/Mn-promoted synthetic route to access C-alkyl and C-alkenyl glycosyl compounds, through the reaction of glycosyl chlorides with electron-deficient alkenes/alkynes. We further developed an electron donor-acceptor (EDA) photoactivation system leveraging decarboxylative and deaminative strategies for C-glycosylation under Ni catalysis. This approach has been demonstrated to selectively activate carboxyl and amino motifs to furnish glycopeptide conjugates. Finally, through two distinct catalytic transformations of bench-stable heteroaryl glycosyl sulfones, we achieved stereodivergent access to both α- and β-anomers of C-aryl glycosides, one of which involves a Ni-catalyzed reductive coupling with aryl iodides.The findings presented in this Account are anticipated to have far-reaching implications beyond our research. We foresee that these results will pave the way for new transformations founded on the concept of reductive coupling, leading to the discovery of novel applications in the future.
Collapse
Affiliation(s)
- Yi Wei
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Leroy Qi Hao Lin
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Boon Chong Lee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| |
Collapse
|
10
|
Roh B, Farah AO, Kim B, Feoktistova T, Moeller F, Kim KD, Cheong PHY, Lee HG. Stereospecific Acylative Suzuki–Miyaura Cross-Coupling: General Access to Optically Active α-Aryl Carbonyl Compounds. J Am Chem Soc 2023; 145:7075-7083. [PMID: 37016901 DOI: 10.1021/jacs.3c00637] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel strategy for the stereospecific Pd-catalyzed acylative cross-coupling of enantiomerically enriched alkylboron compounds has been developed. The protocol features an extremely high level of enantiospecificity to allow facile access to synthetically challenging and valuable chiral ketones and carboxylic acid derivatives. The use of a sterically encumbered and electron-rich phosphine ligand proved to be crucial for the success of the reaction. Furthermore, on the basis of experimental and computational studies, a unique mechanism for the transmetalation, assisted by the noncovalent interactions of the C(sp3)-based organoboron reagent, has been identified.
Collapse
Affiliation(s)
- Byeongdo Roh
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Beomsu Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Finn Moeller
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kyeong Do Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Boehlich GJ, Sterzel H, Rehbein J, Schützenmeister N. Efficient Copper-Catalyzed Highly Stereoselective Synthesis of Unprotected C-Acyl Manno-, Rhamno- and Lyxopyranosides. Chemistry 2022; 28:e202202619. [PMID: 36098245 PMCID: PMC10091970 DOI: 10.1002/chem.202202619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/09/2022]
Abstract
Due to their high stability towards enzymatic hydrolysis C-acyl glycosidic compounds are useful synthetic intermediates for potential candidates in drug discovery. Syntheses for C-acyl mannosides have remained scarce and usually employ donors obtained from lengthy syntheses. Furthermore, syntheses of unprotected C-acyl mannosides have not been reported so far, due to the incapability of the C-acyl mannoside motif with deprotection conditions for protective groups commonly used in carbohydrate chemistry. Herein, we report an efficient and highly α-selective four-step one-pot method for the synthesis of C-acyl α-d-manno-, l-rhamno- and d-lyxopyranosides from easily accessible persilylated monosaccharides and dithianes requiring only trace amounts of a copper source as catalyst and explain the crucial role of the catalyst by mechanistic studies. Furthermore, the C-acyl α-glycosides were easily isomerized to give rapid access to their β-anomers.
Collapse
Affiliation(s)
- Gordon Jacob Boehlich
- Fakultät für Chemie und PharmazieUniversität HamburgBundesstraße 4520146HamburgGermany
| | - Hannes Sterzel
- Fachbereich Chemie, Institut für PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Julia Rehbein
- Fachbereich Chemie, Institut für PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Nina Schützenmeister
- Department of Pharmaceutical SciencesUniversity of ViennaJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
12
|
Zhao H, Jose AT, Asany A, Khan SM, Biscoe MR. Pd-Catalyzed Arylation of Secondary α-Alkoxytricyclohexylstannanes. Org Lett 2022; 24:8714-8718. [PMID: 36399722 DOI: 10.1021/acs.orglett.2c03729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have developed a general process for the formation of α-arylethers via the Pd-catalyzed arylation of secondary α-alkoxytricyclohexylstannanes. Incorporation of cyclohexyl spectator ligands into the alkylstannane and the use of the electron-deficient ligand JackiePhos (1) are critical for achieving selective alkyl transfer in this process. This system circumvents the need for a coordinating/directing oxygen-protecting group to promote selective alkyl transfer and enables α-tetrahydropyran, α-tetrahydrofuran, and open-chain secondary α-alkoxy groups to be employed efficiently in Pd-catalyzed Stille reactions with a broad range of aryl electrophiles. These findings suggest that selective transmetalation of a single marginally activated secondary alkyl unit from Sn to Pd should be broadly achievable provided that unactivated secondary alkyl ligands comprise the other three groups of the tetraalkylstannane.
