1
|
Li X, Warren JJ. Solvents and their hydrogen bonding properties as general considerations in carbon dioxide reduction by molecular catalysts. Dalton Trans 2025; 54:2086-2092. [PMID: 39703013 DOI: 10.1039/d4dt02682a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Improvements to the understanding of how reaction conditions influence the performance of molecular electrocatalysts are important. There exists a wide range of solution conditions that are used in the investigation of the properties and performance of electrocatalysts, from the choice of solvent or electrolyte to the identity and nature of other additives, like Brønsted acids. Herein, we demonstrate how the choice of solvent can have a significant impact on the observed rate constants for CO2-to-CO conversion by a series of rhenium(I) diimine complexes. In comparison with the observed rate constants in acetonitrile solvent, the use of a strong hydrogen bond-accepting solvent (N,N-dimethylformamide, DMFf) dramatically decreases the observed rate constants in the presence of added phenol (as a proton donor). Based on previous work from our lab and from others, we conclude that such solvent effects are a general phenomenon and are a crucial consideration for investigation of molecular catalysts. Finally, a simple H-bonding model is presented to account for solvent effects in these rhenium(I) CO2 reduction systems. The model is general for H-bonding solvents and Brønsted acids and provides a first principles means to estimate the magnitude of solvent effects on CO2 reduction kinetics.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Chemistry, Simon Fraser University, 8888 University Way, Burnaby BC V5A 1S6, Canada.
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Way, Burnaby BC V5A 1S6, Canada.
| |
Collapse
|
2
|
Cypcar AD, Yang JY. Controlling Hydrogen Evolution and CO 2 Reduction at Transition Metal Hydrides. Acc Chem Res 2024; 57:3488-3499. [PMID: 39587958 DOI: 10.1021/acs.accounts.4c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
ConspectusFuel-forming reactions such as the hydrogen evolution reaction (HER) and CO2 reduction (CO2R) are vital to transitioning to a carbon-neutral economy. The equivalent oxidation reactions are also important for efficient utilization in fuel cells. Metal hydride intermediates are common in these catalytic and electrocatalytic processes. Guiding metal hydride reactivity is important for achieving selective, kinetically fast, and low overpotential redox reactions. Our work has focused on understanding kinetic and thermodynamic aspects for controlling these reactive hydride species in an effort to design more selective electrocatalysts that operate at low overpotentials. Key to our research approach is understanding the free energy changes and rate of discrete steps of catalysis through the synthesis of proposed intermediates to independently investigate catalytic steps. Hydricity, the free energy of hydride dissociation, and how these values change with metal and ligand environment have informed catalyst design in the past few decades. We describe here how we have advanced upon these earlier studies.In our early studies we sought to understand solvent-dependent changes in hydricity for transition metal hydrides and how they impact the free energy for reduction of CO2 to formate (HCO2-). Additionally, we described how hydricity values can be applied to optimize HER and CO2R catalysis. This framework provides general guidelines for achieving selective CO2 reduction to formate without concomitant generation of H2. Kinetic information on steps in the proposed catalytic cycle of HER and CO2R catalysts were evaluated to identify potential rate-determining steps. As a second approach to achieve selective reduction for CO2, we explored two catalyst design strategies to kinetically inhibit HER using electrostatic (charged) and steric interactions. Hydricity values and other considerations for minimizing the free energy of proposed catalytic steps were also used to design an electrocatalyst for the interconversion between CO2 and HCO2- at low overpotentials. Further, we discuss our efforts to translate the CO2 hydrogenation activity of homogeneous catalysts to electrocatalysis.All of these catalytic systems operate with classical metal hydrides, where the electrons and proton are colocated on the metal center. However, classical metal hydrides all require very reducing potentials to generate sufficiently strong hydride donors for CO2 reduction. An analysis of metal hydride hydricity and reduction potentials shows that the strong correlation between reduction potential and hydricity is a general trend because the former is also highly correlated to pKa. However, formate dehydrogenase (FDH) generates a competent hydride donor at more mild potentials through bidirectional hydride transfer, where the proton and electrons of the hydride are not colocated. This bioinspired approach points to a promising new strategy for generating strong hydride donors at milder potentials and will surely open new avenues for using hydricity as a guide for addressing new and existing problems in catalysis.
Collapse
Affiliation(s)
- Andrew D Cypcar
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, California 92697, United States of America
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, California 92697, United States of America
| |
Collapse
|
3
|
Huber M, Hess CR. Transferring enzyme features to molecular CO 2 reduction catalysts. Curr Opin Chem Biol 2024; 83:102540. [PMID: 39549459 DOI: 10.1016/j.cbpa.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 11/18/2024]
Abstract
Carbon monoxide dehydrogenases and formate dehydrogenases efficiently catalyze the reduction of CO2. In both enzymes, CO2 activation at the metal active site is assisted by proximate amino acids and Fe-S-clusters. Functional features of the enzyme are mimicked in molecular catalysts by redox-active ligands, acidic and charged groups in the ligand periphery, and binuclear scaffolds. These components have all improved the catalytic performance of synthetic systems. Recent studies impart a deeper understanding of the individual contributions of the various functionalities to reactivity and of their combined effects. New catalyst platforms reveal alternate pathways for CO2 reduction, unique intermediates, and strategies for switching selectivity. Design of a wider array of complexes that combine different functional elements is encouraged to further optimize catalysts for CO2 reduction, especially for product formation beyond CO. More diverse bimetallic catalysts are needed to better exploit metal-metal interactions for CO2 conversion.
Collapse
Affiliation(s)
- Matthias Huber
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Corinna R Hess
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
4
|
Wang L, Shao M, Xie ZL, Mulfort KL. Recent Advances in Immobilizing and Benchmarking Molecular Catalysts for Artificial Photosynthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24195-24215. [PMID: 39495742 DOI: 10.1021/acs.langmuir.4c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Transition metal complexes have been widely used as catalysts or chromophores in artificial photosynthesis. Traditionally, they are employed in homogeneous settings. Despite their functional versatility and structural tunability, broad industrial applications of these catalysts are impeded by the limitations of homogeneous catalysis such as poor catalyst recyclability, solvent constraints (mostly organic solvents), and catalyst durability. Over the past few decades, researchers have developed various methods for molecular catalyst heterogenization to overcome these limitations. In this review, we summarize recent developments in heterogenization strategies, with a focus on describing methods employed in the heterogenization process and their effects on catalytic performances. Alongside the in-depth discussion of heterogenization strategies, this review aims to provide a concise overview of the key metrics associated with heterogenized systems. We hope this review will aid researchers who are new to this research field in gaining a better understanding.
Collapse
Affiliation(s)
- Lei Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Mengjiao Shao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Zhu-Lin Xie
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
5
|
Garrido-Barros P, Romero CG, Winkler JR, Peters JC. Intermolecular Proton-Coupled Electron Transfer Reactivity from a Persistent Charge-Transfer State for Reductive Photoelectrocatalysis. J Am Chem Soc 2024; 146:12750-12757. [PMID: 38669102 PMCID: PMC11082884 DOI: 10.1021/jacs.4c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Interest in applying proton-coupled electron transfer (PCET) reagents in reductive electro- and photocatalysis requires strategies that mitigate the competing hydrogen evolution reaction. Photoexcitation of a PCET donor to a charge-separated state (CSS) can produce a powerful H-atom donor capable of being electrochemically recycled at a comparatively anodic potential corresponding to its ground state. However, the challenge is designing a mediator with a sufficiently long-lived excited state for bimolecular reactivity. Here, we describe a powerful ferrocene-derived photoelectrochemical PCET mediator exhibiting an unusually long-lived CSS (τ ∼ 0.9 μs). In addition to detailed photophysical studies, proof-of-concept stoichiometric and catalytic proton-coupled reductive transformations are presented, which illustrate the promise of this approach.
