1
|
Du C, Li H, Zhang M, Wang X, Xing L, Wan L, Xu X, Wang P. Improving the thermostability of ulvan lyase from polysaccharide lyase family 25 based on multiple computational rational design strategies. Int J Biol Macromol 2025; 302:140468. [PMID: 39894113 DOI: 10.1016/j.ijbiomac.2025.140468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
A rational design strategy to improve the thermal stability of enzymes is essential for advancing industrial applications. This study proposes a computer-aided rational design strategy combining deep learning and multiple energy function methods to enhance the thermal stability of ulvan lyase. ColabFold was employed for structure prediction. FoldX, Rosetta, and Schrödinger used to screen mutants for thermal stability. Three single-point mutants, A117V, K145L, and A237V, exhibited significantly enhanced enzyme thermal stability. Further combination of mutations revealed synergistic effects, with the most prominent double mutant A117V/A237V showing a half-life of 31.11 min, extending by 8.91 and 13.95 min compared to A117V and A237V, respectively. It also showed a 10 °C increase in Tm and retained 5.12-fold residual activity after 30 min of incubation at 40 °C compared to those of wild type, respectively. Molecular dynamics simulations revealed that the A117V/A237V reduced the flexibility of the loop regions and increased the intramolecular hydrogen bonds. Additionally, the A237V exhibited an optimal pH of 10.0, while the double mutants A117V/A237V and K145L/A237V showed a shift to pH 9.0, compared to pH 8.0 for the wild type. This study demonstrates that computer-aided rational design as a promising strategy to improve the thermostability of ulvan lyase.
Collapse
Affiliation(s)
- Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Huining Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Man Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xinyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Laigui Xing
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Lei Wan
- Lianyungang Zaotai Biotechnology Co., Ltd., Lianyungang 222100, China
| | - Ximing Xu
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
2
|
Spínola MP, Costa MM, Simões RS, Fernandes VO, Cardoso V, Pires VM, Afonso C, Cardoso C, Bandarra NM, Fontes CM, Prates JA. Improving protein hydrolysis and digestibility in Arthrospira platensis biomass through recombinant peptidases (EC 3.4): Opportunities for monogastric animal diets. Heliyon 2025; 11:e41460. [PMID: 39834408 PMCID: PMC11742843 DOI: 10.1016/j.heliyon.2024.e41460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
This study investigates the use of recombinant peptidases (EC 3.4) to improve protein hydrolysis and digestibility in Arthrospira platensis, with a focus on addressing the challenge of reduced protein bioavailability for monogastric animals due to resistant protein-pigment formations, such as phycocyanin, and increased digesta viscosity caused by jellification properties. A library of 192 peptidases was generated, from which 142 soluble peptidases were expressed in Escherichia coli and subsequently screened for activity against an A. platensis suspension in vitro. Among these peptidases, six promising candidates were identified for protein and peptide extraction from the microalga. These enzymes were tested individually, and in a mix (MIX6), and compared to commercial trypsin and pancreatin. Protein content was determined using the Bradford method and potential peptide formation was measured via an o-phthaldialdehyde (OPA) assay. The protein solubility and hydrolysis, specifically of two main protein fractions (18-26 kDa and 40-48 kDa) along with minor fractions, were analysed via 14 % sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Results indicated that the enzyme ID 138, a serine-peptidase, significantly increased total peptide formation in the A. platensis supernatant, although it did not outperform other peptidases or enzyme mixtures. Notably, enzymes ID 152, derived from a marine bacterium, and ID 153, another serine-peptidase, exhibited significant improvements in the extraction and hydrolysis of one protein fraction (18-26 kDa), possibly corresponding to a phycocyanin fraction. While no synergistic effects were observed among peptidases, further investigations are warranted to understand the enzyme composition of MIX6, particularly enzymes ID 138, ID 152 and ID 153, and their potential to enhance the bioavailability of A. platensis proteins for monogastric animals when incorporated into dietary formulations.
Collapse
Affiliation(s)
- Maria P. Spínola
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Mónica M. Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Rita S. Simões
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477, Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - Vânia O. Fernandes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477, Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - Vânia Cardoso
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477, Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - Virgínia M.R. Pires
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477, Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - Cláudia Afonso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Carlos Cardoso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Narcisa M. Bandarra
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Carlos M.G.A. Fontes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477, Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - José A.M. Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477, Lisboa, Portugal
| |
Collapse
|
3
|
Gajanayaka ND, Jo E, Bandara MS, Marasinghe SD, Bawkar C, Lee YJ, Park GH, Oh C, Lee Y. Characterisation of High Alkaline-Tolerant Novel Ulvan Lyase from Pseudoalteromonas agarivorans: Potential Applications of Enzyme Derived Oligo-Ulvan as Anti-Diabetic Agent. Mar Drugs 2024; 22:577. [PMID: 39728150 DOI: 10.3390/md22120577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Green algae, particularly Ulva species, are rich in complex polysaccharides, such as ulvan, which have significant potential for biotechnological applications. However, the biochemical properties of ulvan depolymerised products remain underexplored. The enzymatic depolymerisation of ulvan has garnered attention owing to its cost advantages over alternative methods. Nevertheless, the biochemical characterisation of ulvan lyases, specifically those belonging to the polysaccharide lyase family 25 (PL25), is limited. In this study, we identified and biochemically characterised a novel PL25 ulvan lyase, PaUL25, which functions optimally at pH 10. Additionally, we explored the alpha (α)-glucosidase inhibitory properties of ulvan depolymerised products. PaUL25 exhibited optimum activity at 35 °C in Tris-HCl buffer (pH 10). Moreover, enzyme activity was enhanced by more than 150% in the presence of Mn2+ metal ions at and below concentrations of 10 mM. The endolytic action of PaUL25 produced ulvan oligosaccharides with degrees of polymerisation of 2 and 4 as its end products. Partially and completely hydrolysed ulvan oligosaccharides exhibited α-glucosidase inhibitory activity, with half inhibitory concentration IC50 values of 3.21 ± 0.13 and 2.51 ± 0.19 mg/mL, respectively. These findings expand our understanding of PL25 and highlight the pharmaceutical potential of ulvan oligosaccharides, particularly as antidiabetic agents.
Collapse
Affiliation(s)
- Navindu Dinara Gajanayaka
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju-si 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering, KIOST School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eunyoung Jo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju-si 63349, Republic of Korea
| | - Minthari Sakethanika Bandara
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju-si 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering, KIOST School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Svini Dileepa Marasinghe
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju-si 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering, KIOST School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chinmayee Bawkar
- Department of Marine Technology & Convergence Engineering, KIOST School, University of Science and Technology, Daejeon 34113, Republic of Korea
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea
| | - Yeon-Ju Lee
- Department of Marine Technology & Convergence Engineering, KIOST School, University of Science and Technology, Daejeon 34113, Republic of Korea
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea
| | - Gun-Hoo Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju-si 63349, Republic of Korea
| | - Chulhong Oh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju-si 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering, KIOST School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Youngdeuk Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju-si 63349, Republic of Korea
| |
Collapse
|
4
|
Wang H, Zhu B. Directed preparation of algal oligosaccharides with specific structures by algal polysaccharide degrading enzymes. Int J Biol Macromol 2024; 277:134093. [PMID: 39053825 DOI: 10.1016/j.ijbiomac.2024.134093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Seaweed polysaccharides have a wide range of sources and rich content, with various biological activities such as anti-inflammatory, anti-tumor, anticoagulant, and blood pressure lowering. They can be applied in fields such as food, agriculture, and medicine. However, the poor solubility of macromolecular seaweed polysaccharides limits their further application. Reports have shown that some biological activities of seaweed oligosaccharides are more extensive and superior to that of seaweed polysaccharides. Therefore, reducing the degree of polymerization of polysaccharides will be the key to the high value utilization of seaweed polysaccharide resources. There are three main methods for degrading algal polysaccharides into algal oligosaccharides, physical, chemical and enzymatic degradation. Among them, enzymatic degradation has been a hot research topic in recent years. Various types of algal polysaccharide hydrolases and related glycosidases are powerful tools for the preparation of algal oligosaccharides, including α-agarases, β-agaroses, α-neoagarose hydrolases and β-galactosidases that are related to agar, κ-carrageenases, ι-carrageenases and λ-carrageenases that are related to carrageenan, β-porphyranases that are related to porphyran, funoran hydrolases that are related to funoran, alginate lyases that are related to alginate and ulvan lyases related to ulvan. This paper describes the bioactivities of agar oligosaccharide, carrageenan oligosaccharide, porphyran oligosaccharide, funoran oligosaccharide, alginate oligosaccharide and ulvan oligosaccharide and provides a detailed review of the progress of research on the enzymatic preparation of these six oligosaccharides. At the same time, the problems and challenges faced are presented to guide and improve the preparation and application of algal oligosaccharides in the future.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China.
| |
Collapse
|
5
|
Chen G, Wang ZX, Yang Y, Li Y, Zhang T, Ouyang S, Zhang L, Chen Y, Ruan X, Miao M. Elucidation of the mechanism underlying the sequential catalysis of inulin by fructotransferase. Int J Biol Macromol 2024; 277:134446. [PMID: 39098696 DOI: 10.1016/j.ijbiomac.2024.134446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Glycoside hydrolase family 91 (GH91) inulin fructotransferase (IFTases) enables biotransformation of fructans into sugar substitutes for dietary intervention in metabolic syndrome. However, the catalytic mechanism underlying the sequential biodegradation of inulin remains unelusive during the biotranformation of fructans. Herein we present the crystal structures of IFTase from Arthrobacter aurescens SK 8.001 in apo form and in complexes with kestose, nystose, or fructosyl nystose, respectively. Two kinds of conserved noncatalytic binding regions are first identified for IFTase-inulin interactions. The conserved interactions of substrates were revealed in the catalytic center that only contained a catalytic residue E205. A switching scaffold was comprised of D194 and Q217 in the catalytic channel, which served as the catalytic transition stabilizer through side chain displacement in the cycling of substrate sliding in/out the catalytic pocket. Such features in GH91 contribute to the catalytic model for consecutive cutting of substrate chain as well as product release in IFTase, and thus might be extended to other exo-active enzymes with an enclosed bottom of catalytic pocket. The study expands the current general catalytic principle in enzyme-substrate complexes and shed light on the rational design of IFTase for fructan biotransformation.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Zhao-Xi Wang
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yuqi Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yungao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Songying Ouyang
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230027, China.
