1
|
Zhang W, Wang X, Zhu G, Zhu B, Peng K, Hsiang T, Zhang L, Liu X. Function Switch of a Fungal Sesterterpene Synthase through Molecular Dynamics Simulation Assisted Alteration of an Aromatic Residue Cluster in the Active Pocket of PfNS. Angew Chem Int Ed Engl 2024; 63:e202406246. [PMID: 38934471 DOI: 10.1002/anie.202406246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Terpene synthases (TPSs) play pivotal roles in generating diverse terpenoids through complex cyclization pathways. Protein engineering of TPSs offers a crucial approach to expanding terpene diversity. However, significant potential remains untapped due to limited understanding of the structure-function relationships of TPSs. In this investigation, using a joint approach of molecular dynamics simulations-assisted engineering and site-directed mutagenesis, we manipulated the aromatic residue cluster (ARC) of a bifunctional terpene synthase (BFTPS), Pestalotiopsis fici nigtetraene synthase (PfNS). This led to the discovery of previously unreported catalytic functions yielding different cyclization patterns of sesterterpenes. Specifically, a quadruple variant (F89A/Y113F/W193L/T194W) completely altered PfNS's function, converting it from producing the bicyclic sesterterpene nigtetraene to the tricyclic ophiobolin F. Additionally, analysis of catalytic profiles by double, triple, and quadruple variants demonstrated that the ARC functions as a switch, unprecedently redirecting the production of 5/11 bicyclic (Type B) sesterterpenes to 5/15 bicyclic (Type A) ones. Molecular dynamics simulations and theozyme calculations further elucidated that, in addition to cation-π interactions, C-H⋅⋅⋅π interactions also play a key role in the cyclization patterns. This study offers a feasible strategy in protein engineering of TPSs for various industrial applications.
Collapse
Affiliation(s)
- Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
- School of Life Sciences, Ludong University, 264025, Yantai, Shandong, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Bin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Kaitong Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| |
Collapse
|
2
|
Guo W, Kong WY, Tantillo DJ. Revisiting a classic carbocation - DFT, coupled-cluster, and ab initio molecular dynamics computations on barbaralyl cation formation and rearrangements. Chem Sci 2024; 15:d4sc04829f. [PMID: 39268206 PMCID: PMC11385376 DOI: 10.1039/d4sc04829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Density functional theory computations were used to model the formation and rearrangement of the barbaralyl cation (C9H+ 9). Two highly delocalized minima were located for C9H+ 9, one of C s symmetry and the other of D 3h symmetry, with the former having lower energy. Quantum chemistry-based NMR predictions affirm that the lower energy structure is the best match with experimental spectra. Partial scrambling was found to proceed through a C 2 symmetric transition structure associated with a barrier of only 2.3 kcal mol-1. The full scrambling was found to involve a C 2v symmetric transition structure associated with a 5.0 kcal mol-1 barrier. Ab initio molecular dynamics simulations initiated from the D 3h C9H+ 9 structure revealed its connection to six minima, due to the six-fold symmetry of the potential energy surface. The effects of tunneling and boron substitution on this complex reaction network were also examined.
Collapse
Affiliation(s)
- Wentao Guo
- Department of Chemistry, Univeristy of California Davis USA
| | - Wang-Yeuk Kong
- Department of Chemistry, Univeristy of California Davis USA
| | | |
Collapse
|
3
|
Zhang F, Zeng T, Wu R. QM/MM Modeling Aided Enzyme Engineering in Natural Products Biosynthesis. J Chem Inf Model 2023; 63:5018-5034. [PMID: 37556841 DOI: 10.1021/acs.jcim.3c00779] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Natural products and their derivatives are widely used across various industries, particularly pharmaceuticals. Modern engineered biosynthesis provides an alternative way of producing and meeting the growing need for diverse natural products. Natural enzymes, on the other hand, often exhibit unsatisfactory catalytic characteristics and necessitate further enzyme engineering modifications. QM/MM, as a powerful and extensively used computational tool in the field of enzyme catalysis, has been increasingly applied in rational enzyme engineering over the past decade. In this review, we summarize recent advances in QM/MM computational investigation on enzyme catalysis and enzyme engineering for natural product biosynthesis. The challenges and perspectives for future QM/MM applications aided enzyme engineering in natural product biosynthesis will also be discussed.