Collapse
Affiliation(s)
- Haoran Zhao
- Department of Chemistry & Biochemistry, The City College of New York (CCNY), 160 Convent Avenue, New York, New York 10031, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York (CUNY), 365 Fifth Avenue, New York, New York 10016, United States
| | - Anju Treesa Jose
- Department of Chemistry & Biochemistry, The City College of New York (CCNY), 160 Convent Avenue, New York, New York 10031, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York (CUNY), 365 Fifth Avenue, New York, New York 10016, United States
| | - Alisajat Asany
- Department of Chemistry & Biochemistry, The City College of New York (CCNY), 160 Convent Avenue, New York, New York 10031, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York (CUNY), 365 Fifth Avenue, New York, New York 10016, United States
| | - Shahrukh M. Khan
- Department of Chemistry & Biochemistry, The City College of New York (CCNY), 160 Convent Avenue, New York, New York 10031, United States
| | - Mark R. Biscoe
- Department of Chemistry & Biochemistry, The City College of New York (CCNY), 160 Convent Avenue, New York, New York 10031, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York (CUNY), 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
13
|
Pseudo-glycoconjugates with a C-glycoside linkage. Adv Carbohydr Chem Biochem 2022; 82:35-77. [PMID: 36470649 DOI: 10.1016/bs.accb.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Work by the author and colleagues has been focused on the development of pseudo-glycans (pseudo-glycoconjugates), in which the O-glycosidic linkage of the natural-type glycan structure is replaced by a C-glycosidic linkage. These analogs are not degraded by cellular glycoside hydrolases and are thus expected to be useful molecular tools that may maintain the original biological activity for a long period in the cell. However, their biological potential is not yet well understood because only a few pseudo glycans have so far been synthesized. This article aims to provide a bird's-eye view of our recent studies on the creation of C-glycoside analogs of ganglioside GM3 based on the CHF-sialoside linkage, and summarizes the chemical insights acquired during our stereoselective synthesis of the C-sialoside bond, ultimately leading to pseudo-GM3. Conformational analysis of the synthesized CHF-sialoside disaccharides confirmed that the anticipated conformational control by F-atom introduction was successful, and furthermore, enhanced the biological activity. In order to improve access to C-glycoside analogs based on pseudo-GM3, it is still important to streamline the synthesis process. With this in mind, we designed and developed a direct C-glycosylation method using atom-transfer radical coupling, and employed it in syntheses of pseudo-isomaltose and pseudo-KRN7000.
Collapse
|
14
|
Abuduaini T, Li S, Roy V, Agrofoglio LA, Martin OR, Nicolas C. Tunable Approach to C-Linked Analogs of Glycosamines. J Org Chem 2022; 87:13396-13405. [PMID: 36082689 DOI: 10.1021/acs.joc.2c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of (1R)-2-amino-2-deoxy-β-l-gulopyranosyl benzene and the α and β forms of 2-amino-2-deoxy-l-idopyranosyl benzene derivatives was accomplished through stereospecific addition of tributylstannyllithium to readily available (SR)- or (SS)-N-tert-butanesulfinyl-arabinofuranosylamine building blocks, followed by stereoretentive Pd-catalyzed Migita-Kosugi-Stille cross-coupling, stereoselective reduction, and an activation-cyclization strategy. Application of this methodology paves the way to new three-dimensional chemical space and preparation of unknown (non-natural) and complex 2-amino-2-deoxy sugars of biological interest.