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road Gulou District, Fuzhou 350001, China.
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Li C, Wang H, Zhu B, Yao Z, Ning L. Polysaccharides and oligosaccharides originated from green algae: structure, extraction, purification, activity and applications. BIORESOUR BIOPROCESS 2024; 11:85. [PMID: 39237778 PMCID: PMC11377408 DOI: 10.1186/s40643-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
With the proceeding of global warming and water eutrophication, the phenomenon of green tide has garnered significant societal interest. Consequently, researchers had increasingly focused on the potential applications of green algae biomass, particularly its polysaccharides. The polysaccharide serves as the primary active constituent of green algae and has demonstrated numerous advantageous biological activities, including antioxidant, antiviral, anticoagulant, hypolipidemic and immuno-modulatory activities. The favorable bioavailability and solubility of green algae oligosaccharides are attributed to their low molecular weight. So there has been a growing interest in researching green algae polysaccharides and oligosaccharides for the utilization of marine biological resources. This review summarized the extraction, purification, chemical structure, composition, biological activity, and potential applications prospect of polysaccharides and oligosaccharides derived from green algae. The review could be helpful for expanding the applications of polysaccharides and oligosaccharides of green algae.
Collapse
Affiliation(s)
- Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Hui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Limin Ning
- College of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Huang A, Wu X, Lu F, Liu F. Sustainable Production of Ulva Oligosaccharides via Enzymatic Hydrolysis: A Review on Ulvan Lyase. Foods 2024; 13:2820. [PMID: 39272585 PMCID: PMC11395424 DOI: 10.3390/foods13172820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Ulvan is a water-soluble sulfated polysaccharide extracted from the green algae cell wall. Compared with polysaccharides, oligosaccharides have drawn increasing attention in various industries due to their enhanced biocompatibility and solubility. Ulvan lyase degrades polysaccharides into low molecular weight oligosaccharides through the β-elimination mechanism. The elucidation of the structure, catalytic mechanism, and molecular modification of ulvan lyase will be helpful to obtain high value-added products from marine biomass resources, as well as reduce environmental pollution caused by the eutrophication of green algae. This review summarizes the structure and bioactivity of ulvan, the microbial origin of ulvan lyase, as well as its sequence, three-dimensional structure, and enzymatic mechanism. In addition, the molecular modification of ulvan lyase, prospects and challenges in the application of enzymatic methods to prepare oligosaccharides are also discussed. It provides information for the preparation of bioactive Ulva oligosaccharides through enzymatic hydrolysis, the technological bottlenecks, and possible solutions to address these issues within the enzymatic process.
Collapse
Affiliation(s)
- Ailan Huang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453000, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinming Wu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| |
Collapse
|
8
|
Xu Y, Li J, An L, Qiu Y, Mao A, He Z, Guo J, Yan H, Li H, Hu Z. Biochemical Characterization of a Novel Thermostable Ulvan Lyase from Tamlana fucoidanivorans CW2-9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11773-11781. [PMID: 38722333 DOI: 10.1021/acs.jafc.4c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Ulvan is a complex sulfated polysaccharide extracted from Ulva, and ulvan lyases can degrade ulvan through a β-elimination mechanism to obtain oligosaccharides. In this study, a new ulvan lyase, EPL15085, which belongs to the polysaccharide lyase (PL) 28 family from Tamlana fucoidanivorans CW2-9, was characterized in detail. The optimal pH and salinity are 9.0 and 0.4 M NaCl, respectively. The Km and Vmax of recombinant EPL15085 toward ulvan are 0.80 mg·mL-1 and 11.22 μmol·min -1 mg-1·mL-1, respectively. Unexpectedly, it is very resistant to high temperatures. After treatment at 100 °C, EPL15085 maintained its ability to degrade ulvan. Molecular dynamics simulation analysis and site-directed mutagenesis analysis indicated that the strong rigidity of the disulfide bond between Cys74-Cys102 in the N-terminus is related to its thermostability. In addition, oligosaccharides with disaccharides and tetrasaccharides were the end products of EPL15085. Based on molecular docking and site-directed mutagenesis analysis, Tyr177 and Leu134 are considered to be the crucial residues for enzyme activity. In conclusion, our study identified a new PL28 family of ulvan lyases, EPL15085, with excellent heat resistance that can expand the database of ulvan lyases and provide the possibility to make full use of ulvan.
Collapse
Affiliation(s)
- Yan Xu
- Heyuan Polytechnic, Heyuan, Guangdong 517000, China
- Heyuan Key Laboratory of Agricultural Products (Food) Processing, Heyuan, Guangdong 517000, China
| | - Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Lu An
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Yuankai Qiu
- Heyuan Polytechnic, Heyuan, Guangdong 517000, China
| | - Aihua Mao
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Zhixiao He
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Jialing Guo
- Heyuan Polytechnic, Heyuan, Guangdong 517000, China
| | - Hanbing Yan
- Heyuan Polytechnic, Heyuan, Guangdong 517000, China
| | - Han Li
- Heyuan Polytechnic, Heyuan, Guangdong 517000, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| |
Collapse
|
9
|
Yano N, Kondo T, Kusaka K, Arakawa T, Sakamoto T, Fushinobu S. Charge neutralization and β-elimination cleavage mechanism of family 42 L-rhamnose-α-1,4-D-glucuronate lyase revealed using neutron crystallography. J Biol Chem 2024; 300:105774. [PMID: 38382672 PMCID: PMC10951650 DOI: 10.1016/j.jbc.2024.105774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Gum arabic (GA) is widely used as an emulsion stabilizer and edible coating and consists of a complex carbohydrate moiety with a rhamnosyl-glucuronate group capping the non-reducing ends. Enzymes that can specifically cleave the glycosidic chains of GA and modify their properties are valuable for structural analysis and industrial application. Cryogenic X-ray crystal structure of GA-specific L-rhamnose-α-1,4-D-glucuronate lyase from Fusarium oxysporum (FoRham1), belonging to the polysaccharide lyase (PL) family 42, has been previously reported. To determine the specific reaction mechanism based on its hydrogen-containing enzyme structure, we performed joint X-ray/neutron crystallography of FoRham1. Large crystals were grown in the presence of L-rhamnose (a reaction product), and neutron and X-ray diffraction datasets were collected at room temperature at 1.80 and 1.25 Å resolutions, respectively. The active site contained L-rhamnose and acetate, the latter being a partial analog of glucuronate. Incomplete H/D exchange between Arg166 and acetate suggested that a strong salt-bridge interaction was maintained. Doubly deuterated His105 and deuterated Tyr150 supported the interaction between Arg166 and the acetate. The unique hydrogen-rich environment functions as a charge neutralizer for glucuronate and stabilizes the oxyanion intermediate. The NE2 atom of His85 was deprotonated and formed a hydrogen bond with the deuterated O1 hydroxy of L-rhamnose, indicating the function of His85 as the base/acid catalyst for bond cleavage via β-elimination. Asp83 functions as a pivot between the two catalytic histidine residues by bridging them. This His-His-Asp structural motif is conserved in the PL 24, 25, and 42 families.
Collapse
Affiliation(s)
- Naomine Yano
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, Hyogo, Japan.
| | - Tatsuya Kondo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Katsuhiro Kusaka
- Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki, Japan
| | - Takatoshi Arakawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Tatsuji Sakamoto
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Wang X, Yu H, Li Y, Fu Q, Shao H, He H, Wang M. Metatranscriptomic insights into the microbial metabolic activities during an Ulva prolifera green tide in coastal Qingdao areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123217. [PMID: 38154771 DOI: 10.1016/j.envpol.2023.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Green tide, a typical marine environmental disaster that profoundly influenced the coastal areas, has been occurred consecutively in the South Yellow Sea of China since 2007. Herein, the active microbial community structure and metabolic pathways in Qingdao offshore during an Ulva prolifera green tide were investigated by using metatranscriptomic approach. The dominant active microbial taxa at the outbreak phase were primarily a functional group that can utilize organic matters derived from U. prolifera, such as Lentibacter, Polaribacter and Planktomarina. While the taxa involved in biogeochemical cycles, including Phaeobacter, Pseudomonas and Marinobacterium, dominated the active microbial communities at the decline phase. The expression level of enzymes involved in U. prolifera polysaccharides degradation was significantly higher at the outbreak phase compared to the decline phase. At the same time, the main players Glaciecola and Polarbacter showed similar trends, suggesting that the low competitiveness for nutrients of related microorganisms at this phase made them degrade more U. prolifera polysaccharides to meet their own nutrient needs, thereby accelerating the degradation of U. prolifera. According to KEGG annotation, the biogeochemical pathways including nitrogen cycle, sulfur cycle and methane oxidation altered during the green tide, with thiosulfate oxidation and methane oxidation probably being the crucial pathways at the outbreak and the decline phase respectively. The coupling of sulfide oxidation and denitrification was also observed in this study. Furthermore, the green tide in Qingdao offshore might impact the greenhouse effects induced by CH4 and N2O through influencing the related microbial processes.