Collapse
Affiliation(s)
- Fan Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Tao Zeng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Spencer TA, Ditchfield R. Tryptophan Stabilization of a Biochemical Carbocation Evaluated by Analysis of π Complexes of 3-Ethylindole with the t-Butyl Cation. ACS OMEGA 2023; 8:26497-26507. [PMID: 37521644 PMCID: PMC10373456 DOI: 10.1021/acsomega.3c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Understanding how the highly unstable carbocation intermediates in terpenoid biosynthesis are stabilized and protected during their transient existence in enzyme active sites is an intriguing challenge which has to be addressed computationally. Our efforts have focused on evaluating the stabilization afforded via carbocation-π complexation between a biochemical carbocation and an aromatic amino acid residue. This has involved making measurements on an X-ray structure of an enzyme active site that shows a π donor proximate to a putative carbocation site and using these to build models which are analyzed computationally to provide an estimated stabilization energy (SE). Previously, we reported estimated SEs for several such carbocation-π complexes involving phenylalanine. Herein, we report the first such estimate involving tryptophan as the π donor. Because there was almost no published information about indole as a π-complexation donor, we first located computationally equilibrium π and σ complexes of 3-ethylindole with the t-butyl cation as relevant background information. Then, measurements on the X-ray structure of the enzyme CotB2 complexed with geranylgeranyl thiodiphosphate (GGSPP), specifically on the geometric relationship of the putative carbocation at C15 of GGSPP to W186, were used to build a model that afforded a computed SE of -15.3 kcal/mol.
Collapse
|
5
|
Liu M, Li L, Wang Z, Wang S, Tang X. Catalytic deAMPylation in AMPylation-inhibitory/assistant forms of FICD protein. Front Chem 2023; 11:1077188. [PMID: 36762200 PMCID: PMC9905249 DOI: 10.3389/fchem.2023.1077188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
DeAMPylation, as a reversible reaction of AMPylation and mediated by the endoplasmic reticulum-localized enzyme FICD (filamentation induced by cAMP domain protein, also known as HYPE), is an important process in protein posttranslational modifications (PTMs). Elucidating the function and catalytic details of FICD is of vital importance to provide a comprehensive understanding of protein folding homeostasis. However, the detailed deAMPylation mechanism is still unclear. Furthermore, the role of a conserved glutamine (Glu234), that plays an inhibitory role in the AMPylation response, is still an open question in the deAMPylation process. In the present work, the elaborated deAMPylation mechanisms with AMPylation-inhibitory/assistant forms of FICD (wild type and Glu234Ala mutant) were investigated based on the QM(DFT)/MM MD approach. The results revealed that deAMPylation was triggered by proton transfer from protonated histidine (His363) to AMPylated threonine, instead of a nucleophilic attack of water molecules adding to the phosphorus of AMP. The free energy barrier of deAMPylation in the wild type (∼17.3 kcal/mol) is consistent with that in the Glu234Ala mutant of FICD (∼17.1 kcal/mol), suggesting that the alteration of the Glu234 residue does not affect the deAMPylation reaction and indirectly verifying the inducement of deAMPylation in FICD. In the wild type, the proton in the nucleophilic water molecule is transferred to Glu234, whereas it is delivered to Asp367 through the hydrogen-bond network of coordinated water molecules in the Glu234Ala mutant. The present findings were inspirational for understanding the catalytic and inhibitory mechanisms of FICD-mediated AMP transfer, paving the way for further studies on the physiological role of FICD protein.
Collapse
Affiliation(s)
- Meili Liu
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, China,Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL, United States
| | - Li Li
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Zhiqin Wang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shuang Wang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, China,Department of Stomatology, Huangdao District Central Hospital, Qingdao, China,*Correspondence: Shuang Wang, ; Xiaowen Tang,
| | - Xiaowen Tang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, China,*Correspondence: Shuang Wang, ; Xiaowen Tang,
| |
Collapse
|
6
|
de Oliveira MT, Alves JMA, Vrech NL, Braga AAC, Barboza CA. A comprehensive benchmark investigation of quantum chemical methods for carbocations. Phys Chem Chem Phys 2023; 25:1903-1922. [PMID: 36541431 DOI: 10.1039/d2cp04603b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of various density functional approximations (DFAs) and an emphasis on popular methods without any consensus have prevailed in computational studies dedicated to carbocations. More importantly, an extensive and rigorous benchmark investigation on density functionals for the class is still lacking. To close this gap, we present a comprehensive benchmark study of quantum chemical methods on a series of classical and nonclassical carbocations, the CARBO33 dataset. We evaluate a total of 107 DFT methods from all rungs giving particular attention to double hybrid density functionals as the potential of the class has been largely undermined in the context of carbocations. To support our findings, DLPNO-CCSD(T) at the complete basis set (CBS) limit and W1-F12 are used as reference methods. Our results indicate that the composite CBS-QB3 method performs poorly and should not be adopted for target energies. Oftentimes, the tested DFAs of a lower rung perform better than several DFAs in a higher rung of Perdew's "Jacob's ladder". Nonetheless, double hybrids DSD-PBEP86-NL and ωB97X-2-D3(BJ) stand out by showing the overall best performance. Among the hybrids evaluated, about half of them show mean absolute deviation (MAD) below 1.1 kcal mol-1, including the popular hybrids M06-2X and mPW1PW91. In this family, MN15-D3(BJ) performs particularly well (MAD = 0.77 kcal mol-1) displaying reliable results across various tests. Highly popular B3LYP exhibited one of the worst performances (MAD = 4.74 kcal mol-1), and we do not recommend its application to carbocations. We also assess the 24 general-purpose basis sets of single- up to quadruple-ζ quality. The best compromise between accuracy and computational cost is achieved with cc-pVTZ followed by def2-TZVP. Computations on larger structures of general interest, including terpene carbocations, are also presented for selected DFT methods confirming general trends in the results.