Collapse
Affiliation(s)
- Tuniyazi Abuduaini
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Sizhe Li
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Vincent Roy
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Luigi A Agrofoglio
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Olivier R Martin
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Cyril Nicolas
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| |
Collapse
|
15
|
Romanò C, Clausen MH. Chemical Biology of αGalCer: a Chemist’s Toolbox for the Stimulation of Invariant Natural Killer T (iNKT) Cells. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cecilia Romanò
- Technical University of Denmark: Danmarks Tekniske Universitet Department of Chemisty Kemitorvet 207 2800 Kgs. Lyngby DENMARK
| | - Mads Hartvig Clausen
- Technical University of Denmark Department of Chemistry Kemitorvet, Building 201 2800 Kgs. Lyngby DENMARK
| |
Collapse
|
16
|
Escolano M, Cabrera-Afonso MJ, Ribagorda M, Badir SO, Molander GA. Nickel-Mediated Synthesis of Non-Anomeric C-Acyl Glycosides through Electron Donor-Acceptor Complex Photoactivation. J Org Chem 2022; 87:4981-4990. [PMID: 35289617 PMCID: PMC10412007 DOI: 10.1021/acs.joc.1c03041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The preparation of nonanomeric C-acyl-saccharides has been developed from two different carboxylic acid feedstocks. This transformation is driven by the synergistic interaction of an electron donor-acceptor complex and Ni catalysis. Primary-, secondary-, and tertiary redox-active esters are incorporated as coupling partners onto preactivated pyranosyl- and furanosyl acids, preserving their stereochemical integrity. The reaction occurs under mild conditions, without stoichiometric metal reductants or exogenous catalysts, using commercially available Hantzsch ester as the organic photoreductant.
Collapse
Affiliation(s)
- Marcos Escolano
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| | - María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| | - Maria Ribagorda
- Facultad de Ciencias, Departamento de Química, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Shorouk O. Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania 19104-6323, United States
| |
Collapse
|
17
|
Wu J, Kopp A, Ackermann L. Synthesis of C-Oligosaccharides through Versatile C(sp 3 )-H Glycosylation of Glycosides. Angew Chem Int Ed Engl 2022; 61:e202114993. [PMID: 35015329 PMCID: PMC9306939 DOI: 10.1002/anie.202114993] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 12/12/2022]
Abstract
C-oligosaccharides are pharmacologically relevant because they are more hydrolysis-resistant than O-oligosaccharides. Despite indisputable advances, C-oligosaccharides continue to be underdeveloped, likely due to a lack of efficient and selective strategies for the assembly of the interglycosidic C-C linkages. In contrast, we, herein, report a versatile and robust strategy for the synthesis of structurally complex C-oligosaccharides via catalyzed C(sp3 )-H activations. Thus, a wealth of complex interglycosidic (2→1)- and (1→1)-C-oligosaccharides becomes readily available by palladium-catalyzed C(sp3 )-H glycoside glycosylation. The isolation of key palladacycle intermediates and experiments with isotopically-labeled compounds identified a trans-stereoselectivity for the C(sp3 )-H glycosylation. The glycoside C(sp3 )-H activation manifold was likewise exploited for the diversification of furanoses, pyranoses and disaccharides.
Collapse
Affiliation(s)
- Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- DZHK (German Centre for Cardiovascular Research)Potsdamer Straße 5810785BerlinGermany
| |
Collapse
|
18
|
Chen A, Xu L, Zhou Z, Zhao S, Yang T, Zhu F. Recent advances in glycosylation involving novel anomeric radical precursors. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2031207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Anrong Chen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghong Zhou
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyin Zhao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Tianyi Yang
- Research and Development, Corden Pharma Colorado, Boulder, Colorado, USA
| | - Feng Zhu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Bennett CS. Evolution of a Reagent-Controlled Strategy for β-Selective C-Glycoside Synthesis. Synlett 2022. [DOI: 10.1055/a-1755-3090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
C-alkyl glycosides represent an attractive class of non-hydrolyzable carbohydrate mimetics which possess enormous potential as next-generation therapeutics. Methods for the direct stereoselective synthesis of C-alkyl glycosides with a broad substrate tolerance are limited, however. This is especially in the case of β-linked C-alkyl glycosides, where direct methods for synthesis from commonly available coupling partners remain limited. This account describes the evolution of our laboratory’s studies on glycosyl sulfonate chemistry from a method for the construction of simple β-linked 2-deoxy-sugars to a technology for the direct synthesis of β-linked acyl and homoacyl glycosides that can be elaborated into more complex structures.