Collapse
Affiliation(s)
- Xinyi Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hao Yu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yan Li
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Qianru Fu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hui He
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; Haide College, Ocean University of China, Qingdao, China; UMT-OUC Joint Academic Centre for Marine Studies, Ocean University of China, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Huang A, Chen Z, Wu X, Yan W, Lu F, Liu F. Improving the thermal stability and catalytic activity of ulvan lyase by the combination of FoldX and KnowVolution campaign. Int J Biol Macromol 2024; 257:128577. [PMID: 38070809 DOI: 10.1016/j.ijbiomac.2023.128577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
Thermal stability is one of the most important properties of ulvan lyases for their application in algae biomass degradation. The Knowledge gaining directed eVolution (KnowVolution) protein engineering strategy could be employed to improve thermostability of ulvan lyase with less screening effort. Herein, the unfolding free energies (ΔΔG) of the loop region were calculated using FoldX and four sites (D103, G104, T113, Q229) were selected for saturation mutagenesis, resulting in the identification of a favorable single-site mutant Q229M. Subsequently, iteration mutation was carried out with the mutant N57P (previously obtained by our group) to further enhance the performance of ulvan lyase. The results showed that the most beneficial variant N57P/Q229M exhibited a 1.67-fold and 2-fold increase in residual activity compared to the wild type after incubation at 40 °C and 50 °C for 1 h, respectively. In addition, the variant produced 1.06 mg/mL of reducing sugar in 2 h, which was almost four times as much as the wild type. Molecular dynamics simulations revealed that N57P/Q229M mutant enhanced the structural rigidity by augmenting intramolecular hydrogen bonds. Meanwhile, the shorter proton transmission distance between the general base of the enzyme and the substrate contributed to the glycosidic bond breakage. Our research showed that in silico saturation mutagenesis using position scan module in FoldX allowed for faster screening of mutants with improved thermal stability, and combining it with KnowVolution enabled a balanced effect of thermal stability and enzyme activity in protein engineering.
Collapse
Affiliation(s)
- Ailan Huang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Zhengqi Chen
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Xinming Wu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Wenxing Yan
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China.
| |
Collapse
|
12
|
Li C, Tang T, Jiang J, Yao Z, Zhu B. Biochemical characterization of a new ulvan lyase and its applicability in utilization of ulvan and preparation of ulva oligosaccharides. Glycobiology 2023; 33:837-845. [PMID: 37593920 DOI: 10.1093/glycob/cwad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Ulva is globally distributed specie and has a high economic value. Ulvan is one of the main active substances in Ulva, which has a variety of biological properties. Ulvan lyase degrades ulvan through a β-elimination mechanism which cleaves the β-glycosidic bond between Rha3S and GlcA or IdoA. The complex monosaccharide composition of ulvan makes it promising for use in food and pharmaceutical applications. This thesis explores a putative ulvan lyase from Alteromonas sp. KUL_42. We expressed and purified the protein, performed a series of characterizations and signal peptide had been removed. The results showed that the protein molecular weight of ULA-2 was 53.97 kDa, and it had the highest catalytic activity at 45 °C and pH 8.0 in Tris-HCl buffer. The Km and Vmax values were 2.24 mg · mL-1 and 2.048 μmol · min-1 · mL-1, respectively. The activity of ULA-2 was able to maintain more than 80% at 20 ~ 30 °C. ESI-MS analysis showed that the primary end-products were mainly disaccharides to tetrasaccharides. The study of ULA-2 enriches the ulvan lyase library, promotes the development and high-value utilization of Ulva resources, and facilitates further research applications of ulvan lyase in ulva oligosaccharides.
Collapse
Affiliation(s)
- Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, 777 Mingyue Road, Qingdao 266400, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| |
Collapse
|
13
|
Li C, Tang T, Du Y, Jiang L, Yao Z, Ning L, Zhu B. Ulvan and Ulva oligosaccharides: a systematic review of structure, preparation, biological activities and applications. BIORESOUR BIOPROCESS 2023; 10:66. [PMID: 38647949 PMCID: PMC10991135 DOI: 10.1186/s40643-023-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 04/25/2024] Open
Abstract
Ulva is one of the main green algae causing green tide disasters. Ulvan is the primarily component polysaccharide of the cell wall of Ulva and its complex structure and monosaccharide composition resulted in various biological activities. However, the high-value and effective utilization of extracted ulvan have been obstructed by limitations ranging from large molecular weight and low solubility to poor bioavailability. Ulva oligosaccharide obtained by degrading ulvan can not only ideally retain the various biological activities of ulvan very well but also effectively solve the problems of low solubility and poor bioavailability. The preparation and biological activity studies of ulvan and Ulva oligosaccharides have become a hot spot in the field of marine biological resources development research. At present, the comprehensive reviews of ulvan and Ulva oligosaccharides are still scarce. What are overviewed in this paper are the chemical composition, structure, extraction, and purification of ulvan and Ulva oligosaccharides, where research progress on the biological activities of ulvan and Ulva oligosaccharides is summarized and prospected. A theoretical and practical basis has been provided for further research on ulvan and Ulva oligosaccharides, as well as the high-value development and effective utilization of marine algae resources.
Collapse
Affiliation(s)
- Chen Li
- School of Medicine and Holistic Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Tiancheng Tang
- School of Medicine and Holistic Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Limin Ning
- School of Medicine and Holistic Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| |
Collapse
|
14
|
Shah S, Famta P, Shahrukh S, Jain N, Vambhurkar G, Srinivasarao DA, Raghuvanshi RS, Singh SB, Srivastava S. Multifaceted applications of ulvan polysaccharides: Insights on biopharmaceutical avenues. Int J Biol Macromol 2023; 234:123669. [PMID: 36796555 DOI: 10.1016/j.ijbiomac.2023.123669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Ulvans are water-soluble sulfated polysaccharides predominantly found in the cell wall of green algae. They hold unique characteristics that are attributed to their 3D conformation, functional groups along with the presence of saccharides and sulfate ions. Traditionally, ulvans are widely used as food supplements and probiotics owing to the high content of carbohydrates. Despite their widespread usage in food industry, an in-depth understanding is required for extrapolating their potential application as a nutraceutical and medicinal agent which could be beneficial in promoting human health and well-being. This review emphasizes novel therapeutic avenues where ulvan polysaccharides can be used beyond their nutritional applications. A collection of literature points towards multifarious applications of ulvan in various biomedical fields. Structural aspects along with extraction and purification methods have been discussed. The underlying molecular mechanisms associated with its biomedical potential in different therapeutic fields like oncology, infectious diseases, inflammation, neuroprotection and tissue engineering, etc. have been unravelled. Challenges associated with clinical translation and future perspectives have been deliberated.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
15
|
Xu J, Liao W, Liu Y, Guo Y, Jiang S, Zhao C. An overview on the nutritional and bioactive components of green seaweeds. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [PMCID: PMC10026244 DOI: 10.1186/s43014-023-00132-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
AbstractGreen seaweed, as the most abundant species of macroseaweeds, is an important marine biological resource. It is a rich source of several amino acids, fatty acids, and dietary fibers, as well as polysaccharides, polyphenols, pigments, and other active substances, which have crucial roles in various biological processes such as antioxidant activity, immunoregulation, and anti-inflammatory response. In recent years, attention to marine resources has accelerated the exploration and utilization of green seaweeds for greater economic value. This paper elaborates on the main nutrients and active substances present in different green seaweeds and provides a review of their biological activities and their applications for high-value utilization.
Graphical abstract
Collapse
|
16
|
Genomic potential for exopolysaccharide production and differential polysaccharide degradation in closely related Alteromonas sp. PRIM-21 and Alteromonas fortis 1 T. Antonie Van Leeuwenhoek 2023; 116:39-51. [PMID: 36396850 DOI: 10.1007/s10482-022-01796-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Members of the genus Alteromonas are widely distributed in diverse marine environments and are often associated with marine organisms. Their ability to produce exopolysaccharides (EPS) and depolymerize sulfated algal polysaccharides has provided industrial importance to some species. Here, we describe the draft genome of an algae-associated strain namely, Alteromonas sp. PRIM-21 isolated from the southwest coast of India to understand the EPS biosynthetic pathways as well as polysaccharide depolymerization system in comparison to the closely related strain Alteromonas fortis 1T that shares 99.8% 16S rRNA gene sequence similarity. Whole-genome shotgun sequencing of Alteromonas sp. PRIM-21 yielded 50 contigs with a total length of 4,638,422 bp having 43.86% GC content. The resultant genome shared 95.9% OrthoANI value with A. fortis 1 T, and contained 4125 predicted protein-coding genes, 71 tRNA and 10 rRNA genes. Genes involved in Wzx/Wzy-, ABC transporter- and synthase-dependent pathways for EPS production and secretion were common in both Alteromonas sp. PRIM-21 and A. fortis 1T. However, the distribution of carbohydrate-active enzymes (CAZymes) was heterogeneous. The strain PRIM-21 harbored polysaccharide lyases for the degradation of alginate, ulvan, arabinogalactan and chondroitin. This was further validated from the culture-based assays using seven different polysaccharides. The depolymerizing ability of the bacteria may be useful in deriving nutrients from the biopolymers produced in the algal host while the EPS biosynthesis may provide additional advantages for life in the stressful marine environment. The results also highlight the genetic heterogeneity in terms of polysaccharide utilization among the closely related Alteromonas strains.
Collapse
|
17
|
Tang T, Zhu B, Yao Z. Biochemical characterization and elucidation the action mode of a new PL25 family ulvan lyase from marine bacterium Alteromonas sp. TK-45 (2). ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Costa MM, Pio LB, Bule P, Cardoso VA, Duarte M, Alfaia CM, Coelho DF, Brás JA, Fontes CM, Prates JA. Recalcitrant cell wall of Ulva lactuca seaweed is degraded by a single ulvan lyase from family 25 of polysaccharide lyases. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:184-192. [PMID: 35600544 PMCID: PMC9092854 DOI: 10.1016/j.aninu.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/04/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
Green macroalgae, e.g., Ulva lactuca, are valuable bioactive sources of nutrients; but algae recalcitrant cell walls, composed of a complex cross-linked matrix of polysaccharides, can compromise their utilization as feedstuffs for monogastric animals. This study aimed to evaluate the ability of pre-selected Carbohydrate-Active enZymes (CAZymes) and sulfatases to degrade U. lactuca cell walls and release nutritive compounds. A databank of 199 recombinant CAZymes and sulfatases was tested in vitro for their action towards U. lactuca cell wall polysaccharides. The enzymes were incubated with the macroalga, either alone or in combination, to release reducing sugars and decrease fluorescence intensity of Calcofluor White stained cell walls. The individual action of a polysaccharide lyase family 25 (PL25), an ulvan lyase, was shown to be the most efficient in cell wall disruption. The ulvan lyase treatment, in triplicate measures, promoted the release of 4.54 g/L (P < 0.001) reducing sugars, a mono- and oligosaccharides release of 11.4 and 11.2 mmol/100 g of dried alga (P < 0.01), respectively, and a decrease of 41.7% (P < 0.001) in cell wall fluorescence, in comparison to control. The ability of ulvan lyase treatment to promote the release of nutritional compounds from alga biomass was also evaluated. A release of some monounsaturated fatty acids was observed, particularly the health beneficial 18:1c9 (P < 0.001). However, no significant release of total fatty acids (P > 0.05), proteins (P = 0.861) or pigments (P > 0.05) was found. These results highlight the capacity of a single recombinant ulvan lyase (PL25 family) to incompletely disrupt U. lactuca cell walls. This enzyme could enhance the bioaccessibility of U. lactuca bioactive products with promising utilization in the feed industry.