Collapse
Affiliation(s)
- Marcelo T de Oliveira
- Department of Chemistry and Physics, La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia. .,Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| | - Júlia M A Alves
- Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| | - Natália L Vrech
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Ataualpa A C Braga
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Cristina A Barboza
- Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.,Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw, Poland
| |
Collapse
|
7
|
Biosynthesis of fusicoccane-type diterpenoids featuring a 5–8–5 tricyclic carbon skeleton. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Wei X, Liu N, Song J, Ren C, Tang X, Jiang W. Effect of silica nanoparticles on cell membrane fluidity: The role of temperature and membrane composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156552. [PMID: 35688239 DOI: 10.1016/j.scitotenv.2022.156552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The increasing production and application of silica nanoparticles (SiO2 NPs) raise public concern regarding their environmental and health risks. The fluidity of the cell membrane is essential for supporting membrane proteins and regulating membrane transport. Changes in membrane fluidity inevitably influence the physiological activities of cells and even cause biological effects. In this study, the effect of SiO2 NPs on membrane fluidity was studied at 25 °C and 37 °C, and the role of membrane components in SiO2 NP-membrane interactions was investigated using giant plasma membrane vesicles (GPMVs) isolated from RBL-2H3 cells. SiO2 NPs cause a more serious membrane fluidity decrease at 37 °C than at 25 °C, which is revealed by the shift of Laurdan fluorescence emission and further quantified via forster resonance energy transfer (FRET) experiments. In addition, after the removal of 75 % cholesterol from the membrane, SiO2 NPs caused a greater extent of membrane gelation. These results indicate that SiO2 NPs prefer to interact with membranes that are more dynamic and less densely packed. Moreover, fluorescent experiments confirmed that the existence of phosphatidyl ethanolamine (PE) and phosphoinositide (PI) can mitigate NP-induced membrane gelation. Molecular dynamics simulation further demonstrated that SiO2 NPs form hydrogen bonds with the terminal of PE or PI but with the -PO4-- group in the middle of phosphatidylcholine (PC). The bonding that occurs in the terminal gives less restriction of phospholipid movement and a weaker effect on membrane fluidity. This research provides both evidence and mechanisms of SiO2 NP-induced membrane fluidity changes, which are helpful for understanding cell membrane damage and the biological effects of NPs.
Collapse
Affiliation(s)
- Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Nan Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jian Song
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Chao Ren
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
9
|
Zeng T, Chen Y, Jian Y, Zhang F, Wu R. Chemotaxonomic investigation of plant terpenoids with an established database (TeroMOL). THE NEW PHYTOLOGIST 2022; 235:662-673. [PMID: 35377469 DOI: 10.1111/nph.18133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Terpenoids constitute the biggest class of plant-derived natural products with diverse chemical structures and extensive biological activities. Interpreting enzyme functions and mining new structures of terpenoids could be inspired by the cheminformatic and chemotaxonomic analysis, whereas it is hampered by the incompleteness of available data for terpenoids. Here a dedicated terpenoids database, TeroMOL, is developed to collect more than 170 000 terpenoids and their derivatives annotated with reported biological sources, along with a user-friendly and freely accessible webserver to visualise and analyse the terpenoids skeletons and organism sources. The quantitative distributions as well as the qualitative trends between terpenoid skeletons and organism sources in plant kingdom are revealed from a chemotaxonomic view, while no comparisons are attempted due to the inherent data biases. Nevertheless, the terpenoid chemomarkers in several organisms are discussed based on the available data with highly enriched and exclusive carbon skeletons. We believe that the TeroMOL database and its accessory computational tools will be very promising for exploring the chemical space and biological sources of terpenoids, and assisting the terpenoid research community in the future.