Collapse
Affiliation(s)
| | | | - Jay R. Winkler
- Division of Chemistry and Chemical
Engineering, California Institute of Technology
(Caltech), Pasadena, California 91125, United States
| | - Jonas C. Peters
- Division of Chemistry and Chemical
Engineering, California Institute of Technology
(Caltech), Pasadena, California 91125, United States
| |
Collapse
|
6
|
Wang T, He F, Jiang W, Liu J. Electrohydrogenation of Nitriles with Amines by Cobalt Catalysis. Angew Chem Int Ed Engl 2024; 63:e202316140. [PMID: 38124405 DOI: 10.1002/anie.202316140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Catalytic hydrogenation of nitriles represents an efficient and sustainable one-step synthesis of valuable bulk and fine chemicals. We report herein a molecular cobalt electrocatalyst for selective hydrogenative coupling of nitriles with amines using protons as the hydrogen source. The key to success for this reductive reaction is the use of an electrocatalytic approach for efficient cobalt-hydride generation through a sequence of cathodic reduction and protonation. As only electrons (e- ) and protons (H+ ) as the redox equivalent and hydrogen source, this general electrohydrogenation protocol is showcased by highly selective and straightforward synthesis of various functionalized and structurally diverse amines, as well as deuterium isotope labeling applications. Mechanistic studies reveal that the electrogenerated cobalt-hydride transfer to nitrile process is the rate-determining step.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Fangfang He
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, 511300, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Liu D, Ma H, Zhu C, Qiu F, Yu W, Ma LL, Wei XW, Han YF, Yuan G. Molecular Co-Catalyst Confined within a Metallacage for Enhanced Photocatalytic CO 2 Reduction. J Am Chem Soc 2024; 146:2275-2285. [PMID: 38215226 DOI: 10.1021/jacs.3c14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The construction of structurally well-defined supramolecular hosts to accommodate catalytically active species within a cavity is a promising way to address catalyst deactivation. The resulting supramolecular catalysts can significantly improve the utilization of catalytic sites, thereby achieving a highly efficient chemical conversion. In this study, the Co-metalated phthalocyanine (Pc-Co) was successfully confined within a tetragonal prismatic metallacage, leading to the formation of a distinctive type of supramolecular photocatalyst (Pc-Co@Cage). The host-guest architecture of Pc-Co@Cage was unambiguously elucidated by single-crystal X-ray diffraction (SCXRD), NMR, and ESI-TOF-MS, revealing that the single cobalt active site can be thoroughly isolated within the space-restricted microenvironment. In addition, we found that Pc-Co@Cage can serve as a homogeneous supramolecular photocatalyst that displays high CO2 to CO conversion in aqueous media under visible light irradiation. This supramolecular photocatalyst exhibits an obvious improvement in activity (TONCO = 4175) and selectivity (SelCO = 92%) relative to the nonconfined Pc-Co catalyst (TONCO = 500, SelCO = 54%). The present strategy provided a rare example for the construction of a highly active, selective, and stable photocatalyst for CO2 reduction through a cavity-confined molecular catalyst within a discrete metallacage.
Collapse
Affiliation(s)
- Dongdong Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Huirong Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Chao Zhu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Fengyi Qiu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Weibin Yu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Li-Li Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Xian-Wen Wei
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| |
Collapse
|
8
|
Wolff S, Pelmenschikov V, Müller R, Ertegi M, Cula B, Kaupp M, Limberg C. Controlling the Activation at Ni II -CO 2 2- Moieties through Lewis Acid Interactions in the Second Coordination Sphere. Chemistry 2024:e202303112. [PMID: 38258932 DOI: 10.1002/chem.202303112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Nickel complexes with a two-electron reduced CO2 ligand (CO2 2- , "carbonite") are investigated with regard to the influence alkali metal (AM) ions have as Lewis acids on the activation of the CO2 entity. For this purpose complexes with NiII (CO2 )AM (AM=Li, Na, K) moieties were accessed via deprotonation of nickel-formate compounds with (AM)N(i Pr)2 . It was found that not only the nature of the AM ions in vicinity to CO2 affect the activation, but also the number and the ligation of a given AM. To this end the effects of added (AM)N(R)2 , THF, open and closed polyethers as well as cryptands were systematically studied. In 14 cases the products were characterized by X-ray diffraction and correlations with the situation in solution were made. The more the AM ions get detached from the carbonite ligand, the lower is the degree of aggregation. At the same time the extent of CO2 activation is decreased as indicated by the structural and spectroscopic analysis and reactivity studies. Accompanying DFT studies showed that the coordinating AM Lewis acidic fragment withdraws only a small amount of charge from the carbonite moiety, but it also affects the internal charge equilibration between the LtBu Ni and carbonite moieties.
Collapse
Affiliation(s)
- Siad Wolff
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Vladimir Pelmenschikov
- Institut für Chemie Theoretische Chemie/Quantenchemie, Sekr.C7, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Robert Müller
- Institut für Chemie und Biochemie Physikalische und Theoretische Chemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Mervan Ertegi
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Beatrice Cula
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie Theoretische Chemie/Quantenchemie, Sekr.C7, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Christian Limberg
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
9
|
Li Y, Chen JY, Zhang X, Peng Z, Miao Q, Chen W, Xie F, Liao RZ, Ye S, Tung CH, Wang W. Electrocatalytic Interconversions of CO 2 and Formate on a Versatile Iron-Thiolate Platform. J Am Chem Soc 2023. [PMID: 38019775 DOI: 10.1021/jacs.3c09824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Exploring bidirectional CO2/HCO2- catalysis holds significant potential in constructing integrated (photo)electrochemical formate fuel cells for energy storage and applications. Herein, we report selective CO2/HCO2- electrochemical interconversion by exploiting the flexible coordination modes and rich redox properties of a versatile iron-thiolate platform, Cp*Fe(II)L (L = 1,2-Ph2PC6H4S-). Upon oxidation, this iron complex undergoes formate binding to generate a diferric formate complex, [(L-)2Fe(III)(μ-HCO2)Fe(III)]+, which exhibits remarkable electrocatalytic performance for the HCO2--to-CO2 transformation with a maximum turnover frequency (TOFmax) ∼103 s-1 and a Faraday efficiency (FE) ∼92(±4)%. Conversely, this iron system also allows for reduction at -1.85 V (vs Fc+/0) and exhibits an impressive FE ∼93 (±3)% for the CO2-to-HCO2- conversion. Mechanism studies revealed that the HCO2--to-CO2 electrocatalysis passes through dicationic [(L2)-•Fe(III)(μ-HCO2)Fe(III)]2+ generated by unconventional oxidation of the diferric formate species taking place at ligand L, while the CO2-to-HCO2- reduction involves a critical intermediate of [Fe(II)-H]- that was independently synthesized and structurally characterized.
Collapse
Affiliation(s)
- Yongxian Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jia-Yi Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinchao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Peng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiyi Miao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Xie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Montgomery CL, Amtawong J, Jordan AM, Kurtz DA, Dempsey JL. Proton transfer kinetics of transition metal hydride complexes and implications for fuel-forming reactions. Chem Soc Rev 2023; 52:7137-7169. [PMID: 37750006 DOI: 10.1039/d3cs00355h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Proton transfer reactions involving transition metal hydride complexes are prevalent in a number of catalytic fuel-forming reactions, where the proton transfer kinetics to or from the metal center can have significant impacts on the efficiency, selectivity, and stability associated with the catalytic cycle. This review correlates the often slow proton transfer rate constants of transition metal hydride complexes to their electronic and structural descriptors and provides perspective on how to exploit these parameters to control proton transfer kinetics to and from the metal center. A toolbox of techniques for experimental determination of proton transfer rate constants is discussed, and case studies where proton transfer rate constant determination informs fuel-forming reactions are highlighted. Opportunities for extending proton transfer kinetic measurements to additional systems are presented, and the importance of synergizing the thermodynamics and kinetics of proton transfer involving transition metal hydride complexes is emphasized.
Collapse
Affiliation(s)
- Charlotte L Montgomery
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA.
| | - Jaruwan Amtawong
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA.
| | - Aldo M Jordan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA.
| | - Daniel A Kurtz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA.
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA.
| |
Collapse
|
11
|
De La Torre P, An L, Chang CJ. Porosity as a Design Element for Developing Catalytic Molecular Materials for Electrochemical and Photochemical Carbon Dioxide Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302122. [PMID: 37144618 DOI: 10.1002/adma.202302122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Indexed: 05/06/2023]
Abstract
The catalytic reduction of carbon dioxide (CO2 ) using sustainable energy inputs is a promising strategy for upcycling of atmospheric carbon into value-added chemical products. This goal has inspired the development of catalysts for selective and efficient CO2 conversion using electrochemical and photochemical methods. Among the diverse array of catalyst systems designed for this purpose, 2D and 3D platforms that feature porosity offer the potential to combine carbon capture and conversion. Included are covalent organic frameworks (COFs), metal-organic frameworks (MOFs), porous molecular cages, and other hybrid molecular materials developed to increase active site exposure, stability, and water compatibility while maintaining precise molecular tunability. This mini-review showcases catalysts for the CO2 reduction reaction (CO2 RR) that incorporate well-defined molecular elements integrated into porous materials structures. Selected examples provide insights into how different approaches to this overall design strategy can augment their electrocatalytic and/or photocatalytic CO2 reduction activity.