Collapse
Affiliation(s)
- Mónica M. Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Luís B. Pio
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Pedro Bule
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Vânia A. Cardoso
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| | - Marlene Duarte
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Cristina M. Alfaia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Diogo F. Coelho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Joana A. Brás
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| | - Carlos M.G.A. Fontes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| | - José A.M. Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| |
Collapse
|
19
|
Xiao M, Ren X, Cui J, Li R, Liu Z, Zhu L, Kong Q, Fu X, Mou H. A novel glucofucobiose with potential prebiotic activity prepared from the exopolysaccharides of Clavibacter michiganensis M1. Food Chem 2022; 377:132001. [PMID: 34999464 DOI: 10.1016/j.foodchem.2021.132001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/04/2022]
Abstract
Fucose and fucosylated oligosaccharides have important applications in various industries owing to their prebiotic, anti-inflammatory, anticoagulant, and antiviral activities. Here, we aimed to obtain fucosylated oligosaccharides using the acidolysis method to depolymerize exopolysaccharides extracted from Clavibacter michiganensis M1. Based on structural analysis, the prepared glucofucobiose was found to consist of d-glucose and l-fucose, with a molecular weight of 326 Da and a structure of d-Glcp-β-(1→4)-l-Fucp. The prebiotic activity of glucofucobiose was compared with that of 2'-fucosyllactose (2'-FL), the most abundant oligosaccharide in human milk. According to the results, glucofucobiose could significantly promote the proliferation of six probiotic strains, and short-chain fatty acid production of five probiotic strains on glucofucobiose was substantially higher than that on 2'-FL at 48 h of fermentation. Overall, this study proposed a new technology for obtaining fucosylated oligosaccharides. The prepared glucofucobiose was found to exhibit potential prebiotic activity and should be further assessed.
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Jinzheng Cui
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Rong Li
- Qingdao Women and Children Hospital, Qingdao 266003, Shandong, People's Republic of China.
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Lin Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China; Weihai Deepsea Biotechnology Co., Ltd, Weihai 264300, Shandong, People's Republic of China.
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Isolation, Diversity and Characterization of Ulvan-Degrading Bacteria Isolated from Marine Environments. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113420. [PMID: 35684358 PMCID: PMC9182395 DOI: 10.3390/molecules27113420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
In this study, we aimed to isolate bacteria capable of degrading the polysaccharide ulvan from the green algae Ulva sp. (Chlorophyta, Ulvales, Ulvaceae) in marine environments. We isolated 13 ulvan-degrading bacteria and observed high diversity at the genus level. Further, the genera Paraglaciecola, Vibrio, Echinicola, and Algibacter, which can degrade ulvan, were successfully isolated for the first time from marine environments. Among the 13 isolates, only one isolate (Echinicola sp.) showed the ability not only to produce externally expressed ulvan lyase, but also to be periplasmic or on the cell surface. From the results of the full-genome analysis, lyase was presumed to be a member of the PL25 (BNR4) family of ulvan lyases, and the bacterium also contained the sequence for glycoside hydrolase (GH43, GH78 and GH88), which is characteristic of other ulvan-degrading bacteria. Notably, this bacterium has a unique ulvan lyase gene not previously reported.
Collapse
|
21
|
Yang Z, Chen J, Shang S, Wang J, Xue S, Tang X, Xiao H. Diversity of epiphytic bacterial communities on male and female Porphyra haitanensis. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01675-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
To study the structure of the epiphytic bacterial community of the male and female Porphyra haitanensis, in order to explore the similarities and differences of epiphytic bacterial community structure between dioecious macroalgae.
Methods
Collection of male and female Porphyra haitanensis from the intertidal zone of Niushan Island, Fujian, China. Epiphytic bacteria were collected and studied, and the community composition and diversity of epiphytic bacteria were explored using high-throughput sequencing technology.
Results
There was no significant difference between male and female Porphyra haitanensis on α-diversity and β-diversity. Proteobacteria and Bacteroidetes were the core microbiota in male and female Porphyra haitanensis. Bacteria from the Maribacter (male 14.87%, female 1.66%) and the Tenacibaculum (male 1.44%, female 25.78%) were the most indicative epiphytic bacterial taxa on male and female Porphyra haitanensis.
Conclusions
Sex differences have some influence on the construction of epiphytic bacterial communities in Porphyra haitanensis, but they are not the decisive factors affecting the construction of epiphytic bacterial communities in Porphyra haitanensis.
Collapse
|
22
|
Wang D, Li Y, Han L, Yin C, Fu Y, Zhang Q, Zhao X, Li G, Han F, Yu W. Biochemical Properties of a New Polysaccharide Lyase Family 25 Ulvan Lyase TsUly25B from Marine Bacterium Thalassomonas sp. LD5. Mar Drugs 2022; 20:168. [PMID: 35323467 PMCID: PMC8955879 DOI: 10.3390/md20030168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023] Open
Abstract
Marine macroalgae, contributing much to the bioeconomy, have inspired tremendous attention as sustainable raw materials. Ulvan, as one of the main structural components of green algae cell walls, can be degraded by ulvan lyase through the β-elimination mechanism to obtain oligosaccharides exhibiting several good physiological activities. Only a few ulvan lyases have been characterized until now. This thesis explores the properties of a new polysaccharide lyase family 25 ulvan lyase TsUly25B from the marine bacterium Thalassomonas sp. LD5. Its protein molecular weight was 54.54 KDa, and it was most active under the conditions of 60 °C and pH 9.0. The Km and kcat values were 1.01 ± 0.05 mg/mL and 10.52 ± 0.28 s-1, respectively. TsUly25B was salt-tolerant and NaCl can significantly improve its thermal stability. Over 80% of activity can be preserved after being incubated at 30 °C for two days when the concentration of NaCl in the solution is above 1 M, while 60% can be preserved after incubation at 40 °C for 10 h with 2 M NaCl. TsUly25B adopted an endolytic manner to degrade ulvan polysaccharides, and the main end-products were unsaturated ulvan disaccharides and tetrasaccharides. In conclusion, our research enriches the ulvan lyase library and advances the utilization of ulvan lyases in further fundamental research as well as ulvan oligosaccharides production.
Collapse
Affiliation(s)
- Danni Wang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Yujiao Li
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Lu Han
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Chengying Yin
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Yongqing Fu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Qi Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Xia Zhao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Guoyun Li
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
23
|
Fournier GP, Parsons CW, Cutts EM, Tamre E. Standard Candles for Dating Microbial Lineages. Methods Mol Biol 2022; 2569:41-74. [PMID: 36083443 DOI: 10.1007/978-1-0716-2691-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Molecular clock analyses are challenging for microbial phylogenies, due to a lack of fossil calibrations that can reliably provide absolute time constraints. An alternative source of temporal constraints for microbial groups is provided by the inheritance of proteins that are specific for the utilization of eukaryote-derived substrates, which have often been dispersed across the Tree of Life via horizontal gene transfer. In particular, animal, algal, and plant-derived substrates are often produced by groups with more precisely known divergence times, providing an older-bound on their availability within microbial environments. Therefore, these ages can serve as "standard candles" for dating microbial groups across the Tree of Life, expanding the reach of informative molecular clock investigations. Here, we formally develop the concept of substrate standard candles and describe how they can be propagated and applied using both microbial species trees and individual gene family phylogenies. We also provide detailed evaluations of several candidate standard candles and discuss their suitability in light of their often complex evolutionary and metabolic histories.
Collapse
Affiliation(s)
- Gregory P Fournier
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Chris W Parsons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elise M Cutts
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Erik Tamre
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
24
|
Tang T, Cao S, Zhu B, Li Q. Ulvan polysaccharide-degrading enzymes: An updated and comprehensive review of sources category, property, structure, and applications of ulvan lyases. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Abstract
The human gut microbiota (HGM) contributes to the physiology and health of its host. The health benefits provided by dietary manipulation of the HGM require knowledge of how glycans, the major nutrients available to this ecosystem, are metabolized. Arabinogalactan proteins (AGPs) are a ubiquitous feature of plant polysaccharides available to the HGM. Although the galactan backbone and galactooligosaccharide side chains of AGPs are conserved, the decorations of these structures are highly variable. Here, we tested the hypothesis that these variations in arabinogalactan decoration provide a selection mechanism for specific Bacteroides species within the HGM. The data showed that only a single bacterium, B. plebeius, grew on red wine AGP (Wi-AGP) and seaweed AGP (SW-AGP) in mono- or mixed culture. Wi-AGP thus acts as a privileged nutrient for a Bacteroides species within the HGM that utilizes marine and terrestrial plant glycans. The B. plebeius polysaccharide utilization loci (PULs) upregulated by AGPs encoded a polysaccharide lyase, located in the enzyme family GH145, which hydrolyzed Rha-Glc linkages in Wi-AGP. Further analysis of GH145 identified an enzyme with two active sites that displayed glycoside hydrolase and lyase activities, respectively, which conferred substrate flexibility for different AGPs. The AGP-degrading apparatus of B. plebeius also contained a sulfatase, BpS1_8, active on SW-AGP and Wi-AGP, which played a pivotal role in the utilization of these glycans by the bacterium. BpS1_8 enabled other Bacteroides species to access the sulfated AGPs, providing a route to introducing privileged nutrient utilization into probiotic and commensal organisms that could improve human health. IMPORTANCE Dietary manipulation of the HGM requires knowledge of how glycans available to this ecosystem are metabolized. The variable structures that decorate the core component of plant AGPs may influence their utilization by specific organisms within the HGM. Here, we evaluated the ability of Bacteroides species to utilize a marine and terrestrial AGP. The data showed that a single bacterium, B. plebeius, grew on Wi-AGP and SW-AGP in mono- or mixed culture. Wi-AGP is thus a privileged nutrient for a Bacteroides species that utilizes marine and terrestrial plant glycans. A key component of the AGP-degrading apparatus of B. plebeius is a sulfatase that conferred the ability of the bacterium to utilize these glycans. The enzyme enabled other Bacteroides species to access the sulfated AGPs, providing a route to introducing privileged nutrient utilization into probiotic and commensal organisms that could improve human health.