Collapse
Affiliation(s)
- Clay S Bennett
- Department of Chemistry, Tufts University, Medford, United States
| |
Collapse
|
20
|
Xu L, Hou Z, Ma X, Ma Y, Wang J, Zhang X, Wang P, Li M. Synthesis of C4‐Acyl‐tetrofuranosides and C5‐Acyl‐pentopyranosides Enabled by the Liebeskind–Srogl Cross‐Coupling Reaction. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Linhua Xu
- Ocean University of China School of Medicine and Pharmacy Qingdao CHINA
| | - Zijiao Hou
- Ocean University of China School of Medicine and Pharmacy Qingdao CHINA
| | - Xian Ma
- Ocean University of China School of Medicine and Pharmacy Qingdao CHINA
| | - Yixuan Ma
- Ocean University of China School of Medicine and Pharmacy Qingdao CHINA
| | - Jianjun Wang
- Ocean University of China School of Medicine and Pharmacy Qingdao CHINA
| | - Xinxin Zhang
- Ocean University of China School of Medicine and Pharmacy Qingdao CHINA
| | - Peng Wang
- Ocean University of China School of Medicine and Pharmacy Qingdao CHINA
| | - Ming Li
- Ocean University of China School of Pharmacy and Medicine 5 Yushan Road 266003 Qingdao CHINA
| |
Collapse
|
21
|
Synthesis of C‐Oligosaccharides through Versatile C(sp3)–H Glycosylation of Glycosides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Ding WY, Liu HH, Cheng JK, Yao H, Xiang SH, Tan B. Palladium catalyzed decarboxylative β- C-glycosylation of glycals with oxazol-5-(4 H)-ones as acceptors. Org Chem Front 2022. [DOI: 10.1039/d2qo01308h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Palladium catalyzed decarboxylative glycosylation of bicyclic glycals affords a series of C-glycosylated oxazol-5-(4H)-ones with high efficiency and exquisite chemo- and stereoselectivity at the anomeric center under mild reaction conditions.
Collapse
Affiliation(s)
- Wei-Yi Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huan-Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Kee Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
23
|
Hussain N, Hussain A. Advances in Pd-catalyzed C-C bond formation in carbohydrates and their applications in the synthesis of natural products and medicinally relevant molecules. RSC Adv 2021; 11:34369-34391. [PMID: 35497292 PMCID: PMC9042403 DOI: 10.1039/d1ra06351k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in the Pd-catalyzed synthesis of C-glycosides and branched sugars are summarized herein and the strategies are categorized based on named reactions or types of sugar moieties involved in the reactions. These include cross-coupling reactions, C-H activations, and carbonylative cross-coupling reactions. Applications of Pd-catalyzed C-glycosylation reactions are discussed in the synthesis of natural products and biologically active molecules such as bergenin, papulacandin D, and SGLT2-inhibitors. Important mechanistic cycles are drawn and the mechanisms for how Pd-activates the sugar moieties for various coupling partners are discussed. The directing group-assisted C-glycosylation and some intramolecular C-H activation reactions are also included.