Collapse
Affiliation(s)
- Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Lun An
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
| |
Collapse
|
12
|
Chen JY, Li M, Liao RZ. Mechanistic Insights into Photochemical CO 2 Reduction to CH 4 by a Molecular Iron-Porphyrin Catalyst. Inorg Chem 2023. [PMID: 37279181 DOI: 10.1021/acs.inorgchem.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Iron tetraphenylporphyrin complex modified with four trimethylammonium groups (Fe-p-TMA) is found to be capable of catalyzing the eight-electron eight-proton reduction of CO2 to CH4 photochemically in acetonitrile. In the present work, density functional theory (DFT) calculations have been performed to investigate the reaction mechanism and to rationalize the product selectivity. Our results revealed that the initial catalyst Fe-p-TMA ([Cl-Fe(III)-LR4]4+, where L = tetraphenylporphyrin ligand with a total charge of -2, and R4 = four trimethylammonium groups with a total charge of +4) undergoes three reduction steps, accompanied by the dissociation of the chloride ion to form [Fe(II)-L••2-R4]2+. [Fe(II)-L••2-R4]2+, bearing a Fe(II) center ferromagnetically coupled with a tetraphenylporphyrin diradical, performs a nucleophilic attack on CO2 to produce the 1η-CO2 adduct [CO2•--Fe(II)-L•-R4]2+. Two intermolecular proton transfer steps then take place at the CO2 moiety of [CO2•--Fe(II)-L•-R4]2+, resulting in the cleavage of the C-O bond and the formation of the critical intermediate [Fe(II)-CO]4+ after releasing a water molecule. Subsequently, [Fe(II)-CO]4+ accepts three electrons and one proton to generate [CHO-Fe(II)-L•-R4]2+, which finally undergoes a successive four-electron-five-proton reduction to produce methane without forming formaldehyde, methanol, or formate. Notably, the redox non-innocent tetraphenylporphyrin ligand was found to play an important role in CO2 reduction since it could accept and transfer electron(s) during catalysis, thus keeping the ferrous ion at a relatively high oxidation state. Hydrogen evolution reaction via the formation of Fe-hydride ([Fe(II)-H]3+) turns out to endure a higher total barrier than the CO2 reduction reaction, therefore providing a reasonable explanation for the origin of the product selectivity.
Collapse
Affiliation(s)
- Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
VanderWeide A, Prokopchuk DE. Cyclopentadienyl ring activation in organometallic chemistry and catalysis. Nat Rev Chem 2023:10.1038/s41570-023-00501-1. [PMID: 37258685 DOI: 10.1038/s41570-023-00501-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The cyclopentadienyl (Cp) ligand is a cornerstone of modern organometallic chemistry. Since the discovery of ferrocene, the Cp ligand and its various derivatives have become foundational motifs in catalysis, medicine and materials science. Although largely considered an ancillary ligand for altering the stereoelectronic properties of transition metal centres, there is mounting evidence that the core Cp ring structure also serves as a reservoir for reactive protons (H+), hydrides (H-) or radical hydrogen (H•) atoms. This Review chronicles the field of Cp ring activation, highlighting the pivotal role that Cp ligands can have in electrocatalytic H2 production, N2 reduction, hydride transfer reactions and proton-coupled electron transfer.
Collapse
|
14
|
Sueyoshi F, Zhang X, Yamauchi K, Sakai K. Controlling the Photofunctionality of a Polyanionic Heteroleptic Copper(I) Photosensitizer for CO 2 Reduction Using Its Ion-pair Formation with Polycationic Ammonium in Aqueous Media. Angew Chem Int Ed Engl 2023; 62:e202217807. [PMID: 36624554 DOI: 10.1002/anie.202217807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
A water-soluble trianionic heteroleptic copper(I) photosensitizer having four sulfonate groups (CuPS3- ) was found to afford the 1 : 2 ion-pair adduct with dicationic alkylammonium (hexamethonium) cations (HM2+ ) in aqueous media, leading to exhibit excellent photophysical and photocatalytic performances owing to the substantial suppression of water-derived non-radiative decay of the photoexcited state.
Collapse
Affiliation(s)
- Fumika Sueyoshi
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Xian Zhang
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.,Current address: Institute of Inorganic Chemistry, University of Göttingen, 37077, Göttingen, Germany
| | - Kosei Yamauchi
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
15
|
Pattanayak S, Berben LA. Pre-Equilibrium Reaction Mechanism as a Strategy to Enhance Rate and Lower Overpotential in Electrocatalysis. J Am Chem Soc 2023; 145:3419-3426. [PMID: 36734988 PMCID: PMC9936576 DOI: 10.1021/jacs.2c10942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Indexed: 02/04/2023]
Abstract
Pre-equilibrium reaction kinetics enable the overall rate of a catalytic reaction to be orders of magnitude faster than the rate-determining step. Herein, we demonstrate how pre-equilibrium kinetics can be applied to breaking the linear free-energy relationship (LFER) for electrocatalysis, leading to rate enhancement 5 orders of magnitude and lowering of overpotential to approximately thermoneutral. This approach is applied to pre-equilibrium formation of a metal-hydride intermediate to achieve fast formate formation rates from CO2 reduction without loss of selectivity (i.e., H2 evolution). Fast pre-equilibrium metal-hydride formation, at 108 M-1 s-1, boosts the CO2 electroreduction to formate rate up to 296 s-1. Compared with molecular catalysts that have similar overpotential, this rate is enhanced by 5 orders of magnitude. As an alternative comparison, overpotential is lowered by ∼50 mV compared to catalysts with a similar rate. The principles elucidated here to obtain pre-equilibrium reaction kinetics via catalyst design are general. Design and development that builds on these principles should be possible in both molecular homogeneous and heterogeneous electrocatalysis.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Department of Chemistry, University
of California, Davis, California, Davis, 95616, United States
| | - Louise A. Berben
- Department of Chemistry, University
of California, Davis, California, Davis, 95616, United States
| |
Collapse
|
16
|
Zhang XD, Liu T, Liu C, Zheng DS, Huang JM, Liu QW, Yuan WW, Yin Y, Huang LR, Xu M, Li Y, Gu ZY. Asymmetric Low-Frequency Pulsed Strategy Enables Ultralong CO 2 Reduction Stability and Controllable Product Selectivity. J Am Chem Soc 2023; 145:2195-2206. [PMID: 36629383 DOI: 10.1021/jacs.2c09501] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Copper-based catalysts are widely explored in electrochemical CO2 reduction (CO2RR) because of their ability to convert CO2 into high-value-added multicarbon products. However, the poor stability and low selectivity limit the practical applications of these catalysts. Here, we proposed a simple and efficient asymmetric low-frequency pulsed strategy (ALPS) to significantly enhance the stability and the selectivity of the Cu-dimethylpyrazole complex Cu3(DMPz)3 catalyst in CO2RR. Under traditional potentiostatic conditions, Cu3(DMPz)3 exhibited poor CO2RR performance with the Faradaic efficiency (FE) of 34.5% for C2H4 and FE of 5.9% for CH4 as well as the low stability for less than 1 h. We optimized two distinguished ALPS methods toward CH4 and C2H4, correspondingly. The high selectivities of catalytic product CH4 (FECH4 = 80.3% and above 76.6% within 24 h) and C2H4 (FEC2H4 = 70.7% and above 66.8% within 24 h) can be obtained, respectively. The ultralong stability for 300 h (FECH4 > 60%) and 145 h (FEC2H4 > 50%) was also recorded with the ALPS method. Microscopy (HRTEM, SAED, and HAADF) measurements revealed that the ALPS method in situ generated and stabilized extremely dispersive and active Cu-based clusters (∼2.7 nm) from Cu3(DMPz)3. Meanwhile, ex situ spectroscopies (XPS, AES, and XANES) and in situ XANES indicated that this ALPS method modulated the Cu oxidation states, such as Cu(0 and I) with C2H4 selectivity and Cu(I and II) with CH4 selectivity. The mechanism under the ALPS methods was explored by in situ ATR-FTIR, in situ Raman, and DFT computation. The ALPS methods provide a new opportunity to boost the selectivity and stability of CO2RR.