Collapse
|
26
|
Kondo T, Kichijo M, Maruta A, Nakaya M, Takenaka S, Arakawa T, Fushinobu S, Sakamoto T. Structural and functional analysis of gum arabic l-rhamnose-α-1,4-d-glucuronate lyase establishes a novel polysaccharide lyase family. J Biol Chem 2021; 297:101001. [PMID: 34303708 PMCID: PMC8377490 DOI: 10.1016/j.jbc.2021.101001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Gum arabic (GA) is widely used as an emulsion stabilizer and coating in several industrial applications, such as foods and pharmaceuticals. GA contains a complex carbohydrate moiety, and the nonreducing ends of the side chains are often capped with l-rhamnose; thus, enzymes that can remove these caps are promising tools for the structural analysis of the carbohydrates comprising GA. In this study, GA-specific l-rhamnose-α-1,4-d-glucuronate lyase from the fungus Fusarium oxysporum 12S (FoRham1) was cloned and characterized. FoRham1 showed the highest amino acid sequence similarity with enzymes belonging to the glycoside hydrolase family 145; however, the catalytic residue on the posterior pocket of the β-propeller fold protein was not conserved. The catalytic residues of FoRham1 were instead conserved with ulvan lyases belonging to polysaccharide lyase family 24. Kinetic analysis showed that FoRham1 has the highest catalytic efficiency for the substrate α-l-rhamnose-(1→4)-d-glucuronic acid. The crystal structures of ligand-free and α-l-rhamnose-(1→4)-d-glucuronic acid –bound FoRham1 were determined, and the active site was identified on the anterior side of the β-propeller. The three-dimensional structure of the active site and mutagenesis analysis revealed the detailed catalytic mechanism of FoRham1. Our findings offer a new enzymatic tool for the further analysis of the GA carbohydrate structure and for elucidating its physiological functions in plants. Based on these results, we renamed glycoside hydrolase family 145 as a new polysaccharide lyase family 42, in which FoRham1 is included.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Miyu Kichijo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Akiho Maruta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Makoto Nakaya
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, Osaka, Japan
- Department of Nutrition, Otemae College of Nutrition and Confectionery, Osaka, Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Tatsuji Sakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- For correspondence: Tatsuji Sakamoto
| |
Collapse
|
27
|
Role and Evolution of the Extracellular Matrix in the Acquisition of Complex Multicellularity in Eukaryotes: A Macroalgal Perspective. Genes (Basel) 2021; 12:genes12071059. [PMID: 34356075 PMCID: PMC8307928 DOI: 10.3390/genes12071059] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Multicellular eukaryotes are characterized by an expanded extracellular matrix (ECM) with a diversified composition. The ECM is involved in determining tissue texture, screening cells from the outside medium, development, and innate immunity, all of which are essential features in the biology of multicellular eukaryotes. This review addresses the origin and evolution of the ECM, with a focus on multicellular marine algae. We show that in these lineages the expansion of extracellular matrix played a major role in the acquisition of complex multicellularity through its capacity to connect, position, shield, and defend the cells. Multiple innovations were necessary during these evolutionary processes, leading to striking convergences in the structures and functions of the ECMs of algae, animals, and plants.
Collapse
|
28
|
Xu F, Dong F, Sun XH, Cao HY, Fu HH, Li CY, Zhang XY, McMinn A, Zhang YZ, Wang P, Chen XL. Mechanistic Insights into Substrate Recognition and Catalysis of a New Ulvan Lyase of Polysaccharide Lyase Family 24. Appl Environ Microbiol 2021; 87:e0041221. [PMID: 33771786 PMCID: PMC8174760 DOI: 10.1128/aem.00412-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
Ulvan is an important marine polysaccharide. Bacterial ulvan lyases play important roles in ulvan degradation and marine carbon cycling. Until now, only a small number of ulvan lyases have been characterized. Here, a new ulvan lyase, Uly1, belonging to polysaccharide lyase family 24 (PL24) from the marine bacterium Catenovulum maritimum, is characterized. The optimal temperature and pH for Uly1 to degrade ulvan are 40°C and pH 9.0, respectively. Uly1 degrades ulvan polysaccharides in the endolytic manner, mainly producing ΔRha3S, consisting of an unsaturated 4-deoxy-l-threo-hex-4-enopyranosiduronic acid and a 3-O-sulfated α-l-rhamnose. The structure of Uly1 was resolved at a 2.10-Å resolution. Uly1 adopts a seven-bladed β-propeller architecture. Structural and site-directed mutagenesis analyses indicate that four highly conserved residues, H128, H149, Y223, and R239, are essential for catalysis. H128 functions as both the catalytic acid and base, H149 and R239 function as the neutralizers, and Y223 plays a supporting role in catalysis. Structural comparison and sequence alignment suggest that Uly1 and many other PL24 enzymes may directly bind the substrate near the catalytic residues for catalysis, different from the PL24 ulvan lyase LOR_107, which adopts a two-stage substrate binding process. This study provides new insights into ulvan lyases and ulvan degradation. IMPORTANCE Ulvan is a major cell wall component of green algae of the genus Ulva. Many marine heterotrophic bacteria can produce extracellular ulvan lyases to degrade ulvan for a carbon nutrient. In addition, ulvan has a range of physiological bioactivities based on its specific chemical structure. Ulvan lyase thus plays an important role in marine carbon cycling and has great potential in biotechnological applications. However, only a small number of ulvan lyases have been characterized over the past 10 years. Here, based on biochemical and structural analyses, a new ulvan lyase of polysaccharide lyase family 24 is characterized, and its substrate recognition and catalytic mechanisms are revealed. Moreover, a new substrate binding process adopted by PL24 ulvan lyases is proposed. This study offers a better understanding of bacterial ulvan lyases and is helpful for studying the application potentials of ulvan lyases.
Collapse
Affiliation(s)
- Fei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fang Dong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiao-Hui Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Marine Biotechnology Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
29
|
Xie XT, Cheong KL. Recent advances in marine algae oligosaccharides: structure, analysis, and potential prebiotic activities. Crit Rev Food Sci Nutr 2021; 62:7703-7717. [PMID: 33939558 DOI: 10.1080/10408398.2021.1916736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Marine algae contain abundant polysaccharides that support a range of health-promoting activities; however, the high molecular weight, high viscosity, and low solubility of marine algae polysaccharides (MAPs) limit their application in food, agriculture and medicine. Thus, as the degradation products of MAPs, marine algae oligosaccharides (MAOs) have drawn increasing attention. Most MAOs are non-digestible by digestive enzyme in the human gastrointestinal tract, but are fermented by bacteria in the gut and converted into short-chain fatty acids (SCFAs). MAOs can selectively enhance the activities of some populations of beneficial bacteria and stimulate a series of prebiotic effects, such as anti-oxidant, anti-diabetic, anti-tumour. However, the exact structures of MAOs and their prebiotic activities are, to a large extent, unexplored. This review summarizes recent advances in the sources, categories, and structure analysis methods of MAOs, emphasizing their effects on gut microbiota and its metabolite SCFAs as well as the resulting range of probiotic activities.
Collapse
Affiliation(s)
- Xu-Ting Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| |
Collapse
|
30
|
Wang D, Wang J, Zeng R, Wu J, Michael SV, Qu W. The degradation activities for three seaweed polysaccharides of Shewanella sp. WPAGA9 isolated from deep-sea sediments. J Basic Microbiol 2021; 61:406-418. [PMID: 33729617 DOI: 10.1002/jobm.202000728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 03/01/2021] [Indexed: 11/06/2022]
Abstract
Seaweed oligosaccharides possess great bioactivities. However, different microbial strains are required to degrade multiple polysaccharides due to their limited biodegradability, thereby increasing the cost and complexity of production. Shewanella sp. WPAGA9 was isolated from deep-sea sediments in this study. According to the genomic and biochemical analyses, the extracellular fermentation broth of WPAGA9 had versatile degradation abilities for three typical seaweed polysaccharides including agar, carrageenan, and alginate. The maximum enzyme activities of the extracellular fermentation broth of WPAGA9 were 71.63, 76.4, and 735.13 U/ml for the degradation of agar, alginate, and carrageenan, respectively. Moreover, multiple seaweed oligosaccharides can be produced by the extracellular fermentation broth of WPAGA9 under similar optimum conditions. Therefore, WPAGA9 can simultaneously degrade three types of seaweed polysaccharides under similar conditions, thereby greatly reducing the production cost of seaweed oligosaccharides. This finding indicates that Shewanella sp. WPAGA9 is an ideal biochemical tool for producing multiple active seaweed oligosaccharides at low costs and is also an important participant in the carbon cycle process of the deep-sea environment.
Collapse
Affiliation(s)
- Dingquan Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Runying Zeng
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, China
| | - Jie Wu
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, China
| | - Shija V Michael
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
31
|
Stack TMM, Gerlt JA. Discovery of novel pathways for carbohydrate metabolism. Curr Opin Chem Biol 2020; 61:63-70. [PMID: 33197748 DOI: 10.1016/j.cbpa.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023]
Abstract
Closing the gap between the increasing availability of complete genome sequences and the discovery of novel enzymes in novel metabolic pathways is a significant challenge. Here, we review recent examples of assignment of in vitro enzymatic activities and in vivo metabolic functions to uncharacterized proteins, with a focus on enzymes and metabolic pathways involved in the catabolism and biosynthesis of monosaccharides and polysaccharides. The most effective approaches are based on analyses of sequence-function space in protein families that provide clues for the predictions of the functions of the uncharacterized enzymes. As summarized in this Opinion, this approach allows the discovery of the catabolism of new molecules, new pathways for common molecules, and new enzymatic chemistries.
