1
|
He SJ, Li J, Zhou JC, Yang ZY, Liu X, Ge YW. Chemical proteomics accelerates the target discovery of natural products. Biochem Pharmacol 2024; 230:116609. [PMID: 39510194 DOI: 10.1016/j.bcp.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
More than half of the global novel drugs are directly or indirectly derived from natural products (NPs) because of their better selectivity towards proteins. Traditional medicines perform multiple bioactivities through various NPs binding to drug targets, which highlights the opportunities of target discovery for drug development. However, detecting the binding relationship between NPs and targets remains challenging. Chemical proteomics, an interdisciplinary field of chemistry, proteomics, biology, and bioinformatics, has emerged as a potential approach for uncovering drug-target interactions. This review summarizes the principles and characteristics of the current widely applied chemical proteomic technologies, while delving into their latest applications in the target discovery of natural medicine. These endeavours demonstrate the potential of chemical proteomics for target discovery to supply dependable methodologies for the target elucidation of NPs.
Collapse
Affiliation(s)
- Shu-Jie He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Xi Liu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
2
|
Emery-Corbin SJ, Yousef JM, Adhikari S, Sumardy F, Nhu D, van Delft MF, Lessene G, Dziekan J, Webb AI, Dagley LF. Improved drug target deconvolution with PISA-DIA using an extended, overlapping temperature gradient. Proteomics 2024; 24:e2300644. [PMID: 38766901 DOI: 10.1002/pmic.202300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Thermal proteome profiling (TPP) is a powerful tool for drug target deconvolution. Recently, data-independent acquisition mass spectrometry (DIA-MS) approaches have demonstrated significant improvements to depth and missingness in proteome data, but traditional TPP (a.k.a. CEllular Thermal Shift Assay "CETSA") workflows typically employ multiplexing reagents reliant on data-dependent acquisition (DDA). Herein, we introduce a new experimental design for the Proteome Integral Solubility Alteration via label-free DIA approach (PISA-DIA). We highlight the proteome coverage and sensitivity achieved by using multiple overlapping thermal gradients alongside DIA-MS, which maximizes efficiencies in PISA sample concatenation and safeguards against missing protein targets that exist at high melting temperatures. We demonstrate our extended PISA-DIA design has superior proteome coverage as compared to using tandem-mass tags (TMT) necessitating DDA-MS analysis. Importantly, we demonstrate our PISA-DIA approach has the quantitative and statistical rigor using A-1331852, a specific inhibitor of BCL-xL. Due to the high melt temperature of this protein target, we utilized our extended multiple gradient PISA-DIA workflow to identify BCL-xL. We assert our novel overlapping gradient PISA-DIA-MS approach is ideal for unbiased drug target deconvolution, spanning a large temperature range whilst minimizing target dropout between gradients, increasing the likelihood of resolving the protein targets of novel compounds.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Advanced Technology and Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jumana M Yousef
- Advanced Technology and Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Subash Adhikari
- Advanced Technology and Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Fransisca Sumardy
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- ACRF Chemical Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Duong Nhu
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- ACRF Chemical Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Mark F van Delft
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Blood Cells and Blood Cancer Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Guillaume Lessene
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- ACRF Chemical Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jerzy Dziekan
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Infection and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Andrew I Webb
- Advanced Technology and Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Laura F Dagley
- Advanced Technology and Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Müller J, Boubaker G, Müller N, Uldry AC, Braga-Lagache S, Heller M, Hemphill A. Investigating Antiprotozoal Chemotherapies with Novel Proteomic Tools-Chances and Limitations: A Critical Review. Int J Mol Sci 2024; 25:6903. [PMID: 39000012 PMCID: PMC11241152 DOI: 10.3390/ijms25136903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Identification of drug targets and biochemical investigations on mechanisms of action are major issues in modern drug development. The present article is a critical review of the classical "one drug"-"one target" paradigm. In fact, novel methods for target deconvolution and for investigation of resistant strains based on protein mass spectrometry have shown that multiple gene products and adaptation mechanisms are involved in the responses of pathogens to xenobiotics rather than one single gene or gene product. Resistance to drugs may be linked to differential expression of other proteins than those interacting with the drug in protein binding studies and result in complex cell physiological adaptation. Consequently, the unraveling of mechanisms of action needs approaches beyond proteomics. This review is focused on protozoan pathogens. The conclusions can, however, be extended to chemotherapies against other pathogens or cancer.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| |