Collapse
Affiliation(s)
- Tao Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuxinxin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongxing Jian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Yuan FY, Pan YH, Yin AP, Li W, Huang D, Yan XL, Wu SQ, Tang GH, Pu R, Yin S. Euphorstranoids A and B, two highly rearranged ingenane diterpenoids from Euphorbia stracheyi: structural elucidation, chemical transformation, and lipid-lowering activity. Org Chem Front 2022. [DOI: 10.1039/d1qo01705e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Euphorstranoids A (1) and B (2), two highly rearranged ingenane diterpenoids with an unusual 5/6/7/3 carbon ring system, were isolated from Euphorbia stracheyi.
Collapse
Affiliation(s)
- Fang-Yu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yue-Hua Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ai-Ping Yin
- Department of Clinical Laboratory, the Third People's Hospital of Dongguan, Dongguan 523326, People's Republic of China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xue-Long Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shu-Qi Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Rong Pu
- Department of Clinical Laboratory, the Third People's Hospital of Dongguan, Dongguan 523326, People's Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
11
|
Wu XD, Ding LF, Li WY, Cheng B, Lei T, Zhou HF, Zhao QS. Hypoestins A−D: highly modified fusicoccane diterpenoids with promising Cav3.1 calcium channel inhibitory activity from Hypoestes purpurea. Org Chem Front 2022. [DOI: 10.1039/d2qo00265e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypoestins A–D (1–4), four highly modified fusicoccane diterpenoids with two unreported carbon skeletons, and hypoestins E (5) and F (6), two prviously undescribed fusicoccane diterpenoids, were isolated from aerial parts...
Collapse
|
12
|
Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. BIORESOUR BIOPROCESS 2021; 8:66. [PMID: 38650244 PMCID: PMC10992375 DOI: 10.1186/s40643-021-00421-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
13
|
Xu H, Goldfuss B, Dickschat JS. 1,2- or 1,3-Hydride Shifts: What Controls Guaiane Biosynthesis? Chemistry 2021; 27:9758-9762. [PMID: 33929065 PMCID: PMC8362104 DOI: 10.1002/chem.202101371] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 12/19/2022]
Abstract
A systematic computational study addressing the entire chemical space of guaianes in conjunction with an analysis of all known compounds shows that 1,3‐hydride shifts are rare events in guaiane biosynthesis. As demonstrated here, 1,3‐hydride shifts towards guaianes can only be realized for two stereochemically well defined out of numerous possible stereoisomeric skeletons. One example is given by the mechanism of guaia‐4(15)‐en‐11‐ol synthase from California poplar, an enzyme that yields guaianes with unusual stereochemical properties. The general results from DFT calculations were experimentally verified through isotopic‐labeling experiments with guaia‐4(15)‐en‐11‐ol synthase.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Institute for Organic Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
14
|
Raz K, Driller R, Dimos N, Ringel M, Brück T, Loll B, Major DT. The Impression of a Nonexisting Catalytic Effect: The Role of CotB2 in Guiding the Complex Biosynthesis of Cyclooctat-9-en-7-ol. J Am Chem Soc 2020; 142:21562-21574. [PMID: 33289561 DOI: 10.1021/jacs.0c11348] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Terpene synthases generate terpenes employing diversified carbocation chemistry, including highly specific ring formations, proton and hydride transfers, and methyl as well as methylene migrations, followed by reaction quenching. In this enzyme family, the main catalytic challenge is not rate enhancement, but rather structural and reactive control of intrinsically unstable carbocations in order to guide the resulting product distribution. Here we employ multiscale modeling within classical and quantum dynamics frameworks to investigate the reaction mechanism in the diterpene synthase CotB2, commencing with the substrate geranyl geranyl diphosphate and terminating with the carbocation precursor to the final product cyclooctat-9-en-7-ol. The 11-step in-enzyme carbocation cascade is compared with the same reaction in the absence of the enzyme. Remarkably, the free energy profiles in gas phase and in CotB2 are surprisingly similar. This similarity contrasts the multitude of strong π-cation, dipole-cation, and ion-pair interactions between all intermediates in the reaction cascade and the enzyme, suggesting a remarkable balance of interactions in CotB2. We ascribe this balance to the similar magnitude of the interactions between the carbocations along the reaction coordinate and the enzyme environment. The effect of CotB2 mutations is studied using multiscale mechanistic docking, machine learning, and X-ray crystallography, pointing the way for future terpene synthase design.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ronja Driller
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Nicole Dimos
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Marion Ringel
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|