Collapse
Affiliation(s)
- Tyler M M Stack
- Carl. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States
| | - John A Gerlt
- Carl. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States; Departments of Biochemistry and Chemistry, University of Illinois, Urbana, IL 61801, United States.
| |
Collapse
|
32
|
Characterization of Low Molecular Weight Sulfate Ulva Polysaccharide and its Protective Effect against IBD in Mice. Mar Drugs 2020; 18:md18100499. [PMID: 33003577 PMCID: PMC7601132 DOI: 10.3390/md18100499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) has been gradually considered a public health challenge worldwide. Sulfated polysaccharides, extracted from seaweed, have been shown to have an anti-inflammatory effect on the disease. In this study, LMW-ulvan, a unique sulfate Ulva polysaccharide with low molecular weight, was prepared using the enzymatic method. The structural characterization of LMW-ulvan and its protective effect on colitis induced by dextran sulfate sodium (DSS) were studied. The results showed that LMW-ulvan with molecular weight of 2.56 kDa consists of 57.23% rhamnose (Rha), 28.76% xylose (Xyl), 7.42% glucuronic acid (GlcA), and 1.77% glucose (Glc). Its backbone contains (1→3,4)-linked Rha, (1→4)-linked Xyl, and (1→4)-linked GlcA with small amounts of (1→4)-linked Rha residues; sulfate substitution was at C-3 of Rha. LMW-ulvan was found to reduce DSS-induced disease activity index, colon shortening, and colonic tissue damage, which were associated with decreased oxidative stresses and inflammation, thus improving the expression of tight junction proteins. These results indicate that LMW-ulvan is able to improve colitis and may be a promising application for IBD.
Collapse
|
33
|
Ulvan lyase assisted structural characterization of ulvan from Ulva pertusa and its antiviral activity against vesicular stomatitis virus. Int J Biol Macromol 2020; 157:75-82. [PMID: 32344076 DOI: 10.1016/j.ijbiomac.2020.04.187] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/30/2023]
Abstract
Marine green algae are valuable sources of diverse health-promoting bioactive components. Ulvan is suitable for biological applications due to its unique structure and numerous bioactivities. Here, the complex structure of ulvan from Ulva pertusa was analyzed using specific ulvan lyase degradation, MS, and NMR detection. Its structure mainly consists of →4)-β-d-GlcA-(1 → 4)-α-l-Rha3S-(1 → and →4)-β-d-Xyl-(1 → 4)-α-l-Rha3S-(1 → repeating units. Small amounts of →4)-α-l-IdoA-(1 → 4)-α-l-Rha3S-(1 → unit also exist. In addition, a minor number of branches, a single GlcA, and a long branch containing GlcA-Glc were linked to Rha3S. The antiviral activity of the ulvan and its degraded fragments were further investigated. Ulvan (1068.2 kDa) and ulvan-F1 (38.5 kDa) with relatively high molecular weight showed potency of inhibiting the infection and replication of vesicular stomatitis virus (VSV) at 100 μg/mL, the inhibition rate of VSV replication was 40.75% and 40.13%, respectively. These results indicated that ulvan has potential as a functional agent.
Collapse
|
34
|
Li Q, Hu F, Zhu B, Ni F, Yao Z. Insights into ulvan lyase: review of source, biochemical characteristics, structure and catalytic mechanism. Crit Rev Biotechnol 2020; 40:432-441. [PMID: 32050804 DOI: 10.1080/07388551.2020.1723486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ulvan, a kind of polyanionic heteropolysaccharide consisting of 3-sulfated rhamnose, uronic acids (iduronic acid and glucuronic acid) and xylose, has been widely applied in food and cosmetic industries. In addition, ulvan can be converted into fermentable monosaccharides through the cascade system of carbohydrate-active enzymes. Ulvan lyases can degrade ulvan into ulvan oligosaccharides, which is the first step in the fully degradation of ulvan. Various ulvan lyases have been cloned and characterized from marine bacteria and grouped into five polysaccharide lyase (PL) families, namely: PL24, PL25, PL28, PL37 and PL40 families. The elucidation of the biochemical characterization, action pattern and catalytic mechanism of ulvan lyase would definitely enhance our understanding of the deep utilization of marine bioresource and marine carbon cycling. In this review, we summarized the recent progresses about the source and biochemical characteristics of ulvan lyase. Additionally, the structural characteristics and catalytic mechanisms have been introduced in detail. This comprehensive information should be helpful regarding the application of ulvan lyases.
Collapse
Affiliation(s)
- Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Fu Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Fang Ni
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
35
|
Qin HM, Gao D, Zhu M, Li C, Zhu Z, Wang H, Liu W, Tanokura M, Lu F. Biochemical characterization and structural analysis of ulvan lyase from marine Alteromonas sp. reveals the basis for its salt tolerance. Int J Biol Macromol 2019; 147:1309-1317. [PMID: 31751708 DOI: 10.1016/j.ijbiomac.2019.10.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023]
Abstract
Marine macroalgae have gained considerable attention as renewable biomass sources. Ulvan is a water-soluble anionic polysaccharide, and its depolymerization into fermentable monosaccharides has great potential for the production of bioethanol or high-value food additives. Ulvan lyase from Alteromonas sp. (AsPL) utilizes a β-elimination mechanism to cleave the glycosidic bond between rhamnose 3-sulfate and glucuronic acid, forming an unsaturated uronic acid at the non-reducing end. AsPL was active in the temperature range of 30-50 °C and pH values ranging from 7.5 to 9.5. Furthermore, AsPL was found to be halophilic, showing high activity and stability in the presence of up to 2.5 M NaCl. The apparent Km and kcat values of AsPL are 3.19 ± 0.37 mg mL-1 and 4.19 ± 0.21 s-1, respectively. Crystal structure analysis revealed that AsPL adopts a β-propeller fold with four anti-parallel β-strands in each of the seven propeller blades. The acid residues at the protein surface and two Ca2+ coordination sites contribute to its salt tolerance. The research on ulvan lyase has potential commercial value in the utilization of algal resources for biofuel production to relieve the environmental burden of petrochemicals.
Collapse
Affiliation(s)
- Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Dengke Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Menglu Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Masaru Tanokura
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China; Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
36
|
Chi Y, Li H, Wang P, Du C, Ye H, Zuo S, Guan H, Wang P. Structural characterization of ulvan extracted from Ulva clathrata assisted by an ulvan lyase. Carbohydr Polym 2019; 229:115497. [PMID: 31826447 DOI: 10.1016/j.carbpol.2019.115497] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
Rhamnan-rich sulfated polysaccharides extracted from green algae (ulvan) constitute potentially useful natural materials for drug development. However, the characterization of their complex structures poses a challenge for their application. In this study, the structure of ulvan extracted from Ulva clathrata was analyzed with the assistance of an ulvan lyase belonging to the PL25 family. According to mass spectrometry and nuclear magnetic resonance analysis of the degraded oligosaccharides, the backbone of such a polysaccharide mainly consisted of →4)-β-d-GlcA-(1→4)-α-l-Rha3S-(1→ and →4)-β-d-Xyl-(1→4)-α-l-Rha3S-(1→ disaccharide repeating units, and the ratio is approximately 4:1. In addition, about 4% of the xylose moieties bear sulfate groups. Minor amounts of branches containing hexose and unsaturated glucuronic acid were found during the sequence analysis of hexa- to octasaccharides. These results indicated the presence of a long branch in the ulvan. The clarification of the detailed structure provides a foundation for ulvan modification and its structure-activity relationship studies.
Collapse
Affiliation(s)
- Yongzhou Chi
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China.
| | - Huining Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Pei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Han Ye
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Siqi Zuo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Huashi Guan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China.
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
37
|
Gao J, Du C, Chi Y, Zuo S, Ye H, Wang P. Cloning, Expression, and Characterization of a New PL25 Family Ulvan Lyase from Marine Bacterium Alteromonas sp. A321. Mar Drugs 2019; 17:E568. [PMID: 31597240 PMCID: PMC6836179 DOI: 10.3390/md17100568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Ulvan lyases can degrade ulvan to oligosaccharides with potent biological activity. A new ulvan lyase gene, ALT3695, was identified in Alteromonas sp. A321. Soluble expression of ALT3695 was achieved in Escherichia coli BL21 (DE3). The 1314-bp gene encoded a protein with 437 amino acid residues. The amino acid sequence of ALT3695 exhibited low sequence identity with polysaccharide lyase family 25 (PL25) ulvan lyases from Pseudoalteromonas sp. PLSV (64.14% identity), Alteromonas sp. LOR (62.68% identity), and Nonlabens ulvanivorans PLR (57.37% identity). Recombinant ALT3695 was purified and the apparent molecular weight was about 53 kDa, which is different from that of other polysaccharide-degrading enzymes identified in Alteromonas sp. A321. ALT3695 exhibited maximal activity in 50 mM Tris-HCl buffer at pH 8.0 and 50 °C. ALT3695 was relatively thermostable, as 90% activity was observed after incubation at 40 °C for 3 h. The Km and Vmax values of ALT3695 towards ulvan were 0.43 mg·mL-1 and 0.11 μmol·min-1·mL-1, respectively. ESI-MS analysis showed that enzymatic products were mainly disaccharides and tetrasaccharides. This study reports a new PL25 family ulvan lyase, ALT3695, with properties that suggest its great potential for the preparation of ulvan oligosaccharides.