Collapse
|
4
|
Zhang Q, Liu G, Li Y, Yang B, Guo W, Zhang Y, Pan L, Zhang P, Zhang W, Kong D. Thermal proteome profiling reveals the glial toxicity of dencichine via inhibiting proteasome. Food Chem Toxicol 2023; 182:114146. [PMID: 37923194 DOI: 10.1016/j.fct.2023.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Qingning Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Guangyuan Liu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yahui Li
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Bingkun Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Wenyan Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yuyu Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Liangyu Pan
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
5
|
Hanna JC, Corpas-Lopez V, Seizova S, Colon BL, Bacchetti R, Hall GMJ, Sands EM, Robinson L, Baragaña B, Wyllie S, Pawlowic MC. Mode of action studies confirm on-target engagement of lysyl-tRNA synthetase inhibitor and lead to new selection marker for Cryptosporidium. Front Cell Infect Microbiol 2023; 13:1236814. [PMID: 37600947 PMCID: PMC10436570 DOI: 10.3389/fcimb.2023.1236814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Cryptosporidiosis is a leading cause of diarrheal-associated morbidity and mortality, predominantly affecting children under 5 years old in low-and-middle-income countries. There is no effective treatment and no vaccine. New therapeutics are emerging from drug discovery efforts. It is critical that mode of action studies are performed alongside drug discovery to ensure the best clinical outcomes. Unfortunately, technology to identify and validate drug targets for Cryptosporidium is severely lacking. Methods We used C. parvum lysyl-tRNA synthetase (CpKRS) and DDD01510706 as a target-compound pair to develop both chemical and genetic tools for mode of action studies for Cryptosporidium. We adapted thermal proteome profiling (TPP) for Cryptosporidium, an unbiased approach for target identification. Results Using TPP we identified the molecular target of DDD01510706 and confirm that it is CpKRS. Genetic tools confirm that CpKRS is expressed throughout the life cycle and that this target is essential for parasite survival. Parasites genetically modified to over-express CpKRS or parasites with a mutation at the compound-binding site are resistant to treatment with DDD01510706. We leveraged these mutations to generate a second drug selection marker for genetic modification of Cryptosporidium, KRSR. This second selection marker is interchangeable with the original selection marker, NeoR, and expands the range of reverse genetic approaches available to study parasite biology. Due to the sexual nature of the Cryptosporidium life cycle, parental strains containing different drug selection markers can be crossed in vivo. Discussion Selection with both drug markers produces highly efficient genetic crosses (>99% hybrid progeny), paving the way for forward genetics approaches in Cryptosporidium.
Collapse
Affiliation(s)
- Jack C. Hanna
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Victor Corpas-Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Simona Seizova
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ross Bacchetti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Grant M. J. Hall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Emma M. Sands
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lee Robinson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mattie C. Pawlowic
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
6
|
Aghabi D, Sloan M, Gill G, Hartmann E, Antipova O, Dou Z, Guerra AJ, Carruthers VB, Harding CR. The vacuolar iron transporter mediates iron detoxification in Toxoplasma gondii. Nat Commun 2023; 14:3659. [PMID: 37339985 PMCID: PMC10281983 DOI: 10.1038/s41467-023-39436-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Iron is essential to cells as a cofactor in enzymes of respiration and replication, however without correct storage, iron leads to the formation of dangerous oxygen radicals. In yeast and plants, iron is transported into a membrane-bound vacuole by the vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii. Here, we assess the role of VIT and iron storage in T. gondii. By deleting VIT, we find a slight growth defect in vitro, and iron hypersensitivity, confirming its essential role in parasite iron detoxification, which can be rescued by scavenging of oxygen radicals. We show VIT expression is regulated by iron at transcript and protein levels, and by altering VIT localization. In the absence of VIT, T. gondii responds by altering expression of iron metabolism genes and by increasing antioxidant protein catalase activity. We also show that iron detoxification has an important role both in parasite survival within macrophages and in virulence in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.