Collapse
Affiliation(s)
- Xiang-Da Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tianyang Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chang Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - De-Sheng Zheng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian-Mei Huang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian-Wen Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei-Wen Yuan
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yue Yin
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ling-Rui Huang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yafei Li
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
17
|
Wang XS, Yang JY. Translating aqueous CO 2 hydrogenation activity to electrocatalytic reduction with a homogeneous cobalt catalyst. Chem Commun (Camb) 2023; 59:338-341. [PMID: 36515080 DOI: 10.1039/d2cc05473f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A molecular cobalt CO2 hydrogenation catalyst was explored for electrocatalytic CO2 reduction under aqueous conditions. The resulting pH-dependent selectivity between H2 and HCO2- is rationalized with thermodynamic analysis and stoichiometric experiments.
Collapse
Affiliation(s)
- Xinran S Wang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
18
|
Masood Z, Ge Q. Mechanism and Selectivity of Electrochemical Reduction of CO 2 on Metalloporphyrin Catalysts from DFT Studies. Molecules 2023; 28:molecules28010375. [PMID: 36615568 PMCID: PMC9823635 DOI: 10.3390/molecules28010375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Electrochemical reduction of CO2 to value-added chemicals has been hindered by poor product selectivity and competition from hydrogen evolution reactions. This study aims to unravel the origin of the product selectivity and competitive hydrogen evolution reaction on [MP]0 catalysts (M = Fe, Co, Rh and Ir; P is porphyrin ligand) by analyzing the mechanism of CO2 reduction and H2 formation based on the results of density functional theory calculations. Reduction of CO2 to CO and HCOO- proceeds via the formation of carboxylate adduct ([MP-COOH]0 and ([MP-COOH]-) and metal-hydride [MP-H]-, respectively. Competing proton reduction to gaseous hydrogen shares the [MP-H]- intermediate. Our results show that the pKa of [MP-H]0 can be used as an indicator of the CO or HCOO-/H2 preference. Furthermore, an ergoneutral pH has been determined and used to determine the minimum pH at which selective CO2 reduction to HCOO- becomes favorable over the H2 production. These analyses allow us to understand the product selectivity of CO2 reduction on [FeP]0, [CoP]0, [RhP]0 and [IrP]0; [FeP]0 and [CoP]0 are selective for CO whereas [RhP]0 and [IrP]0 are selective for HCOO- while suppressing H2 formation. These descriptors should be applicable to other catalysts in an aqueous medium.
Collapse
|
19
|
Derosa J, Garrido-Barros P, Li M, Peters JC. Use of a PCET Mediator Enables a Ni-HER Electrocatalyst to Act as a Hydride Delivery Agent. J Am Chem Soc 2022; 144:20118-20125. [PMID: 36264765 DOI: 10.1021/jacs.2c09786] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The generation of metal hydride intermediates during reductive electrocatalysis in the presence of acid most commonly leads to the hydrogen evolution reaction (HER). Redirecting the reactivity profile of such hydride intermediates toward the reduction of unsaturated substrates is an exciting opportunity in catalysis but presents a challenge in terms of catalyst selectivity. In this study, we demonstrate that a prototypical phosphine-supported Ni-HER catalyst can be repurposed toward the electrocatalytic reduction of a model substrate, methyl phenylpropiolate, via hydride transfer from a NiII-H when interfaced with a metallocene-derived proton-coupled electron transfer (PCET) mediator. Key to success is generation of the NiII-H at a potential pinned to that of the PCET mediator which is appreciably anodic of the onset of HER. Electrochemical, spectroscopic, and theoretical data point to a working mechanism where a PCET step from the metallocene-derived mediator to NiII generates NiIII-H and is rate-determining; the latter NiIII-H is then readily reduced to a NiII-H, which is competent for substrate reduction. Additional studies show that this tandem PCET-mediated hydride generation can afford high stereoselectivity (e.g., >20:1 Z/E using a phosphine-cobalt precatalyst with ethyl 2-heptynoate) and can also be used for the reduction of α,β-unsaturated ketones.
Collapse
Affiliation(s)
- Joseph Derosa
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Pablo Garrido-Barros
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Mengdi Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
20
|
Cypcar AD, Kerr TA, Yang JY. Thermochemical Studies of Nickel Hydride Complexes with Cationic Ligands in Aqueous and Organic Solvents. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew D. Cypcar
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Tyler A. Kerr
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
21
|
Fokin I, Kuessner KT, Siewert I. Electroreduction of Carbonyl Compounds Catalyzed by a Manganese Complex. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Igor Fokin
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
| | - Kai-Thorben Kuessner
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
- Universität Göttingen, International Center for Advanced Energy Studies, Tammannstr. 4, 37077 Göttingen, Germany
| |
Collapse
|
22
|
Ilic S, Gesiorski JL, Weerasooriya RB, Glusac KD. Biomimetic Metal-Free Hydride Donor Catalysts for CO 2 Reduction. Acc Chem Res 2022; 55:844-856. [PMID: 35201767 DOI: 10.1021/acs.accounts.1c00708] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic reduction of carbon dioxide to fuels and value-added chemicals is of significance for the development of carbon recycling technologies. One of the main challenges associated with catalytic CO2 reduction is product selectivity: the formation of carbon monoxide, molecular hydrogen, formate, methanol, and other products occurs with similar thermodynamic driving forces, making it difficult to selectively reduce CO2 to the target product. Significant scientific effort has been aimed at the development of catalysts that can suppress the undesired hydrogen evolution reaction and direct the reaction toward the selective formation of the desired products, which are easy to handle and store. Inspired by natural photosynthesis, where the CO2 reduction is achieved using NADPH cofactors in the Calvin cycle, we explore biomimetic metal-free hydride donors as catalysts for the selective reduction of CO2 to formate. Here, we outline our recent findings on the thermodynamic and kinetic parameters that control the hydride transfer from metal-free hydrides to CO2. By experimentally measuring and theoretically calculating the thermodynamic hydricities of a range of metal-free hydride donors, we derive structural and electronic factors that affect their hydride-donating abilities. Two dominant factors that contribute to the stronger hydride donors are identified to be (i) the stabilization of the positive charge formed upon HT via aromatization or by the presence of electron-donating groups and (ii) the destabilization of hydride donors through the anomeric effect or in the presence of significant structural constrains in the hydride molecule. Hydride donors with appropriate thermodynamic hydricities were reacted with CO2, and the formation of the formate ion (the first reduction step in CO2 reduction to methanol) was confirmed experimentally, providing an important proof of principle that organocatalytic CO2 reduction is feasible. The kinetics of hydride transfer to CO2 were found to be slow, and the sluggish kinetics were assigned in part to the large self-exchange reorganization energy associated with the organic hydrides in the DMSO solvent. Finally, we outline our approaches to the closure of the catalytic cycle via the electrochemical and photochemical regeneration of the hydride (R-H) from the conjugate hydride acceptors (R+). We illustrate how proton-coupled electron transfer can be efficiently utilized not only to lower the electrochemical potential at which the hydride regeneration takes place but also to suppress the unwanted dimerization that neutral radical intermediates tend to undergo. Overall, this account provides a summary of important milestones achieved in organocatalytic CO2 reduction and provides insights into the future research directions needed for the discovery of inexpensive catalysts for carbon recycling.