Collapse
Affiliation(s)
- Jian Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yongzhou Chi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Siqi Zuo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Han Ye
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
38
|
Terrapon N, Lombard V, Drula É, Lapébie P, Al-Masaudi S, Gilbert HJ, Henrissat B. PULDB: the expanded database of Polysaccharide Utilization Loci. Nucleic Acids Res 2019; 46:D677-D683. [PMID: 29088389 PMCID: PMC5753385 DOI: 10.1093/nar/gkx1022] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
Abstract
The Polysaccharide Utilization Loci (PUL) database was launched in 2015 to present PUL predictions in ∼70 Bacteroidetes species isolated from the human gastrointestinal tract, as well as PULs derived from the experimental data reported in the literature. In 2018 PULDB offers access to 820 genomes, sampled from various environments and covering a much wider taxonomical range. A Krona dynamic chart was set up to facilitate browsing through taxonomy. Literature surveys now allows the presentation of the most recent (i) PUL repertoires deduced from RNAseq large-scale experiments, (ii) PULs that have been subjected to in-depth biochemical analysis and (iii) new Carbohydrate-Active enzyme (CAZyme) families that contributed to the refinement of PUL predictions. To improve PUL visualization and genome browsing, the previous annotation of genes encoding CAZymes, regulators, integrases and SusCD has now been expanded to include functionally relevant protein families whose genes are significantly found in the vicinity of PULs: sulfatases, proteases, ROK repressors, epimerases and ATP-Binding Cassette and Major Facilitator Superfamily transporters. To cope with cases where susCD may be absent due to incomplete assemblies/split PULs, we present ‘CAZyme cluster’ predictions. Finally, a PUL alignment tool, operating on the tagged families instead of amino-acid sequences, was integrated to retrieve PULs similar to a query of interest. The updated PULDB website is accessible at www.cazy.org/PULDB_new/
Collapse
Affiliation(s)
- Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Élodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Saad Al-Masaudi
- Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Reisky L, Préchoux A, Zühlke MK, Bäumgen M, Robb CS, Gerlach N, Roret T, Stanetty C, Larocque R, Michel G, Song T, Markert S, Unfried F, Mihovilovic MD, Trautwein-Schult A, Becher D, Schweder T, Bornscheuer UT, Hehemann JH. A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat Chem Biol 2019; 15:803-812. [PMID: 31285597 DOI: 10.1038/s41589-019-0311-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
Marine seaweeds increasingly grow into extensive algal blooms, which are detrimental to coastal ecosystems, tourism and aquaculture. However, algal biomass is also emerging as a sustainable raw material for the bioeconomy. The potential exploitation of algae is hindered by our limited knowledge of the microbial pathways-and hence the distinct biochemical functions of the enzymes involved-that convert algal polysaccharides into oligo- and monosaccharides. Understanding these processes would be essential, however, for applications such as the fermentation of algal biomass into bioethanol or other value-added compounds. Here, we describe the metabolic pathway that enables the marine flavobacterium Formosa agariphila to degrade ulvan, the main cell wall polysaccharide of bloom-forming Ulva species. The pathway involves 12 biochemically characterized carbohydrate-active enzymes, including two polysaccharide lyases, three sulfatases and seven glycoside hydrolases that sequentially break down ulvan into fermentable monosaccharides. This way, the enzymes turn a previously unexploited renewable into a valuable and ecologically sustainable bioresource.
Collapse
Affiliation(s)
- Lukas Reisky
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Aurélie Préchoux
- Sorbonne Université, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Marie-Katherin Zühlke
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Marcus Bäumgen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Craig S Robb
- Max Planck-Institute for Marine Microbiology, Bremen, Germany.,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany
| | - Nadine Gerlach
- Max Planck-Institute for Marine Microbiology, Bremen, Germany.,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany
| | - Thomas Roret
- Sorbonne Université, CNRS, FR 2424, Station Biologique de Roscoff, Roscoff, France
| | | | - Robert Larocque
- Sorbonne Université, CNRS, FR 2424, Station Biologique de Roscoff, Roscoff, France
| | - Gurvan Michel
- Sorbonne Université, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Tao Song
- Max Planck-Institute for Marine Microbiology, Bremen, Germany.,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany
| | - Stephanie Markert
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Frank Unfried
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | | | | | - Dörte Becher
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany. .,Institute of Marine Biotechnology, Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany.
| | - Jan-Hendrik Hehemann
- Max Planck-Institute for Marine Microbiology, Bremen, Germany. .,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany.
| |
Collapse
|
40
|
Koch H, Freese HM, Hahnke RL, Simon M, Wietz M. Adaptations of Alteromonas sp. 76-1 to Polysaccharide Degradation: A CAZyme Plasmid for Ulvan Degradation and Two Alginolytic Systems. Front Microbiol 2019; 10:504. [PMID: 30936857 PMCID: PMC6431674 DOI: 10.3389/fmicb.2019.00504] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
Studying the physiology and genomics of cultured hydrolytic bacteria is a valuable approach to decipher the biogeochemical cycling of marine polysaccharides, major nutrients derived from phytoplankton and macroalgae. We herein describe the profound potential of Alteromonas sp. 76-1, isolated from alginate-enriched seawater at the Patagonian continental shelf, to degrade the algal polysaccharides alginate and ulvan. Phylogenetic analyses indicated that strain 76-1 might represent a novel species, distinguished from its closest relative (Alteromonas naphthalenivorans) by adaptations to their contrasting habitats (productive open ocean vs. coastal sediments). Ecological distinction of 76-1 was particularly manifested in the abundance of carbohydrate-active enzymes (CAZymes), consistent with its isolation from alginate-enriched seawater and elevated abundance of a related OTU in the original microcosm. Strain 76-1 encodes multiple alginate lyases from families PL6, PL7, PL17, and PL18 largely contained in two polysaccharide utilization loci (PUL), which may facilitate the utilization of different alginate structures in nature. Notably, ulvan degradation relates to a 126 Kb plasmid dedicated to polysaccharide utilization, encoding several PL24 and PL25 ulvan lyases and monomer-processing genes. This extensive and versatile CAZyme repertoire allowed substantial growth on polysaccharides, showing comparable doubling times with alginate (2 h) and ulvan (3 h) in relation to glucose (3 h). The finding of homologous ulvanolytic systems in distantly related Alteromonas spp. suggests CAZyme plasmids as effective vehicles for PUL transfer that mediate niche gain. Overall, the demonstrated CAZyme repertoire substantiates the role of Alteromonas in marine polysaccharide degradation and how PUL exchange influences the ecophysiology of this ubiquitous marine taxon.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heike M. Freese
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Richard L. Hahnke
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
41
|
Muhamad II, Zulkifli N, Selvakumaran SA, Lazim NAM. Bioactive Algal-Derived Polysaccharides: Multi-Functionalization, Therapeutic Potential and Biomedical Applications. Curr Pharm Des 2019; 25:1147-1162. [PMID: 31258069 DOI: 10.2174/1381612825666190618152133] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND In recent decades, there has been an increased interest in the utilization of polysaccharides showing biological activity for various novel applications owing to their biocompatibility, biodegradability, non-toxicity, and some specific therapeutic activities. Increasing studies have started in the past few years to develop algal polysaccharides-based biomaterials for various applications. METHODS Saccharide mapping or enzymatic profiling plays a role in quality control of polysaccharides. Whereby, in vitro and in vivo tests as well as toxicity level discriminating polysaccharides biological activities. Extraction and purification methods are performed in obtaining algal derived polysaccharides followed by chromatographic profiles of their active compounds, structural features, physicochemical properties, and reported biological activities. RESULTS Marine algae are capable of synthesizing Glycosaminoglycans (GAGs) and non-GAGs or GAG mimetics such as sulfated glycans. The cell walls of algae are rich in sulfated polysaccharides, including alginate, carrageenan, ulvan and fucoidan. These biopolymers are widely used algal-derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. They constitute biochemical compounds that have multi-functionalization, therapeutic potential and immunomodulatory abilities, making them promising bioactive products and biomaterials with a wide range of biomedical applications. CONCLUSION Algal-derived polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential that may create new opportunities. They could be maximally exploited to serve as therapeutic tools such as immunoregulatory agents or drug delivery vehicles. Hence, novel strategies could be applied to tailor multi-functionalization of the polysaccharides from algal species with vast biomedical application potentials.
Collapse
Affiliation(s)
- Ida Idayu Muhamad
- School of Chemical and Energy, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
- School of Bioscience and Medical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Nabilah Zulkifli
- School of Bioscience and Medical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Suguna A/P Selvakumaran
- Department of Biotechnology, School of Science and Engineering, Manipal University, Nilai, Negeri Sembilan, Malaysia
| | - Nurul Asmak Md Lazim
- School of Chemical and Energy, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
42
|
Ndeh D, Gilbert HJ. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev 2018; 42:146-164. [PMID: 29325042 DOI: 10.1093/femsre/fuy002] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/06/2018] [Indexed: 12/21/2022] Open
Abstract
The human gut microbiota (HGM) makes an important contribution to health and disease. It is a complex microbial community of trillions of microbes with a majority of its members represented within two phyla, the Bacteroidetes and Firmicutes, although it also contains species of Actinobacteria and Proteobacteria. Reflecting its importance, the HGM is sometimes referred to as an 'organ' as it performs functions analogous to systemic tissues within the human host. The major nutrients available to the HGM are host and dietary complex carbohydrates. To utilise these nutrient sources, the HGM has developed elaborate, variable and sophisticated systems for the sensing, capture and utilisation of these glycans. Understanding nutrient acquisition by the HGM can thus provide mechanistic insights into the dynamics of this ecosystem, and how it impacts human health. Dietary nutrient sources include a wide variety of simple and complex plant and animal-derived glycans most of which are not degraded by enzymes in the digestive tract of the host. Here we review how various adaptive mechanisms that operate across the major phyla of the HGM contribute to glycan utilisation, focusing on the most complex carbohydrates presented to this ecosystem.