Collapse
Affiliation(s)
- Nazar Hussain
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU Varanasi-221005 India
| | - Altaf Hussain
- Department of Chemistry, Govt. Degree College Poonch J&K India 185101
| |
Collapse
|
24
|
Wei Y, Lam J, Diao T. Synthesis of C-acyl furanosides via the cross-coupling of glycosyl esters with carboxylic acids. Chem Sci 2021; 12:11414-11419. [PMID: 34667550 PMCID: PMC8447929 DOI: 10.1039/d1sc03596g] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
C-Acyl furanosides are versatile synthetic precursors to a variety of natural products, nucleoside analogues, and pharmaceutical molecules. This report addresses the unmet challenge in preparing C-acyl furanosides by developing a cross-coupling reaction between glycosyl esters and carboxylic acids. A key step is the photoredox activation of the glycosyl ester, which promotes the homolysis of the strong anomeric C–O bond through CO2 evolution to afford glycosyl radicals. This method embraces a large scope of furanoses, pyranoses, and carboxylic acids, and is readily applicable to the synthesis of a thymidine analogue and diplobifuranylone B, as well as the late-stage modification of (+)-sclareolide. The convenient preparation of the redox active glycosyl ester from native sugars and the compatibility with common furanoses exemplifies the potential of this method in medicinal chemistry. A cross-coupling of glycosyl esters with carboxylic acids to prepare C-acyl furanosides and pyranosides. The reaction proceeds through photoredox activation of the glycosyl ester to afford glycosyl radicals.![]()
Collapse
Affiliation(s)
- Yongliang Wei
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Jenny Lam
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Tianning Diao
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
25
|
Liu YH, Xia YN, Gulzar T, Wei B, Li H, Zhu D, Hu Z, Xu P, Yu B. Facile access to C-glycosyl amino acids and peptides via Ni-catalyzed reductive hydroglycosylation of alkynes. Nat Commun 2021; 12:4924. [PMID: 34389709 PMCID: PMC8363649 DOI: 10.1038/s41467-021-25127-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
C-Glycosyl peptides/proteins are metabolically stable mimics of the native glycopeptides/proteins bearing O/N-glycosidic linkages, and are thus of great therapeutical potential. Herein, we disclose a protocol for the syntheses of vinyl C-glycosyl amino acids and peptides, employing a nickel-catalyzed reductive hydroglycosylation reaction of alkyne derivatives of amino acids and peptides with common glycosyl bromides. It accommodates a wide scope of the coupling partners, including complex oligosaccharide and peptide substrates. The resultant vinyl C-glycosyl amino acids and peptides, which bear common O/N-protecting groups, are amenable to further transformations, including elongation of the peptide and saccharide chains. C-Glycosyl peptides/proteins are metabolically stable mimics of the native glycopeptides/proteins of great therapeutic potential, but their chemical synthesis is challenging. Here, the authors report a protocol for the synthesis of vinyl C-glycosyl amino acids and peptides, via a Ni-catalyzed reductive hydroglycosylation reaction of alkyne derivatives of amino acids and peptides with glycosyl bromides.
Collapse
Affiliation(s)
- Yan-Hua Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Nong Xia
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tayyab Gulzar
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bingcheng Wei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haotian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dapeng Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhifei Hu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
26
|
Zhang ZT, Ma Y, Fan NL, Hu XG. Synthesis of (non-classical) C-acyl-glycosides via Liebeskind–Srogl coupling: Scope, limitation, improved synthesis and antioxidant activity of scleropentaside A. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Takeda D, Yoritate M, Yasutomi H, Chiba S, Moriyama T, Yokoo A, Usui K, Hirai G. β-Glycosyl Trifluoroborates as Precursors for Direct α-C-Glycosylation: Synthesis of 2-Deoxy-α- C-glycosides. Org Lett 2021; 23:1940-1944. [PMID: 33625241 DOI: 10.1021/acs.orglett.1c00402] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C-Glycosides are metabolically stable mimics of natural O-glycosides and are expected to be useful tools for investigation of the biological functions of glycans. Here, we describe the synthesis of a series of aryl and vinyl C-glycosides by stereoinvertive sp3-sp2 cross-coupling reactions of 2-deoxyglycosyl boronic acid derivatives with aryl or vinyl halide, mediated by a photoredox/nickel dual catalytic system. Hydrogenation of the vinyl C-glycosides afforded C-linked 2'-deoxydisaccharide analogues.