Collapse
Affiliation(s)
- Stefan Ilic
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Jonathan L. Gesiorski
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Ravindra B. Weerasooriya
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Ksenija D. Glusac
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
23
|
Rickmeyer K, Niederegger L, Keilwerth M, Hess CR. Multifaceted Role of the Noninnocent Mabiq Ligand in Promoting Selective Reduction of CO2 to CO. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kerstin Rickmeyer
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Lukas Niederegger
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstr. 1, 91058 Erlangen, Germany
| | - Corinna R. Hess
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
24
|
Treviño RE, Shafaat HS. Protein-based models offer mechanistic insight into complex nickel metalloenzymes. Curr Opin Chem Biol 2022; 67:102110. [PMID: 35101820 DOI: 10.1016/j.cbpa.2021.102110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
There are ten nickel enzymes found across biological systems, each with a distinct active site and reactivity that spans reductive, oxidative, and redox-neutral processes. We focus on the reductive enzymes, which catalyze reactions that are highly germane to the modern-day climate crisis: [NiFe] hydrogenase, carbon monoxide dehydrogenase, acetyl coenzyme A synthase, and methyl coenzyme M reductase. The current mechanistic understanding of each enzyme system is reviewed along with existing knowledge gaps, which are addressed through the development of protein-derived models, as described here. This opinion is intended to highlight the advantages of using robust protein scaffolds for modeling multiscale contributions to reactivity and inspire the development of novel artificial metalloenzymes for other small molecule transformations.
Collapse
Affiliation(s)
- Regina E Treviño
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
25
|
Abstract
Electrocatalysis is an indispensable technique for small-molecule transformations, which are essential for the sustainability of society. Electrocatalysis utilizes electricity as an energy source for chemical reactions. Hydrogen is considered the “fuel for the future,” and designing electrocatalysts for hydrogen production has thus become critical. Furthermore, fuel cells are promising energy solutions that require robust electrocatalysts for key fuel cell reactions such as the interconversion of oxygen to water. Concerns regarding the rising concentration of atmospheric carbon dioxide have prompted the search for CO2 conversion methods. One promising approach is the electrochemical conversion of CO2 into commodity chemicals and/or liquid fuels, but such chemistry is highly energy demanding because of the thermodynamic stability of CO2. All of the above-mentioned electrocatalytic processes rely on the selective input of multiple protons (H+) and electrons (e–) to yield the desired products. Biological enzymes evolved in nature to perform such redox catalysis and have inspired the design of catalysts at the molecular and atomic levels. While it is synthetically challenging to mimic the exact biological environment, incorporating functional outer coordination spheres into molecular catalysts has shown promise for advancing multi-H+ and multi-e– electrocatalysis. From this Perspective, herein, catalysts with outer coordination sphere(s) are selected as the inspiration for developing new catalysts, particularly for the reductive conversion of H+, O2, and CO2, which are highly relevant to sustainability. The recent progress in electrocatalysis and opportunities to explore beyond the second coordination sphere are also emphasized.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| |
Collapse
|
26
|
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) to generate fixed forms of carbons that have commercial value is a lucrative avenue to ameliorate the growing concerns about the detrimental effect of CO2 emissions as well as to generate carbon-based feed chemicals, which are generally obtained from the petrochemical industry. The area of electrochemical CO2RR has seen substantial activity in the past decade, and several good catalysts have been reported. While the focus was initially on the rate and overpotential of electrocatalysis, it is gradually shifting toward the more chemically challenging issue of selectivity. CO2 can be partially reduced to produce several C1 products like CO, HCOOH, CH3OH, etc. before its complete 8e-/8H+ reduction to CH4. In addition to that, the low-valent electron-rich metal centers deployed to activate CO2, a Lewis acid, are prone to reduce protons, which are a substrate for CO2RR, leading to competing hydrogen evolution reaction (HER). Similarly, the low-valent metal is prone to oxidation by atmospheric O2 (i.e., it can catalyze the oxygen reduction reaction, ORR), necessitating strictly anaerobic conditions for CO2RR. Not only is the requirement of O2-free reaction conditions impractical, but it also leads to the release of partially reduced O2 species such as O2-, H2O2, etc., which are reactive and result in oxidative degradation of the catalyst.In this Account, mechanistic investigations of CO2RR by detecting and, often, chemically trapping and characterizing reaction intermediates are used to understand the factors that determine the selectivity in CO2RR. The spectroscopic data obtained from different intermediates have been identified in different CO2RR catalysts to develop an electronic structure selectivity relationship that is deemed to be important for deciding the selectivity of 2e-/2H+ CO2RR. The roles played by the spin state, hydrogen bonding, and heterogenization in determining the rate and selectivity of CO2RR (producing only CO, only HCOOH, or only CH4) are discussed using examples of both iron porphyrin and non-heme bioinspired artificial mimics. In addition, strategies are demonstrated where the competition between CO2RR and HER as well as CO2RR and ORR could be skewed overwhelmingly in favor of CO2RR in both cases.
Collapse
Affiliation(s)
- Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| | - Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
27
|
Nie W, McCrory C. Strategies for Breaking Molecular Scaling Relationships for the Electrochemical CO 2 Reduction Reaction. Dalton Trans 2022; 51:6993-7010. [DOI: 10.1039/d2dt00333c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) is a promising strategy for converting CO2 to fuels and value-added chemicals using renewable energy sources. Molecular electrocatalysts show promise for the selective conversion...
Collapse
|
28
|
Liu JJ, Chapovetsky A, Haiges R, Marinescu SC. Effects of Protonation State on Electrocatalytic CO 2 Reduction by a Cobalt Aminopyridine Macrocyclic Complex. Inorg Chem 2021; 60:17517-17528. [PMID: 34761920 DOI: 10.1021/acs.inorgchem.1c01977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical component in the reduction of CO2 to CO and H2O is the delivery of 2 equiv of protons and electrons to the CO2 molecule. The timing and sequencing of these proton and electron transfer steps are essential factors in directing the activity and selectivity for catalytic CO2 reduction. In previous studies, we have reported a series of macrocyclic aminopyridine cobalt complexes capable of reducing CO2 to CO with high faradaic efficiencies. Kinetic investigations reveal a relationship between the observed rate constant (kobs) and the number of pendant amine hydrogen bond donors minus one, suggesting the presence of a deprotonated active catalytic state. Herein, we investigate the feasibility of these proposed deprotonated complexes toward CO2 reduction. Two deprotonated derivatives, Co(L4-) and Co(L2-), of the tetraamino macrocycle Co(L) were independently synthesized and structurally characterized revealing extensive delocalization of the negative charge upon deprotonation. 1H nuclear magnetic resonance spectroscopy and ultraviolet-visible titration studies confirm that under catalytic conditions, the active form of the catalyst gradually becomes deprotonated, supporting thus the ndonor - 1 relationship with kobs. Electrochemical studies of Co(L4-) reveal that this deprotonated analogue is competent for electrocatalysis upon addition of an exogenous weak acid source, such as 2,2,2-trifluoroethanol, resulting in faradaic efficiencies for CO2-to-CO conversion identical to those observed with the fully protonated derivative (>98%).
Collapse
Affiliation(s)
- Jeffrey J Liu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Alon Chapovetsky
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Ralf Haiges
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
29
|
|
30
|
Sampaio RN, DiMarco BN, Concepcion JJ. Proton-Coupled Group Transfer Enables Concerted Protonation Pathways Relevant to Small-Molecule Activation. Inorg Chem 2021; 60:16953-16965. [PMID: 34314158 DOI: 10.1021/acs.inorgchem.1c01609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanistic identification of Nature's use of concerted reactions, in which all bond breaking and bond making occurs in a single step, has inspired rational designs for artificial synthetic transformations via pathways that bypass high-energy intermediates that would otherwise be thermodynamically and kinetically inaccessible. In this contribution we electrochemically activate an organometallic Ruthenium(II) complex to show that, in acetonitrile solutions, the movement of protons from weak Brønsted acids, such as water and methanol, is coupled with the transfer of its negatively charged counterpart to carbon dioxide (CO2)─a process termed proton-coupled group transfer─to stoichiometrically produce a metal-hydride complex and a carbonate species. These previously unidentified pathways have played key roles in CO2 and proton reduction catalysis by enabling the generation of key intermediates such as hydrides and metallocarboxylic acids, while their applicability to carbon acids may provide alternative approaches in the electrosynthesis of chemical commodities via alkylation and carboxylation reactions.
