1
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Hernández-Zazueta MS, García-Romo JS, Luzardo-Ocampo I, Carbonell-Barrachina ÁA, Taboada-Antelo P, Rosas-Burgos EC, Ezquerra-Brauer JM, Martínez-Soto JM, Candia-Plata MDC, Santacruz-Ortega HDC, Burgos-Hernández A. N-(2-ozoazepan-3-yl)-pyrrolidine-2-carboxamide, a novel Octopus vulgaris ink-derived metabolite, exhibits a pro-apoptotic effect on A549 cancer cell line and inhibits pro-inflammatory markers. Food Chem Toxicol 2023:113829. [PMID: 37225033 DOI: 10.1016/j.fct.2023.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
This research aimed to chemically synthesize and evaluate the antiproliferative and anti-inflammatory potential of ozopromide (OPC), a novel compound recently isolated from O. vulgaris ink. After chemical synthesis, OPC structural characterization was confirmed by COSY2D, FTIR, and C-/H-NMR. OPC inhibited the growth of human breast (MDA-MB-231), prostate (22Rv1), cervix (HeLa), and lung (A549) cancerous cells, being the highest effect on the latter (IC50: 53.70 μM). As confirmed by flow cytometry, OPC induced typical apoptosis-derived morphological features on A549 cells, mostly at early and late apoptosis stages. OPC generated a dose-dependent effect inhibiting IL-6 and IL-8 on LPS-stimulated peripheral mononuclear cells (PBMCs). A major affinity of OPC to Akt-1 and Bcl-2 proteins in silico agreed with the observed pro-apoptotic mechanisms. Results suggested that OPC has the potential to alleviate inflammation and be further studied for anticancer activity. Marine-derived food products such as ink contains bioactive metabolites exhibiting potential health benefits.
Collapse
Affiliation(s)
| | - Joel Said García-Romo
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, Universidad Autonoma de Queretaro, 76010, Queretaro, Mexico
| | | | - Pablo Taboada-Antelo
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | | | | | | | | | - Armando Burgos-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
3
|
Lorentz A, Bilotta S, Civelek M. Molecular links between allergy and cancer. Trends Mol Med 2022; 28:1070-1081. [PMID: 35794030 DOI: 10.1016/j.molmed.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 01/21/2023]
Abstract
Epidemiologic studies show both positive and negative associations between allergies and cancer. Allergic diseases may protect against tumorigenesis by promoting the immune surveillance, while carcinogenesis may be promoted through inflammatory responses from allergies. Histamine receptor antagonists are the focus of recent cancer studies because of their promising beneficial effect on tumor development. Also, cytokines, particularly IL-4 or IL-33, IgE as well as allergy-related immune cells such as eosinophils can contribute to tumor growth suppression. Depending on cancer types, cancer therapy may be more beneficial when considering combinatorial immunotherapy. In this review, we give an overview on molecular links between allergies and cancer.
Collapse
Affiliation(s)
- Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Sabrina Bilotta
- Institute of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany
| | - Mehtap Civelek
- Institute of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
4
|
Alzahrani A. A New Investigation into the Molecular Mechanism of Andrographolide towards Reducing Cytokine Storm. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144555. [PMID: 35889428 PMCID: PMC9319373 DOI: 10.3390/molecules27144555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/17/2022]
Abstract
Cytokine storm is a condition in which the immune system produces an excessive number of inflammatory signals, which can result in organ failure and death. It is also known as cytokine release syndrome, CRS, or simply cytokine storm, and it has received a lot of attention recently because of the COVID-19 pandemic. It appears to be one of the reasons why some people experience life-threatening symptoms from COVID-19, a medical condition induced by SARS-CoV-2 infection. In situations where natural substances can be exploited as therapeutics to reduce cytokine storm, the drug development process has come to the rescue. In the present study, we tested the potentiality of Andrographolide, labdane diterpenoid targeting several key cytokines that are secreted as a result of cytokine storm. We used molecular docking analyses, molecular dynamics simulations, and pharmacokinetic properties to test the stability of the complexes. The compound’s binding energy with some cytokines was over −6.5 Kcal/mol. Furthermore, a post-molecular dynamics (MD) study revealed that Andrographolide was extremely stable with these cytokines. The compound’s pharmacokinetic measurements demonstrated excellent properties in terms of adsorption, distribution, metabolism, and excretion. Our research revealed that this compound may be effective in lowering cytokine storm and treating severe symptoms.
Collapse
Affiliation(s)
- Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| |
Collapse
|
5
|
Guilleminault L, Conde E, Reber LL. Pharmacological approaches to target type 2 cytokines in asthma. Pharmacol Ther 2022; 237:108167. [PMID: 35283171 DOI: 10.1016/j.pharmthera.2022.108167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
Asthma is the most common chronic lung disease, affecting more than 250 million people worldwide. The heterogeneity of asthma phenotypes represents a challenge for adequate assessment and treatment of the disease. However, approximately 50% of asthma patients present with chronic type 2 inflammation initiated by alarmins, such as IL-33 and thymic stromal lymphopoietin (TSLP), and driven by the TH2 interleukins IL-4, IL-5 and IL-13. These cytokines have therefore become important therapeutic targets in asthma. Here, we discuss current knowledge on the structure and functions of these cytokines in asthma. We review preclinical and clinical data obtained with monoclonal antibodies (mAbs) targeting these cytokines or their receptors, as well as novel strategies under development, including bispecific mAbs, designed ankyrin repeat proteins (DARPins), small molecule inhibitors and vaccines targeting type 2 cytokines.
Collapse
Affiliation(s)
- Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France; Department of Respiratory Medicine, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
| | - Eva Conde
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, F-75015 Paris, France; Sorbonne University, ED394, F-75005 Paris, France
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France.
| |
Collapse
|
6
|
Zheng J, Chen D, Xu J, Ding X, Wu Y, Shen HC, Tan X. Small molecule approaches to treat autoimmune and inflammatory diseases (Part III): Targeting cytokines and cytokine receptor complexes. Bioorg Med Chem Lett 2021; 48:128229. [PMID: 34214508 DOI: 10.1016/j.bmcl.2021.128229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023]
Abstract
Chronic and dysregulated cytokine signaling plays an important role in the pathogenic development of many autoimmune and inflammatory diseases. Despite intrinsic challenges in the disruption of interactions between cytokines and cytokine receptors, many first-in-class small-molecule inhibitors have been discovered over the past few years. The third part of the digest series presents recent progress in identifying such inhibitors and highlights the application of novel research tools in the fields of structural biology, computational analysis, screening methods, biophysical/biochemical assays and medicinal chemistry strategy.
Collapse
Affiliation(s)
- Jiamin Zheng
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Dongdong Chen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Jie Xu
- Department of Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Xiao Ding
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Yao Wu
- Computer Aided Drug Design, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Hong C Shen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Xuefei Tan
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China.
| |
Collapse
|