Collapse
Affiliation(s)
- Daiki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroki Yasutomi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Suzuka Chiba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiro Moriyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Yokoo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
28
|
A general approach to C-Acyl glycosides via palladium/copper Co-catalyzed coupling reaction of glycosyl carbothioates and arylboronic acids. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Hevey R. The Role of Fluorine in Glycomimetic Drug Design. Chemistry 2020; 27:2240-2253. [DOI: 10.1002/chem.202003135] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences University of Basel, Pharmazentrum Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
30
|
Li S, Jaszczyk J, Pannecoucke X, Poisson T, Martin OR, Nicolas C. Stereospecific Synthesis of Glycoside Mimics Through Migita‐Kosugi‐Stille Cross‐Coupling Reactions of Chemically and Configurationally Stable 1‐
C
‐Tributylstannyl Iminosugars. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sizhe Li
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Justyna Jaszczyk
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Xavier Pannecoucke
- Normandie Université, COBRA, UMR 6014 et FR 3038 Université de Rouen, INSA Rouen, CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Thomas Poisson
- Normandie Université, COBRA, UMR 6014 et FR 3038 Université de Rouen, INSA Rouen, CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
- Institut Universitaire de France 1 rue Descartes 75231 Paris France
| | - Olivier R. Martin
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Cyril Nicolas
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| |
Collapse
|
31
|
Zou LJ, Pan Q, Li CY, Zhang ZT, Zhang XW, Hu XG. Cyanide-Free Synthesis of Glycosyl Carboxylic Acids and Application for the Synthesis of Scleropentaside A. Org Lett 2020; 22:8302-8306. [PMID: 33085488 DOI: 10.1021/acs.orglett.0c02949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have developed a cyanide-free strategy for the synthesis of glycosyl carboxylic acids, which can provide 1,2-trans or 1,2-cis glycosyl carboxylic acids and is compatible with common protecting groups. The synthetic utility was demonstrated by the synthesis of 12 unreported glycosyl acids and the total synthesis of scleropentaside A.
Collapse
Affiliation(s)
- Liang-Jing Zou
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiang Pan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Cai-Yi Li
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ze-Ting Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xiao-Wei Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.,Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
32
|
Lv W, Chen Y, Wen S, Ba D, Cheng G. Modular and Stereoselective Synthesis of C-Aryl Glycosides via Catellani Reaction. J Am Chem Soc 2020; 142:14864-14870. [PMID: 32808778 DOI: 10.1021/jacs.0c07634] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we describe a Catellani-type C-H glycosylation to provide rapid access to various highly decorated α-C-(hetero)aryl glycosides in a modular and stereoselective manner (>90 examples). The termination step is flexible, which is demonstrated by ipso-Heck reaction, hydrogenation, Suzuki coupling, and Sonogashira coupling. Application of this methodology has been showcased by preparing glycoside-pharmacophore conjugates and a dapagliflozin analogue. Notably, the technology developed herein represents an unprecedented example of Catellani-type alkylation involving an SN1 pathway.
Collapse
Affiliation(s)
- Weiwei Lv
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Si Wen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Dan Ba
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
33
|
Li M, Qiu YF, Wang CT, Li XS, Wei WX, Wang YZ, Bao QF, Ding YN, Shi WY, Liang YM. Visible-Light-Induced Pd-Catalyzed Radical Strategy for Constructing C-Vinyl Glycosides. Org Lett 2020; 22:6288-6293. [PMID: 32806189 DOI: 10.1021/acs.orglett.0c02053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel visible-light-induced palladium-catalyzed Heck reaction for bromine sugars and aryl olefins with high regio- and stereochemistry selectivity for the preparation of C-glycosyl styrene is described. This reaction takes place in one step at room temperature by using a simple and readily available starting material. This protocol can be scaled up to a wide range of glycosyl bromide donors and aryl olefin substrates. Mechanistic studies indicate that a radical addition pathway is involved.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiao-Fei Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
34
|
Wu J, Kaplaneris N, Ni S, Kaltenhäuser F, Ackermann L. Late-stage C(sp 2)-H and C(sp 3)-H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chem Sci 2020; 11:6521-6526. [PMID: 34094117 PMCID: PMC8152807 DOI: 10.1039/d0sc01260b] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