Collapse
Affiliation(s)
- Renato N Sampaio
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Brian N DiMarco
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Javier J Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
31
|
Computational Study for CO 2-to-CO Conversion over Proton Reduction Using [Re[bpyMe(Im-R)](CO) 3Cl] + (R = Me, Me 2, and Me 4) Electrocatalysts and Comparison with Manganese Analogues. ACS Catal 2021; 11:12989-13000. [PMID: 36860803 PMCID: PMC9973667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The Nippe group has previously reported a series of imidazolium-functionalized rhenium bipyridyl tricarbonyl electrocatalysts, [Re[bpyMe(Im-R)]-(CO)3Cl]+ (R = Me and Me2), for CO2-to-CO conversion using H2O as the proton source [Sung, S.; Kumar, D., et al. Electrocatalytic CO2 Reduction by Imidazolium-Functionalized Molecular Catalysts. J. Am. Chem. Soc. 2017, 139, 40, 13993-13996. 10.1021/jacs.7b07709]. These compounds feature charged imidazolium ligands in the secondary coordination sphere and exhibit higher catalytic activities as compared to the Lehn catalyst [Re(bpy)(CO)3Cl] (where bpy = 2,2'-bipyridine). However, the reaction mechanism for the CO2 reduction reaction (CO2RR) over the competing hydrogen evolution reaction (HER) is unclear. Here, we employ density functional theory (DFT) and restricted active space self-consistent field (RASSCF) methods to study the selectivity for CO2 fixation using [Re[bpyMe(ImMe)](CO)3Cl]+ (1 +) in water and compare its reactivity to [Re[bpyMe(ImMe2)](CO)3Cl]+ (2 +) and [Re[bpyMe(ImMe4)](CO)3Cl]+ (3 +). Our results reveal that the turnover frequency (TOF) for CO2RR using 1 + is 4 orders of magnitude higher than for proton reduction, consistent with controlled potential electrolysis (CPE) experiments in which CO was the only detectable reduction product. The imidazolium moiety in the secondary coordination sphere stabilizes the metallocarboxylate species and assists the C-O cleavage through intermolecular hydrogen-bonding stabilizations. Furthermore, our calculations imply that the strongest hydrogen-bonding interactions at the C2 position in 1 + contribute to the faster reaction rate observed experimentally with respect to 2 +. More significantly, the use of the energy span model demonstrates that the turnover frequency-determining transition state (TDTS) corresponds to the formation of the Re-CO2 adduct, contrasting with manganese analogues in which the C-O bond cleavage step is the TDTS. We attribute this distinction based on the electronic structures of doubly reduced active catalysts. Indeed, RASSCF calculations indicate that rhenium compounds are best described as a rhenium(I) coupled with a doubly reduced bipyridine ligand, [ReI[bpyMe(ImMe)2-](CO)3]0. In contrast, manganese analogues feature a metal center in a formal zero oxidation state antiferromagnetically coupled with an unpaired electron on the bpy, [Mn0[bpyMe(ImMe)•-](CO)3]0.
Collapse
|
32
|
Arcudi F, Đorđević L, Nagasing B, Stupp SI, Weiss EA. Quantum Dot-Sensitized Photoreduction of CO 2 in Water with Turnover Number > 80,000. J Am Chem Soc 2021; 143:18131-18138. [PMID: 34664969 DOI: 10.1021/jacs.1c06961] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Climate change and global energy demands motivate the search for sustainable transformations of carbon dioxide (CO2) to storable liquid fuels. Photocatalysis is a pathway for direct conversion of CO2 to CO, one step within light-powered reaction networks that could, if efficient enough, transform the solar energy conversion landscape. To date, the best performing photocatalytic CO2 reduction systems operate in nonaqueous solvents, but technologically viable solar fuels networks will likely operate in water. Here we demonstrate catalytic photoreduction of CO2 to CO in pure water at pH 6-7 with an unprecedented combination of performance parameters: turnover number (TON(CO)) = 72,484-84,101, quantum yield (QY) = 0.96-3.39%, and selectivity (SCO) > 99%, using CuInS2 colloidal quantum dots (QDs) as photosensitizers and a Co-porphyrin catalyst. At higher catalyst concentration, the system reaches QY = 3.53-5.23%. The performance of the QD-driven system greatly exceeds that of the benchmark aqueous system (926 turnovers with a quantum yield of 0.81% and selectivity of 82%), due primarily to (i) electrostatic attraction of the QD to the catalyst, which promotes fast multielectron delivery and colocalization of protons, CO2, and catalyst at the source of photoelectrons, and (ii) termination of the QD's ligand shell with free amines, which capture CO2 as carbamic acid that serves as a reservoir for CO2, effectively increasing its solubility in water, and lowers the onset potential for catalytic CO2 reduction by the Co-porphyrin. The breakthrough efficiency achieved in this work represents a nonincremental step in the realization of reaction networks for direct solar-to-fuel conversion.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States
| | - Benjamin Nagasing
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
33
|
Kajiwara T, Ikeda M, Kobayashi K, Higuchi M, Tanaka K, Kitagawa S. Effect of Micropores of a Porous Coordination Polymer on the Product Selectivity in Ru II Complex-catalyzed CO 2 Reduction. Chem Asian J 2021; 16:3341-3344. [PMID: 34498403 DOI: 10.1002/asia.202100813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/06/2021] [Indexed: 12/30/2022]
Abstract
To develop an efficient CO2 reduction catalyst, hybridizing a molecular catalyst and a porous coordination polymer (PCP) is a promising strategy because it can combine both advantages of the precise reactivity control of the former and the CO2 adsorption property of the latter. Although several PCP hybrid catalysts have been reported to date, the CO2 sorption behavior and the CO2 reduction reactivity have been investigated separately, and the CO2 enrichment during the catalysis is still unclear. We report CO2 photoreduction under different temperatures and pressures using a PCP-RuII complex hybrid catalyst. The product selectivity (CO or HCOOH) varied depending on the reaction conditions. The altered selectivity could be interpreted in terms of the CO2 capture in the micropores of a PCP.
Collapse
Affiliation(s)
- Takashi Kajiwara
- Institute for Integrated Cell-Material Sciences (KUIAS/iCeMS), Kyoto University, Yoshida Ushinomiyacho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Miyuki Ikeda
- Institute for Integrated Cell-Material Sciences (KUIAS/iCeMS), Kyoto University, Yoshida Ushinomiyacho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Katsuaki Kobayashi
- Institute for Integrated Cell-Material Sciences (KUIAS/iCeMS), Kyoto University, Yoshida Ushinomiyacho, Sakyo-Ku, Kyoto, 606-8501, Japan.,Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Masakazu Higuchi
- Institute for Integrated Cell-Material Sciences (KUIAS/iCeMS), Kyoto University, Yoshida Ushinomiyacho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Koji Tanaka
- Institute for Integrated Cell-Material Sciences (KUIAS/iCeMS), Kyoto University, Yoshida Ushinomiyacho, Sakyo-Ku, Kyoto, 606-8501, Japan.,Graduate School of Life Science, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (KUIAS/iCeMS), Kyoto University, Yoshida Ushinomiyacho, Sakyo-Ku, Kyoto, 606-8501, Japan
| |
Collapse
|
34
|
Li X, Panetier JA. Computational Study for CO 2-to-CO Conversion over Proton Reduction Using [Re[bpyMe(Im-R)](CO) 3Cl] + (R = Me, Me 2, and Me 4) Electrocatalysts and Comparison with Manganese Analogues. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaohui Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Julien A. Panetier
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
35
|
Orchanian NM, Hong LE, Velazquez DA, Marinescu SC. Electrocatalytic syngas generation with a redox non-innocent cobalt 2-phosphinobenzenethiolate complex. Dalton Trans 2021; 50:10779-10788. [PMID: 34286710 DOI: 10.1039/d0dt03270k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt complex supported by the 2-(diisopropylphosphaneyl)benzenethiol ligand was synthesized and its electronic structure and reactivity were explored. X-ray diffraction studies indicate a square planar geometry around the cobalt center with a trans arrangement of the phosphine ligands. Density functional theory calculations and electronic spectroscopy measurements suggest a mixed metal-ligand orbital character, in analogy to previously studied dithiolene and diselenolene systems. Electrochemical studies in the presence of 1 atm of CO2 and Brønsted acid additives indicate that the cobalt complex generates syngas, a mixture of H2 and CO, with faradaic efficiencies up to >99%. The ratios of H2 : CO generated vary based on the additive. A H2 : CO ratio of ∼3 : 1 is generated when H2O is used as the Brønsted acid additive. Chemical reduction of the complex indicates a distortion towards a tetrahedral geometry, which is rationalized with DFT predictions as attributable to the populations of orbitals with σ*(Co-S) character. A mechanistic scheme is proposed whereby competitive binding between a proton and CO2 dictates selectivity. This study provides insight into the development of a catalytic system incorporating non-innocent ligands with pendant base moieties for electrochemical syngas production.