Collapse
Affiliation(s)
- Dana Aghabi
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Megan Sloan
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Grace Gill
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Elena Hartmann
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Olga Antipova
- X-Ray Sciences Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alfredo J Guerra
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Cayman Chemical Company, Ann Arbor, MI, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Clare R Harding
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| |
Collapse
|
7
|
Phaneuf CG, Aizikov K, Grinfeld D, Kreutzmann A, Mourad D, Lange O, Dai D, Zhang B, Belenky A, Makarov AA, Ivanov AR. Experimental strategies to improve drug-target identification in mass spectrometry-based thermal stability assays. Commun Chem 2023; 6:64. [PMID: 37024568 PMCID: PMC10079678 DOI: 10.1038/s42004-023-00861-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Mass spectrometry (MS)-based thermal stability assays have recently emerged as one of the most promising solutions for the identification of protein-ligand interactions. Here, we have investigated eight combinations of several recently introduced MS-based advancements, including the Phase-Constrained Spectral Deconvolution Method, Field Asymmetric Ion Mobility Spectrometry, and the implementation of a carrier sample as improved MS-based acquisition approaches for thermal stability assays (iMAATSA). We used intact Jurkat cells treated with a commercially available MEK inhibitor, followed by heat treatment, to prepare a set of unfractionated isobarically-labeled proof-of-concept samples to compare the performance of eight different iMAATSAs. Finally, the best-performing iMAATSA was compared to a conventional approach and evaluated in a fractionation experiment. Improvements of up to 82% and 86% were demonstrated in protein identifications and high-quality melting curves, respectively, over the conventional approach in the proof-of-concept study, while an approximately 12% improvement in melting curve comparisons was achieved in the fractionation experiment.
Collapse
Affiliation(s)
- Clifford G Phaneuf
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Sanofi, Disease Profiling and Functional Genomics, Cambridge, MA, USA
| | | | | | | | | | | | - Daniel Dai
- Sanofi, Disease Profiling and Functional Genomics, Cambridge, MA, USA
| | - Bailin Zhang
- Sanofi, Disease Profiling and Functional Genomics, Cambridge, MA, USA
| | | | | | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
8
|
Bailey MA, Tang Y, Park HJ, Fitzgerald MC. Comparative Analysis of Protein Folding Stability-Based Profiling Methods for Characterization of Biological Phenotypes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:383-393. [PMID: 36802530 PMCID: PMC10164353 DOI: 10.1021/jasms.2c00248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recently, a new suite of mass spectrometry-based proteomic methods has been developed that enables evaluation of protein folding stability on the proteomic scale. These methods utilize chemical and thermal denaturation approaches (SPROX and TPP, respectively) as well as proteolysis strategies (DARTS, LiP, and PP) to assess protein folding stability. The analytical capabilities of these technique have been well-established for protein target discovery applications. However, less is known about the relative advantages and disadvantages of using these different strategies to characterize biological phenotypes. Reported here is a comparative study of SPROX, TPP, LiP, and conventional protein expression level measurements using both a mouse model of aging and a mammalian cell culture model of breast cancer. Analyses on proteins in brain tissue cell lysates derived from 1- and 18-month-old mice (n = 4-5 at each time point) and on proteins in cell lysates derived from the MCF-7 and MCF-10A cell lines revealed a majority of the differentially stabilized protein hits in each phenotype analysis had unchanged expression levels. In both phenotype analyses, TPP generated the largest number and fraction of differentially stabilized protein hits. Only a quarter of all the protein hits identified in each phenotype analysis had a differential stability that was detected using multiple techniques. This work also reports the first peptide-level analysis of TPP data, which was required for the correct interpretation of the phenotype analyses performed here. Studies on selected protein stability hits also uncovered phenotype-related functional changes.