C(sp3)–H and C(sp2)–H glycosylations of structurally complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed peptide–saccharide conjugation provided modular access to structurally complex C-alkyl glycoamino acids, glycopeptides and C-aryl glycosides, while enabling the assembly of fluorescent-labeled glycoamino acids. The C–H activation approach represents an expedient and efficient strategy for peptide late-stage diversification in a programmable as well as chemo-, regio-, and diastereo-selective fashion. C–H glycosylations of complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed glycosylation provided access to complex C-glycosides and fluorescent-labeled glycoamino acids.![]()
Collapse
Affiliation(s)
- Jun Wu
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Nikolaos Kaplaneris
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Shaofei Ni
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Felix Kaltenhäuser
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany .,German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| |
Collapse
|
35
|
Ling J, Bennett CS. Versatile Glycosyl Sulfonates in β‐Selective C‐Glycosylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jesse Ling
- Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | | |
Collapse
|
36
|
Tamburrini A, Colombo C, Bernardi A. Design and synthesis of glycomimetics: Recent advances. Med Res Rev 2020; 40:495-531. [DOI: 10.1002/med.21625] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Alice Tamburrini
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Cinzia Colombo
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Anna Bernardi
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| |
Collapse
|
37
|
Ling J, Bennett CS. Versatile Glycosyl Sulfonates in β-Selective C-Glycosylation. Angew Chem Int Ed Engl 2020; 59:4304-4308. [PMID: 31880395 DOI: 10.1002/anie.201914221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/18/2019] [Indexed: 12/27/2022]
Abstract
C-Glycosides are both a common motif in many bioactive natural products and important glycoside mimetics. We demonstrate that activating a hemiacetal with a sulfonyl chloride, followed by treating the resultant glycosyl sulfonate with an enolate results in the stereospecific construction of β-linked C-glycosides. This reaction tolerates a range of acceptors and donors, including disaccharides. The resulting products can be readily derivatized into C-glycoside analogues of β-glycoconjugates, including C-disaccharide mimetics.
Collapse
Affiliation(s)
- Jesse Ling
- Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Clay S Bennett
- Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| |
Collapse
|
38
|
Hidaka Y, Kiya N, Yoritate M, Usui K, Hirai G. Synthesis of CH2-linked α-galactosylceramide and its glucose analogues through glycosyl radical-mediated direct C-glycosylation. Chem Commun (Camb) 2020; 56:4712-4715. [DOI: 10.1039/d0cc00785d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Direct C-glycosylation of a conformationally constrained and stable C1-sp3 hybridized carbohydrate donor with a carefully designed sphingosine unit afforded the CH2-linked analogue of antitumor-active KRN7000 and its glucose congener.
Collapse
Affiliation(s)
- Yu Hidaka
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Noriaki Kiya
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| |
Collapse
|
39
|
Ghouilem J, Franco R, Retailleau P, Alami M, Gandon V, Messaoudi S. Regio- and diastereoselective Pd-catalyzed synthesis of C2-aryl glycosides. Chem Commun (Camb) 2020; 56:7175-7178. [DOI: 10.1039/d0cc02175j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly regio- and diastereoselective Pd-catalyzed direct arylation reaction of 2,3-glycals is reported.
Collapse
Affiliation(s)
- Juba Ghouilem
- Universite Paris-Saclay
- CNRS
- BioCIS
- Châtenay-Malabry
- France
| | - Rémi Franco
- Universite Paris-Saclay
- CNRS
- BioCIS
- Châtenay-Malabry
- France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles
- CNRS UPR 2301
- Universite Paris-Saclay
- 91198 Gif-sur-Yvette
- France
| | - Mouad Alami
- Universite Paris-Saclay
- CNRS
- BioCIS
- Châtenay-Malabry
- France
| | - Vincent Gandon
- Université Paris-Saclay
- CNRS, ICMMO
- Orsay Cedex
- France
- Laboratoire de Chimie Moléculaire (LCM)
| | | |
Collapse
|
40
|
Ng K, Shaktah R, Vardanyan L, Minehan TG. Total Synthesis of Alvaradoins E and F, Uveoside, and 10-epi-Uveoside. Org Lett 2019; 21:9175-9178. [PMID: 31670523 DOI: 10.1021/acs.orglett.9b03546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Concise total syntheses of the anthracenone C-glycosides alvaradoins E and F, uveoside, and 10-epi-uveoside (1-4) have been accomplished from chrysophanic acid 8 and bromosugar 9. Key steps in the syntheses include the DBU-induced coupling of 8 and 9 to produce β-C-glycoside 11, and a Pb(OAc)4-mediated Kochi reaction to introduce the C-1' oxygen atom of the natural products. Isothermal titration calorimetry and fluorescence binding studies reveal that compounds 1 and 2 have good affinity for the plasma protein HSA.