Collapse
Affiliation(s)
- Nicholas M Orchanian
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Lorena E Hong
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - David A Velazquez
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
36
|
Masood Z, Ge Q. Electrochemical reduction of CO 2 to CO and HCOO - using metal-cyclam complex catalysts: predicting selectivity and limiting potential from DFT. Dalton Trans 2021; 50:11446-11457. [PMID: 34346446 DOI: 10.1039/d1dt02159a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sustainable fuel production from CO2 through electrocatalytic reduction is promising but challenging due to high overpotential and poor product selectivity. Herein, we computed the reaction free energies of electrocatalytic reduction of CO2 to CO and HCOO- using the density functional theory method and screened transition metal(M)-cyclam(L) complexes as molecular catalysts for CO2 reduction. Our results showed that pKa of the proton adduct formed by the protonation of the reduced metal center can be used as a descriptor to select the operating pH of the solution to steer the reaction toward either the CO or hydride cycle. Among the complexes, [LNi]2+ and [LPd]2+ catalyze the reactions by following the CO cycle and are the CO selective catalysts in the pH ranges 1.81-7.31 and 6.10 and higher, respectively. Among the complexes that catalyze the reactions by following the hydride cycle, [LMo]2+ and [LW]3+ are HCOO- selective catalysts and have low limiting potentials of -1.33 V and -1.54 V, respectively. Other complexes, including [LRh]2+, [LIr]2+, [LW]2+, [LCo]2+, and [LTc]2+ catalyze the reactions resulting in either HCOO- from CO2 reduction or H2 from proton reduction; however, HCOO- formation is always thermodynamically more favorable. Notably, [LMo]2+, [LW]3+, [LW]2+ and [LCo]2+ have limiting potentials less negative than -1.6 V and are based on Earth-abundant elements, making them attractive for practical application.
Collapse
Affiliation(s)
- Zaheer Masood
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA.
| | | |
Collapse
|
37
|
Barlow JM, Ziller JW, Yang JY. Inhibiting the Hydrogen Evolution Reaction (HER) with Proximal Cations: A Strategy for Promoting Selective Electrocatalytic Reduction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01527] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jeffrey M. Barlow
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
38
|
DiMarco BN, Polyansky DE, Grills DC, Wang P, Kuwahara Y, Zhao X, Fujita E. Structural and Electronic Influences on Rates of Tertpyridine-Amine Co III -H Formation During Catalytic H 2 Evolution in an Aqueous Environment. Chemphyschem 2021; 22:1478-1487. [PMID: 33990996 DOI: 10.1002/cphc.202100295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Indexed: 01/04/2023]
Abstract
In this work, the differences in catalytic performance for a series of Co hydrogen evolution catalysts with different pentadentate polypyridyl ligands (L), have been rationalized by examining elementary steps of the catalytic cycle using a combination of electrochemical and transient pulse radiolysis (PR) studies in aqueous solution. Solvolysis of the [CoII -Cl]+ species results in the formation of [CoII (κ4 -L)(OH2 )]2+ . Further reduction produces [CoI (κ4 -L)(OH2 )]+ , which undergoes a rate-limiting structural rearrangement to [CoI (κ5 -L)]+ before being protonated to form [CoIII -H]2+ . The rate of [CoIII -H]2+ formation is similar for all complexes in the series. Using E1/2 values of various Co species and pKa values of [CoIII -H]2+ estimated from PR experiments, we found that while the protonation of [CoIII -H]2+ is unfavorable, [CoII -H]+ reacts with protons to produce H2 . The catalytic activity for H2 evolution tracks the hydricity of the [CoII -H]+ intermediate.
Collapse
Affiliation(s)
- Brian N DiMarco
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| | - Dmitry E Polyansky
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| | - Ping Wang
- Department of Chemistry, University of Memphis, Memphis, Tennessee, 38152, USA
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, Tennessee, 38152, USA
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory Upton, New York, 11973-5000, USA
| |
Collapse
|
39
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
40
|
Nijamudheen A, Kanega R, Onishi N, Himeda Y, Fujita E, Ertem MZ. Distinct Mechanisms and Hydricities of Cp*Ir-Based CO 2 Hydrogenation Catalysts in Basic Water. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- A. Nijamudheen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Ryoichi Kanega
- Research Institute of Energy Conservation, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Naoya Onishi
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8569, Japan
| | - Yuichiro Himeda
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8569, Japan
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Mehmed Z. Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
41
|
Qi K, Zhang Y, Li J, Charmette C, Ramonda M, Cui X, Wang Y, Zhang Y, Wu H, Wang W, Zhang X, Voiry D. Enhancing the CO 2-to-CO Conversion from 2D Silver Nanoprisms via Superstructure Assembly. ACS NANO 2021; 15:7682-7693. [PMID: 33861069 DOI: 10.1021/acsnano.1c01281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The electrochemical reduction of CO2 in a highly selective and efficient manner is a crucial step toward its reuse for the production of chemicals and fuels. Nanostructured Ag catalysts have been found to be effective candidates for the conversion of CO2-to-CO. However, the ambiguous determination of the intrinsic CO2 activity and the maximization of the density of exposed active sites have greatly limited the use of Ag toward the realization of practical electrocatalytic devices. Here, we report a superstructure design strategy prepared by the self-assembly of two-dimensional Ag nanoprisms for maximizing the exposure of active edge ribs. The vertically stacked Ag nanoprisms allow the exposure of >95% of the edge sites, resulting in an enhanced selectivity and activity toward the production of CO from CO2 with an overpotential of 152 mV. The Ag superstructures also demonstrate a selectivity of over 90% for 100 h together with a current retention of ≈94% at -600 mV versus the reversible hydrogen electrode and a partial energy efficiency for CO production of 70.5%. Our electrochemical measurements on individual Ag nanoprisms with various edge-to-basal plane ratios and the Ag superstructures led to the identification of the edge ribs as the active sites thanks to the ≈400 mV decrease in the onset potential compared to that of the Ag (111) basal planes and a turnover frequency of 9.2 × 10-3 ± 1.9 × 10-3 s-1 at 0 V overpotential.
Collapse
Affiliation(s)
- Kun Qi
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| | - Yang Zhang
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ji Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi710021, China
| | - Christophe Charmette
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| | - Michel Ramonda
- Central Technology in Micro and Nanoelectronics CTM-LMCP, Université Montpellier, Montpellier 34000, France
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, Department of Materials Science, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, Jilin 130012, China
| | - Ying Wang
- State Key Laboratory of Automotive Simulation and Control, Department of Materials Science, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, Jilin 130012, China
| | - Yupeng Zhang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060 China
| | - Huali Wu
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| | - Wensen Wang
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| | - Xiaolin Zhang
- Qiongtai Normal University, Haikou, Hainan 571127, China
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| |
Collapse
|
42
|
Moreno JJ, Hooe SL, Machan CW. DFT Study on the Electrocatalytic Reduction of CO 2 to CO by a Molecular Chromium Complex. Inorg Chem 2021; 60:3635-3650. [PMID: 33657314 DOI: 10.1021/acs.inorgchem.0c03136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A variety of molecular transition metal-based electrocatalysts for the reduction of carbon dioxide (CO2) have been developed to explore the viability of utilization strategies for addressing its rising atmospheric concentrations and the corresponding effects of global warming. Concomitantly, this approach could also meet steadily increasing global energy demands for value-added carbon-based chemical feedstocks as nonrenewable petrochemical resources are consumed. Reports on the molecular electrocatalytic reduction of CO2 mediated by chromium (Cr) complexes are scarce relative to other earth-abundant transition metals. Recently, our group reported a Cr complex that can efficiently catalyze the reduction of CO2 to carbon monoxide (CO) at low overpotentials. Here, we present new mechanistic insight through a computational (density functional theory) study, exploring the origin of kinetic selectivity, relative energetic positioning of the intermediates, speciation with respect to solvent coordination and spin state, as well as the role of the redox-active bipyridine moiety. Importantly, these studies suggest that under certain reducing conditions, the formation of bicarbonate could become a competitive reaction pathway, informing new areas of interest for future experimental studies.