Collapse
Affiliation(s)
- Morgan A. Bailey
- Department of Chemistry, Duke University, Durham, North Carolina 27708
- These authors contributed equally
| | - Yun Tang
- Department of Chemistry, Duke University, Durham, North Carolina 27708
- These authors contributed equally
| | - Hye-Jin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | | |
Collapse
|
9
|
Fang M, Wu O, Cupp-Sutton KA, Smith K, Wu S. Elucidating Protein-Ligand Interactions in Cell Lysates Using High-Throughput Hydrogen-Deuterium Exchange Mass Spectrometry with Integrated Protein Thermal Depletion. Anal Chem 2023; 95:10.1021/acs.analchem.2c04266. [PMID: 36608260 PMCID: PMC10323047 DOI: 10.1021/acs.analchem.2c04266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) is a powerful technique for the characterization of protein-ligand interactions. Currently, there is a growing need for breakthroughs in the application of HDX-MS analysis to protein-ligand interactions in highly complex biological samples such as cell lysates. However, HDX-MS analysis in such systems suffers from extreme spectral complexity as a result of high sample complexity and limited LC separation power due to the traditional use of short LC gradients. Here, we introduced protein thermal depletion (PTD) to reduce protein complexity in E. coli cell lysate for our subzero-temperature long gradient UPLC-HDX-MS platform (PTD-HDX-MS) to facilitate high-throughput analysis of protein-ligand interactions in cell lysates. We spiked bovine carbonic anhydrase II (CaII) and its inhibitor acetazolamide (AZM) into E. coli cell lysate as a model system in our study. We demonstrated that PTD at 60 °C greatly reduces protein complexity in cell lysates, while the AZM-targeted CaII complex remains in solution due to improved thermal stability upon binding. Using both PTD to reduce sample complexity and subzero-temperature long gradient UPLC to boost LC separation power, we successfully elucidated the interaction sites between AZM and CaII in E. coli cell lysate from the high-throughput HDX-MS analysis of thousands of deuterated peptides from hundreds of proteins. Our results highlight the great promise of the PTD-HDX-MS platform for the identification of ligand targets and characterization of protein-ligand interactions in highly complex biological samples such as cell lysates.
Collapse
Affiliation(s)
- Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Oliver Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | | | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
10
|
Feng F, Zhang W, Chai Y, Guo D, Chen X. Label-free target protein characterization for small molecule drugs: recent advances in methods and applications. J Pharm Biomed Anal 2023; 223:115107. [DOI: 10.1016/j.jpba.2022.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
11
|
Challis MP, Devine SM, Creek DJ. Current and emerging target identification methods for novel antimalarials. Int J Parasitol Drugs Drug Resist 2022; 20:135-144. [PMID: 36410177 PMCID: PMC9771836 DOI: 10.1016/j.ijpddr.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
New antimalarial compounds with novel mechanisms of action are urgently needed to combat the recent rise in antimalarial drug resistance. Phenotypic high-throughput screens have proven to be a successful method for identifying new compounds, however, do not provide mechanistic information about the molecular target(s) responsible for antimalarial action. Current and emerging target identification methods such as in vitro resistance generation, metabolomics screening, chemoproteomic approaches and biophysical assays measuring protein stability across the whole proteome have successfully identified novel drug targets. This review provides an overview of these techniques, comparing their strengths and weaknesses and how they can be utilised for antimalarial target identification.
Collapse
Affiliation(s)
- Matthew P. Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Shane M. Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia,Corresponding author. Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
12
|
High-throughput small molecule screen identifies inhibitors of microsporidia invasion and proliferation in C. elegans. Nat Commun 2022; 13:5653. [PMID: 36163337 PMCID: PMC9513054 DOI: 10.1038/s41467-022-33400-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/15/2022] [Indexed: 01/19/2023] Open
Abstract
Microsporidia are a diverse group of fungal-related obligate intracellular parasites that infect most animal phyla. Despite the emerging threat that microsporidia represent to humans and agricultural animals, few reliable treatment options exist. Here, we develop a high-throughput screening method for the identification of chemical inhibitors of microsporidia infection, using liquid cultures of Caenorhabditis elegans infected with the microsporidia species Nematocida parisii. We screen a collection of 2560 FDA-approved compounds and natural products, and identify 11 candidate microsporidia inhibitors. Five compounds prevent microsporidia infection by inhibiting spore firing, whereas one compound, dexrazoxane, slows infection progression. The compounds have in vitro activity against several other microsporidia species, including those known to infect humans. Together, our results highlight the effectiveness of C. elegans as a model host for drug discovery against intracellular pathogens, and provide a scalable high-throughput system for the identification and characterization of microsporidia inhibitors.