Collapse
Affiliation(s)
- Kevin Ng
- Department of Chemistry and Biochemistry , California State University, Northridge , 18111 Nordhoff Street , Northridge , California 91330-8262 , United States
| | - Ryan Shaktah
- Department of Chemistry and Biochemistry , California State University, Northridge , 18111 Nordhoff Street , Northridge , California 91330-8262 , United States
| | - Laura Vardanyan
- Department of Chemistry and Biochemistry , California State University, Northridge , 18111 Nordhoff Street , Northridge , California 91330-8262 , United States
| | - Thomas G Minehan
- Department of Chemistry and Biochemistry , California State University, Northridge , 18111 Nordhoff Street , Northridge , California 91330-8262 , United States
| |
Collapse
|
41
|
Reddy MR, Hemaiswarya S, Kommidi H, Aidhen IS, Doble M. Acyl and Benzyl-C-
β-D-
Glucosides: Synthesis and Biostudies for Glucose-Uptake-Promoting Activity in C2C12 Mytotubes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Shanmugam Hemaiswarya
- Department of Biotechnology; Indian Institute of Technology Madras; 600036 Chennai India
| | - Harikrishna Kommidi
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| | - Indrapal Singh Aidhen
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| | - Mukesh Doble
- Department of Biotechnology; Indian Institute of Technology Madras; 600036 Chennai India
| |
Collapse
|
42
|
Singh B, Kumar S, Maity J, Roy I, Prasad AK. Bamford-Stevens reaction assisted synthesis of styrene C-glycosides. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1606921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Balram Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Sandeep Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Jyotirmoy Maity
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Indrajit Roy
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
43
|
Boehlich GJ, Schützenmeister N. β-Selective C-Glycosylation and its Application in the Synthesis of Scleropentaside A. Angew Chem Int Ed Engl 2019; 58:5110-5113. [PMID: 30768828 DOI: 10.1002/anie.201900995] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/08/2023]
Abstract
C-Glycosides are carbohydrates that bear a C-C bond to an aglycon at the anomeric center. Due to their high stability towards chemical and enzymatic hydrolysis, these compounds are widely used as carbohydrate mimics in drug development. Herein, we report a general and exclusively β-selective method for the synthesis of a naturally abundant acyl-C-glycosidic structural motif first found in the scleropentaside natural product family. A Corey-Seebach umpolung reaction as the key step in the synthesis of scleropentaside A and analogues enables the β-selective construction of the anomeric C-C bond starting from unprotected carbohydrates in only four steps. The one-pot approach is highly atom-efficient and avoids the use of toxic heavy metals.
Collapse
Affiliation(s)
- G Jacob Boehlich
- Fachbereich Chemie, Institut für Pharmazie, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Nina Schützenmeister
- Fachbereich Chemie, Institut für Pharmazie, Universität Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| |
Collapse
|
44
|
Boehlich GJ, Schützenmeister N. β‐Selektive
C
‐Glycosylierung und ihre Anwendung in der Synthese von Scleropentasid A. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- G. Jacob Boehlich
- Fachbereich ChemieInstitut für PharmazieUniversität Hamburg Bundesstraße 45 20146 Hamburg Deutschland
| | - Nina Schützenmeister
- Fachbereich ChemieInstitut für PharmazieUniversität Hamburg Bundesstraße 45 20146 Hamburg Deutschland
| |
Collapse
|
45
|
Dai Y, Tian B, Chen H, Zhang Q. Palladium-Catalyzed Stereospecific C-Glycosylation of Glycals with Vinylogous Acceptors. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00336] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yuanwei Dai
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Baotong Tian
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Huan Chen
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Qiang Zhang
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
46
|
Kiya N, Hidaka Y, Usui K, Hirai G. Synthesis of CH2-Linked α(1,6)-Disaccharide Analogues by α-Selective Radical Coupling C-Glycosylation. Org Lett 2019; 21:1588-1592. [DOI: 10.1021/acs.orglett.9b00133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Noriaki Kiya
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yu Hidaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|