Collapse
Affiliation(s)
- Juan J Moreno
- Department of Chemistry, University of Virginia, McCormick Road PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Shelby L Hooe
- Department of Chemistry, University of Virginia, McCormick Road PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, McCormick Road PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
43
|
Weerasooriya RB, Gesiorski JL, Alherz A, Ilic S, Hargenrader GN, Musgrave CB, Glusac KD. Kinetics of Hydride Transfer from Catalytic Metal-Free Hydride Donors to CO 2. J Phys Chem Lett 2021; 12:2306-2311. [PMID: 33651629 DOI: 10.1021/acs.jpclett.0c03662] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selective reduction of CO2 to formate represents an ongoing challenge in photoelectrocatalysis. To provide mechanistic insights, we investigate the kinetics of hydride transfer (HT) from a series of metal-free hydride donors to CO2. The observed dependence of experimental and calculated HT barriers on the thermodynamic driving force was modeled by using the Marcus hydride transfer formalism to obtain the insights into the effect of reorganization energies on the reaction kinetics. Our results indicate that even if the most ideal hydride donor were discovered, the HT to CO2 would exhibit sluggish kinetics (<100 turnovers per second at -0.1 eV driving force), indicating that the conventional HT may not be an appropriate mechanism for solar conversion of CO2 to formate. We propose that the conventional HT mechanism should not be considered for CO2 reduction catalysis and argue that the orthogonal HT mechanism, previously proposed to address thermodynamic limitations of this reaction, may also lead to lower kinetic barriers for CO2 reduction to formate.
Collapse
Affiliation(s)
- Ravindra B Weerasooriya
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, United States
| | - Jonathan L Gesiorski
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, United States
| | - Abdulaziz Alherz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Stefan Ilic
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - George N Hargenrader
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, United States
| | - Charles B Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, United States
| |
Collapse
|
44
|
Nie W, Tarnopol DE, McCrory CCL. Enhancing a Molecular Electrocatalyst’s Activity for CO2 Reduction by Simultaneously Modulating Three Substituent Effects. J Am Chem Soc 2021; 143:3764-3778. [DOI: 10.1021/jacs.0c09357] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Weixuan Nie
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Drew E. Tarnopol
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Charles C. L. McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
45
|
Wang J, Dou S, Wang X. Structural tuning of heterogeneous molecular catalysts for electrochemical energy conversion. SCIENCE ADVANCES 2021; 7:eabf3989. [PMID: 33771872 PMCID: PMC7997508 DOI: 10.1126/sciadv.abf3989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/05/2021] [Indexed: 05/02/2023]
Abstract
Heterogeneous molecular catalysts based on transition metal complexes have received increasing attention for their potential application in electrochemical energy conversion. The structural tuning of first and second coordination spheres of complexes provides versatile strategies for optimizing the activities of heterogeneous molecular catalysts and appropriate model systems for investigating the mechanism of structural variations on the activity. In this review, we first discuss the variation of first spheres by tuning ligated atoms; afterward, the structural tuning of second spheres by appending adjacent metal centers, pendant groups, electron withdrawing/donating, and conjugating moieties on the ligands is elaborated. Overall, these structural tuning resulted in different impacts on the geometric and electronic configurations of complexes, and the improved activity is achieved through tuning the stability of chemisorbed reactants and the redox behaviors of immobilized complexes.
Collapse
Affiliation(s)
- Jiong Wang
- Institute of Advanced Synthesis, Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Yangtze River Delta Research Institute of NPU, Taicang 215400, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Shuo Dou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
46
|
Chaturvedi A, Williams CK, Devi N, Jiang JJ. Effects of Appended Poly(ethylene glycol) on Electrochemical CO 2 Reduction by an Iron Porphyrin Complex. Inorg Chem 2021; 60:3843-3850. [PMID: 33629857 DOI: 10.1021/acs.inorgchem.0c03612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical carbon dioxide (CO2) reduction is a sustainable approach for transforming atmospheric CO2 into chemical feedstocks and fuels. To overcome the kinetic barriers of electrocatalytic CO2 reduction, catalysts with high selectivity, activity, and stability are needed. Here, we report an iron porphyrin complex, FePEGP, with a poly(ethylene glycol) unit in the second coordination sphere, as a highly selective and active electrocatalyst for the electrochemical reduction of CO2 to carbon monoxide (CO). Controlled-potential electrolysis using FePEGP showed a Faradaic efficiency of 98% and a current density of -7.8 mA/cm2 at -2.2 V versus Fc/Fc+ in acetonitrile using water as the proton source. The maximum turnover frequency was calculated to be 1.4 × 105 s-1 using foot-of-the-wave analysis. Distinct from most other catalysts, the kinetic isotope effect (KIE) study revealed that the protonation step of the Fe-CO2 adduct is not involved in the rate-limiting step. This model shows that the PEG unit as the secondary coordination sphere enhances the catalytic kinetics and thus is an effective design for electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Ashwin Chaturvedi
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| | - Nilakshi Devi
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| |
Collapse
|
47
|
Ghosh D, Kumar GR, Subramanian S, Tanaka K. More Than Just a Reagent: The Rise of Renewable Organohydrides for Catalytic Reduction of Carbon Dioxide. CHEMSUSCHEM 2021; 14:824-841. [PMID: 33369102 DOI: 10.1002/cssc.202002660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Stoichiometric carbon dioxide reduction to highly reduced C1 molecules, such as formic acid (2e- ), formaldehyde (4e- ), methanol (6e- ) or even most-reduced methane (8e- ), has been successfully achieved by using organosilanes, organoboranes, and frustrated Lewis Pairs (FLPs) in the presence of suitable catalyst. The development of renewable organohydride compounds could be the best alternative in this regard as they have shown promise for the transfer of hydride directly to CO2 . Reduction of CO2 by two electrons and two protons to afford formic acid by using renewable organohydride molecules has recently been investigated by various groups. However, catalytic CO2 reduction to ≥2e- -reduced products by using renewable organohydride-based molecules has rarely been explored. This Minireview summarizes important findings in this regard, encompassing both stoichiometric and catalytic CO2 reduction.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore, 560027, Karnataka, India
| | - George Rajendra Kumar
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Saravanan Subramanian
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koji Tanaka
- Institute for Integrated Cell-Material Sciences (KUIAS/iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Applied Chemistry, College of Life Science, Ritsumeikan University, 525-8577 Noji-higashi, 1-1-1, Kusatsu, Shiga, Japan
| |
Collapse
|
48
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
49
|
Jelmy EJ, Thomas N, Mathew DT, Louis J, Padmanabhan NT, Kumaravel V, John H, Pillai SC. Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00214g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
2D material based strategies for adsorption and conversion of CO2 to value-added products.
Collapse
Affiliation(s)
- E. J. Jelmy
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
| | - Nishanth Thomas
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| | - Dhanu Treasa Mathew
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
| | - Jesna Louis
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
- Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kerala, India
| | - Nisha T. Padmanabhan
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
| | - Vignesh Kumaravel
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| | - Honey John
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
- Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kerala, India
| | - Suresh C. Pillai
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| |
Collapse
|
50
|
Lashgari A, Williams CK, Glover JL, Wu Y, Chai J, Jiang JJ. Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO 2 Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere. Chemistry 2020; 26:16774-16781. [PMID: 32701198 DOI: 10.1002/chem.202002813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/05/2022]
Abstract
The control of the second coordination sphere in a coordination complex plays an important role in improving catalytic efficiency. Herein, we report a zinc porphyrin complex ZnPor8T with multiple flexible triazole units comprising the second coordination sphere, as an electrocatalyst for the highly selective electrochemical reduction of carbon dioxide (CO2 ) to carbon monoxide (CO). This electrocatalyst converted CO2 to CO with a Faradaic efficiency of 99 % and a current density of -6.2 mA cm-2 at -2.4 V vs. Fc/Fc+ in N,N-dimethylformamide using water as the proton source. Structure-function relationship studies were carried out on ZnPor8T analogs containing different numbers of triazole units and distinct triazole geometries; these unveiled that the triazole units function cooperatively to stabilize the CO2 -catalyst adduct in order to facilitate intramolecular proton transfer. Our findings demonstrate that incorporating triazole units that function in a cooperative manner is a versatile strategy to enhance the activity of electrocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Amir Lashgari
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Jenna L Glover
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Yueshen Wu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, United States
| | - Jingchao Chai
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| |
Collapse
|