Collapse
|
13
|
Herneisen AL, Li ZH, Chan AW, Moreno SNJ, Lourido S. Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca 2+-responsive pathways. eLife 2022; 11:e80336. [PMID: 35976251 PMCID: PMC9436416 DOI: 10.7554/elife.80336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites cause persistent mortality and morbidity worldwide through diseases including malaria, toxoplasmosis, and cryptosporidiosis. Ca2+ signaling pathways have been repurposed in these eukaryotic pathogens to regulate parasite-specific cellular processes governing the replicative and lytic phases of the infectious cycle, as well as the transition between them. Despite the presence of conserved Ca2+-responsive proteins, little is known about how specific signaling elements interact to impact pathogenesis. We mapped the Ca2+-responsive proteome of the model apicomplexan Taxoplasma gondii via time-resolved phosphoproteomics and thermal proteome profiling. The waves of phosphoregulation following PKG activation and stimulated Ca2+ release corroborate known physiological changes but identify specific proteins operating in these pathways. Thermal profiling of parasite extracts identified many expected Ca2+-responsive proteins, such as parasite Ca2+-dependent protein kinases. Our approach also identified numerous Ca2+-responsive proteins that are not predicted to bind Ca2+, yet are critical components of the parasite signaling network. We characterized protein phosphatase 1 (PP1) as a Ca2+-responsive enzyme that relocalized to the parasite apex upon Ca2+ store release. Conditional depletion of PP1 revealed that the phosphatase regulates Ca2+ uptake to promote parasite motility. PP1 may thus be partly responsible for Ca2+-regulated serine/threonine phosphatase activity in apicomplexan parasites.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Silvia NJ Moreno
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
14
|
Host cell proteins modulated upon Toxoplasma infection identified using proteomic approaches: a molecular rationale. Parasitol Res 2022; 121:1853-1865. [PMID: 35552534 DOI: 10.1007/s00436-022-07541-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a pathogenic protozoan parasite belonging to the apicomplexan phylum that infects the nucleated cells of warm-blooded hosts leading to an infectious disease known as toxoplasmosis. Apicomplexan parasites such as T. gondii can display different mechanisms to control or manipulate host cells signaling at different levels altering the host subcellular genome and proteome. Indeed, Toxoplasma is able to modulate host cell responses (especially immune responses) during infection to its advantage through both structural and functional changes in the proteome of different infected cells. Consequently, parasites can transform the invaded cells into a suitable environment for its own replication and the induction of infection. Proteomics as an applicable tool can identify such critical proteins involved in pathogen (Toxoplasma)-host cell interactions and consequently clarify the cellular mechanisms that facilitate the entry of pathogens into host cells, and their replication and transmission, as well as the central mechanisms of host defense against pathogens. Accordingly, the current paper reviews several proteins (identified using proteomic approaches) differentially expressed in the proteome of Toxoplasma-infected host cells (macrophages and human foreskin fibroblasts) and tissues (brain and liver) and highlights their plausible functions in the cellular biology of the infected cells. The identification of such modulated proteins and their related cell impact (cell responses/signaling) can provide further information regarding parasite pathogenesis and biology that might lead to a better understanding of therapeutic strategies and novel drug targets.
Collapse
|
15
|
Ruan C, Wang Y, Zhang X, Lyu J, Zhang N, Ma Y, Shi C, Qu G, Ye M. Matrix Thermal Shift Assay for Fast Construction of Multidimensional Ligand-Target Space. Anal Chem 2022; 94:6482-6490. [PMID: 35442643 DOI: 10.1021/acs.analchem.1c04627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Existing thermal shift-based mass spectrometry approaches are able to identify target proteins without chemical modification of the ligand, but they are suffering from complicated workflows with limited throughput. Herein, we present a new thermal shift-based method, termed matrix thermal shift assay (mTSA), for fast deconvolution of ligand-binding targets and binding affinities at the proteome level. In mTSA, a sample matrix, treated horizontally with five different compound concentrations and vertically with five technical replicates of each condition, was denatured at a single temperature to induce protein precipitation, and then, data-independent acquisition was employed for quick protein quantification. Compared with previous thermal shift assays, the analysis throughput of mTSA was significantly improved, but the costs as well as efforts were reduced. More importantly, the matrix experiment design allowed simultaneous computation of the statistical significance and fitting of the dose-response profiles, which can be combined to enable a more accurate identification of target proteins, as well as reporting binding affinities between the ligand and individual targets. Using a pan-specific kinase inhibitor, staurosporine, we demonstrated a 36% improvement in screening sensitivity over the traditional thermal proteome profiling (TPP) and a comparable sensitivity with a latest two-dimensional TPP. Finally, mTSA was successfully applied to delineate the target landscape of perfluorooctanesulfonic acid (PFOS), a persistent organic pollutant that is hard to perform modification on, and revealed several potential targets that might account for the toxicities of PFOS.
Collapse
Affiliation(s)
- Chengfei Ruan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Xiaolei Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Jiawen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanni Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
16
|
de Vries LE, Jansen PAM, Barcelo C, Munro J, Verhoef JMJ, Pasaje CFA, Rubiano K, Striepen J, Abla N, Berning L, Bolscher JM, Demarta-Gatsi C, Henderson RWM, Huijs T, Koolen KMJ, Tumwebaze PK, Yeo T, Aguiar ACC, Angulo-Barturen I, Churchyard A, Baum J, Fernández BC, Fuchs A, Gamo FJ, Guido RVC, Jiménez-Diaz MB, Pereira DB, Rochford R, Roesch C, Sanz LM, Trevitt G, Witkowski B, Wittlin S, Cooper RA, Rosenthal PJ, Sauerwein RW, Schalkwijk J, Hermkens PHH, Bonnert RV, Campo B, Fidock DA, Llinás M, Niles JC, Kooij TWA, Dechering KJ. Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. Nat Commun 2022; 13:2158. [PMID: 35444200 PMCID: PMC9021288 DOI: 10.1038/s41467-022-29688-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission. Here, de Vries et al. perform a pre-clinical characterization of the antimalarial compound MMV693183: the compound targets acetyl-CoA synthetase, has efficacy in humanized mice against Plasmodium falciparum infection, blocks transmission to mosquito vectors, is safe in rats, and pharmacokinetic-pharmacodynamic modeling informs about a potential oral human dosing regimen.
Collapse
Affiliation(s)
- Laura E de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Patrick A M Jansen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Justin Munro
- Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA
| | - Julie M J Verhoef
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Kelly Rubiano
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Josefine Striepen
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nada Abla
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Luuk Berning
- TropIQ Health Sciences, Nijmegen, The Netherlands
| | | | | | | | - Tonnie Huijs
- TropIQ Health Sciences, Nijmegen, The Netherlands
| | | | | | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna C C Aguiar
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil, São Carlos, SP, Brazil
| | | | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | | | - Aline Fuchs
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | - Rafael V C Guido
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil, São Carlos, SP, Brazil
| | | | - Dhelio B Pereira
- Research Center for Tropical Medicine of Rondonia, Porto Velho, Brazil
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Laura M Sanz
- Global Health, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,TropIQ Health Sciences, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA.,Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Manuel Llinás
- Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA.,Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
17
|
Abstract
Despite the ever-growing antibiotic resistance crisis, the rate at which new antimicrobials are being discovered and approved for human use has rapidly declined over the past 75 years. A barrier for advancing newly identified antibiotics beyond discovery is elucidating their mechanism(s) of action.
Collapse
|
18
|
Herneisen AL, Lourido S. Thermal Proteome Profiling to Identify Protein-ligand Interactions in the Apicomplexan Parasite Toxoplasma gondii. Bio Protoc 2021; 11:e4207. [PMID: 34859122 DOI: 10.21769/bioprotoc.4207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/08/2021] [Accepted: 08/13/2021] [Indexed: 01/23/2023] Open
Abstract
Toxoplasma gondii is a single-celled eukaryotic parasite that chronically infects a quarter of the global population. In recent years, phenotypic screens have identified compounds that block parasite replication. Unraveling the pathways and molecular mechanisms perturbed by such compounds requires target deconvolution. In parasites, such deconvolution has been achieved via chemogenomic approaches-for example, directed evolution followed by whole-genome sequencing or genome-wide knockout screens. As a proteomic alternative that directly probes the physical interaction between compound and protein, thermal proteome profiling (TPP), also known as the cellular thermal shift assay (CETSA), recently emerged as a method to identify small molecule-target interactions in living cells and cell extracts in a variety of organisms, including unicellular eukaryotic pathogens. Ligand binding induces a thermal stability shift-stabilizing or destabilizing proteins that change conformationally in response to the ligand-that can be measured by mass spectrometry (MS). Cells are incubated with different concentrations of ligand and heated, causing thermal denaturation of proteins. The soluble protein is extracted and quantified with multiplexed, quantitative MS, resulting in thousands of thermal denaturation profiles. Proteins engaging the ligand can be identified by their compound-dependent thermal shift. The protocol provided here can be used to identify ligand-target interactions and assess the impact of environmental or genetic perturbations on the thermal stability of the proteome in T. gondii and other eukaryotic pathogens. Graphic abstract: Thermal proteome profiling for target identification in the apicomplexan parasite T. gondii.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
19
|
Mateus A, Kurzawa N, Perrin J, Bergamini G, Savitski MM. Drug Target Identification in Tissues by Thermal Proteome Profiling. Annu Rev Pharmacol Toxicol 2021; 62:465-482. [PMID: 34499524 DOI: 10.1146/annurev-pharmtox-052120-013205] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry-based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Jessica Perrin
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | | | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
20
|
Lu KY, Mansfield CR, Fitzgerald MC, Derbyshire ER. Chemoproteomics for Plasmodium Parasite Drug Target Discovery. Chembiochem 2021; 22:2591-2599. [PMID: 33999499 PMCID: PMC8373781 DOI: 10.1002/cbic.202100155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/16/2021] [Indexed: 12/16/2022]
Abstract
Emerging Plasmodium parasite drug resistance is threatening progress towards malaria control and elimination. While recent efforts in cell-based, high-throughput drug screening have produced first-in-class drugs with promising activities against different Plasmodium life cycle stages, most of these antimalarial agents have elusive mechanisms of action. Though challenging to address, target identification can provide valuable information to facilitate lead optimization and preclinical drug prioritization. Recently, proteome-wide methods for direct assessment of drug-protein interactions have emerged as powerful tools in a number of systems, including Plasmodium. In this review, we will discuss current chemoproteomic strategies that have been adapted to antimalarial drug target discovery, including affinity- and activity-based protein profiling and the energetics-based techniques thermal proteome profiling and stability of proteins from rates of oxidation. The successful application of chemoproteomics to the Plasmodium blood stage highlights the potential of these methods to link inhibitors to their molecular targets in more elusive Plasmodium life stages and intracellular pathogens in the future.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Christopher R Mansfield
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| |
Collapse
|
21
|
Conway LP, Li W, Parker CG. Chemoproteomic-enabled phenotypic screening. Cell Chem Biol 2021; 28:371-393. [PMID: 33577749 DOI: 10.1016/j.chembiol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
The ID of disease-modifying, chemically accessible targets remains a central priority of modern therapeutic discovery. The phenotypic screening of small-molecule libraries not only represents an attractive approach to identify compounds that may serve as drug leads but also serves as an opportunity to uncover compounds with novel mechanisms of action (MoAs). However, a major bottleneck of phenotypic screens continues to be the ID of pharmacologically relevant target(s) for compounds of interest. The field of chemoproteomics aims to map proteome-wide small-molecule interactions in complex, native systems, and has proved a key technology to unravel the protein targets of pharmacological modulators. In this review, we discuss the application of modern chemoproteomic methods to identify protein targets of phenotypic screening hits and investigate MoAs, with a specific focus on the development of chemoproteomic-enabled compound libraries to streamline target discovery.
Collapse
Affiliation(s)
- Louis P Conway
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Sun J, Prabhu N, Tang J, Yang F, Jia L, Guo J, Xiao K, Tam WL, Nordlund P, Dai L. Recent advances in proteome-wide label-free target deconvolution for bioactive small molecules. Med Res Rev 2021; 41:2893-2926. [PMID: 33533067 DOI: 10.1002/med.21788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023]
Abstract
Small-molecule drugs modulate biological processes and disease states through engagement of target proteins in cells. Assessing drug-target engagement on a proteome-wide scale is of utmost importance in better understanding the molecular mechanisms of action of observed beneficial and adverse effects, as well as in developing next generation tool compounds and drugs with better efficacies and specificities. However, systematic assessment of drug-target engagement has been an arduous task. With the continuous development of mass spectrometry-based proteomics instruments and techniques, various chemical proteomics approaches for drug target deconvolution (i.e., the identification of molecular target for drugs) have emerged. Among these, the label-free target deconvolution approaches that do not involve the chemical modification of compounds of interest, have gained increased attention in the community. Here we provide an overview of the basic principles and recent biological applications of the most important label-free methods including the cellular thermal shift assay, pulse proteolysis, chemical denaturant and protein precipitation, stability of proteins from rates of oxidation, drug affinity responsive target stability, limited proteolysis, and solvent-induced protein precipitation. The state-of-the-art technical implications and future outlook for the label-free approaches are also discussed.
Collapse
Affiliation(s)
- Jichao Sun
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Nayana Prabhu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Tang
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Fan Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China
| | - Kefeng Xiao
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lingyun Dai
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
23
|
Ha J, Park H, Park J, Park SB. Recent advances in identifying protein targets in drug discovery. Cell Chem Biol 2020; 28:394-423. [PMID: 33357463 DOI: 10.1016/j.chembiol.2020.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Phenotype-based screening has emerged as an alternative route for discovering new chemical entities toward first-in-class therapeutics. However, clarifying their mode of action has been a significant bottleneck for drug discovery. For target protein identification, conventionally bioactive small molecules are conjugated onto solid supports and then applied to isolate target proteins from whole proteome. This approach requires a high binding affinity between bioactive small molecules and their target proteins. Besides, the binding affinity can be significantly hampered after structural modifications of bioactive molecules with linkers. To overcome these limitations, two major strategies have recently been pursued: (1) the covalent conjugation between small molecules and target proteins using photoactivatable moieties or electrophiles, and (2) label-free target identification through monitoring target engagement by tracking the thermal, proteolytic, or chemical stability of target proteins. This review focuses on recent advancements in target identification from covalent capturing to label-free strategies.
Collapse
Affiliation(s)
- Jaeyoung Ha
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Hankum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea.
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea; CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
24
|
Harding CR, Sidik SM, Petrova B, Gnädig NF, Okombo J, Herneisen AL, Ward KE, Markus BM, Boydston EA, Fidock DA, Lourido S. Genetic screens reveal a central role for heme metabolism in artemisinin susceptibility. Nat Commun 2020; 11:4813. [PMID: 32968076 PMCID: PMC7511413 DOI: 10.1038/s41467-020-18624-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/03/2020] [Indexed: 01/26/2023] Open
Abstract
Artemisinins have revolutionized the treatment of Plasmodium falciparum malaria; however, resistance threatens to undermine global control efforts. To broadly explore artemisinin susceptibility in apicomplexan parasites, we employ genome-scale CRISPR screens recently developed for Toxoplasma gondii to discover sensitizing and desensitizing mutations. Using a sublethal concentration of dihydroartemisinin (DHA), we uncover the putative transporter Tmem14c whose disruption increases DHA susceptibility. Screens performed under high doses of DHA provide evidence that mitochondrial metabolism can modulate resistance. We show that disrupting a top candidate from the screens, the mitochondrial protease DegP2, lowers porphyrin levels and decreases DHA susceptibility, without significantly altering parasite fitness in culture. Deleting the homologous gene in P. falciparum, PfDegP, similarly lowers heme levels and DHA susceptibility. These results expose the vulnerability of heme metabolism to genetic perturbations that can lead to increased survival in the presence of DHA.
Collapse
Affiliation(s)
- Clare R Harding
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Saima M Sidik
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Boryana Petrova
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benedikt M Markus
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
25
|
Lu K. Chemoproteomics: Towards Global Drug Target Profiling. Chembiochem 2020; 21:3189-3191. [DOI: 10.1002/cbic.202000439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/06/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Kuan‐Yi Lu
- Duke University Department of Chemistry 5324 FFSC 124 Science Drive Durham NC 27708 USA
| |
Collapse
|