Collapse
Affiliation(s)
- Didier Ndeh
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
43
|
Konasani VR, Jin C, Karlsson NG, Albers E. A novel ulvan lyase family with broad-spectrum activity from the ulvan utilisation loci of Formosa agariphila KMM 3901. Sci Rep 2018; 8:14713. [PMID: 30279430 PMCID: PMC6168547 DOI: 10.1038/s41598-018-32922-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/17/2018] [Indexed: 11/19/2022] Open
Abstract
Ulvan, which is one of the major structural polysaccharides of the cell walls of green macroalgae, is degraded by ulvan lyases via the β-elimination mechanism with the release of oligosaccharides that have unsaturated 4-deoxy-L-threo-hex-4-enopyranosiduronic acid (∆) at the non-reducing end. These ulvan lyases belong to the PL24 or PL25 or PL28 family in the CAZy database. In this study, we identify and biochemically characterise a periplasmic novel broad-spectrum ulvan lyase from Formosa agariphila KMM 3901. The lyase was overexpressed in Escherichia coli, and the purified recombinant enzyme depolymerised ulvan in an endolytic manner with a Km of 0.77 mg/ml, and displayed optimum activity at 40 °C and pH 8. This lyase also degraded heparan sulphate and chondroitin sulphate. Detailed analyses of the end-products of the enzymatic degradation of ulvan using 1H- and 13C-NMR and LC-MS revealed an unsaturated disaccharide (∆Rha3S) and a tetrasaccharide (∆Rha3S-Xyl-Rha) as the principal end-products. In contrast to the previously described ulvan lyases, this novel lyase is mostly composed of α-helices that form an (α/α)6 incomplete toroid domain and displays a remarkably broad-spectrum activity. This novel lyase is the first member of a new family of ulvan lyases.
Collapse
Affiliation(s)
- Venkat Rao Konasani
- Industrial Biotechnology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Eva Albers
- Industrial Biotechnology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
44
|
Balabanova LA, Bakunina IY, Slepchenko LV, Kirichuk NN, Khudyakova YV, Son OM, Pivkin MV, Rasskazov VA. Polysaccharide-Degrading Activity in Marine and Terrestrial Strains of Mycelial Fungi. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Balabanova L, Slepchenko L, Son O, Tekutyeva L. Biotechnology Potential of Marine Fungi Degrading Plant and Algae Polymeric Substrates. Front Microbiol 2018; 9:1527. [PMID: 30050513 PMCID: PMC6052901 DOI: 10.3389/fmicb.2018.01527] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungi possess the metabolic capacity to degrade environment organic matter, much of which is the plant and algae material enriched with the cell wall carbohydrates and polyphenol complexes that frequently can be assimilated by only marine fungi. As the most renewable energy feedstock on the Earth, the plant or algae polymeric substrates induce an expression of microbial extracellular enzymes that catalyze their cleaving up to the component sugars. However, the question of what the marine fungi contributes to the plant and algae material biotransformation processes has yet to be highlighted sufficiently. In this review, we summarized the potential of marine fungi alternatively to terrestrial fungi to produce the biotechnologically valuable extracellular enzymes in response to the plant and macroalgae polymeric substrates as sources of carbon for their bioconversion used for industries and bioremediation.
Collapse
Affiliation(s)
- Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Lubov Slepchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Oksana Son
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Liudmila Tekutyeva
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
46
|
Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901 T. Appl Microbiol Biotechnol 2018; 102:6987-6996. [PMID: 29948117 DOI: 10.1007/s00253-018-9142-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
Carbohydrates are the product of carbon dioxide fixation by algae in the ocean. Their polysaccharides are depolymerized by marine bacteria, with a vast array of carbohydrate-active enzymes. These enzymes are important tools to establish biotechnological processes based on algal biomass. Green tides, which cover coastal areas with huge amounts of algae from the genus Ulva, represent a globally rising problem, but also an opportunity because their biomass could be used in biorefinery processes. One major component of their cell walls is the anionic polysaccharide ulvan for which the enzymatic depolymerization remains largely unknown. Ulvan lyases catalyze the initial depolymerization step of this polysaccharide, but only a few of these enzymes have been described. Here, we report the cloning, overexpression, purification, and detailed biochemical characterization of the endolytic ulvan lyase from Formosa agariphila KMM 3901T which is a member of the polysaccharide lyase family PL28. The identified biochemical parameters of the ulvan lyase reflect adaptation to the temperate ocean where the bacterium was isolated from a macroalgal surface. The NaCl concentration has a high influence on the turnover number of the enzyme and the affinity to ulvan. Divalent cations were shown to be essential for enzyme activity with Ca2+ likely being the native cofactor of the ulvan lyase. This study contributes to the understanding of ulvan lyases, which will be useful for future biorefinery applications of the abundant marine polysaccharide ulvan.
Collapse
|
47
|
Ulaganathan T, Banin E, Helbert W, Cygler M. Structural and functional characterization of PL28 family ulvan lyase NLR48 from Nonlabens ulvanivorans. J Biol Chem 2018; 293:11564-11573. [PMID: 29875159 DOI: 10.1074/jbc.ra118.003659] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/27/2018] [Indexed: 12/20/2022] Open
Abstract
Ulvan is a complex sulfated polysaccharide present in the cell wall of green algae of the genus Ulva (Chlorophyta). The first ulvan-degrading polysaccharide lyases were identified several years ago, and more were discovered through genome sequencing of marine bacteria. Ulvan lyases are now grouped in three polysaccharide lyase (PL) families in the CAZy database, PL24, PL25, and PL28. The recently determined structures of the representative lyases from families PL24 and PL25 show that they adopt a seven-bladed β-propeller fold and utilize the His/Tyr catalytic mechanism. No structural information is yet available for PL28 ulvan lyases. NLR48 from Nonlabens ulvanivorans belongs to PL28 together with its close paralog, NLR42. Biochemical studies of NLR42 have revealed that it can cleave ulvan next to both uronic acid epimers. We report the crystal structure of ulvan lyase NLR48 at 1.9-Å resolution. It has a β-jelly roll fold with an extended, deep, and positively charged substrate-binding cleft. Putative active-site residues were identified from the sequence conservation pattern, and their role was confirmed by site-directed mutagenesis. The structure of an inactive K162M mutant with a tetrasaccharide substrate showed the substrate occupying the "-" subsites. Comparison with lyases from other PL families with β-jelly roll folds supported assignment of the active site and explained its ability to degrade ulvan next to either epimer of uronic acid. NLR48 contains the His/Tyr catalytic machinery with Lys162 and Tyr281 playing the catalytic base/acid roles.
Collapse
Affiliation(s)
| | - Ehud Banin
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - William Helbert
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), CNRS and Grenoble Alpes Université, BP53, 38000 Grenoble Cedex 9, France
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada.
| |
Collapse
|
48
|
Ulaganathan T, Helbert W, Kopel M, Banin E, Cygler M. Structure-function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism. J Biol Chem 2018; 293:4026-4036. [PMID: 29382716 DOI: 10.1074/jbc.ra117.001642] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/17/2018] [Indexed: 11/06/2022] Open
Abstract
Ulvan is a major cell wall component of green algae of the genus Ulva, and some marine bacteria encode enzymes that can degrade this polysaccharide. The first ulvan-degrading lyases have been recently characterized, and several putative ulvan lyases have been recombinantly expressed, confirmed as ulvan lyases, and partially characterized. Two families of ulvan-degrading lyases, PL24 and PL25, have recently been established. The PL24 lyase LOR_107 from the bacterial Alteromonadales sp. strain LOR degrades ulvan endolytically, cleaving the bond at the C4 of a glucuronic acid. However, the mechanism and LOR_107 structural features involved are unknown. We present here the crystal structure of LOR_107, representing the first PL24 family structure. We found that LOR_107 adopts a seven-bladed β-propeller fold with a deep canyon on one side of the protein. Comparative sequence analysis revealed a cluster of conserved residues within this canyon, and site-directed mutagenesis disclosed several residues essential for catalysis. We also found that LOR_107 uses the His/Tyr catalytic mechanism, common to several PL families. We captured a tetrasaccharide substrate in the structures of two inactive mutants, which indicated a two-step binding event, with the first substrate interaction near the top of the canyon coordinated by Arg320, followed by sliding of the substrate into the canyon toward the active-site residues. Surprisingly, the LOR_107 structure was very similar to that of the PL25 family PLSV_3936, despite only ∼14% sequence identity between the two enzymes. On the basis of our structural and mutational analyses, we propose a catalytic mechanism for LOR_107 that differs from the typical His/Tyr mechanism.
Collapse
Affiliation(s)
| | - William Helbert
- the Université Grenoble Alpes and CNRS, CERMAV UPR 5301 601, rue de la chimie, 38000 Grenoble (France) and Institut de Chimie Moléculaire de Grenoble, ICMG, FR-CNRS 2607, Grenoble, France
| | - Moran Kopel
- the Institute for Nanotechnology and Advanced Materials, and Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel, and
| | - Ehud Banin
- the Institute for Nanotechnology and Advanced Materials, and Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel, and
| | - Miroslaw Cygler
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada, .,the Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
49
|
Qin HM, Xu P, Guo Q, Cheng X, Gao D, Sun D, Zhu Z, Lu F. Biochemical characterization of a novel ulvan lyase from Pseudoalteromonas sp. strain PLSV. RSC Adv 2018; 8:2610-2615. [PMID: 35541464 PMCID: PMC9077492 DOI: 10.1039/c7ra12294b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/29/2017] [Indexed: 11/21/2022] Open
Abstract
Ulvans, complex polysaccharides found in the ulvales (green seaweed) cell wall, contain predominantly 3-sulfated rhamnose (Rha3S) linked to either d-glucuronic acid, l-iduronic acid or d-xylose. The ulvan lyase endolytically cleaves the glycoside bond between Rha3S and uronic acid via a β-elimination mechanism. Ulvan lyase has been identified as belonging to the polysaccharide lyase family PL24 or PL25 in the carbohydrate active enzymes database, in which fewer members have been characterized. We present the cloning and characterization of a novel ulvan lyase from Pseudoalteromonas sp. strain PLSV (PsPL). The enzymes were heterologously expressed in Escherichia coli BL21 (DE3) and purified as the His-tag fusion protein using affinity chromatography, ion-exchange chromatography and size-exclusion chromatography. The degradation products were determined by thin-layer chromatography (TLC), liquid chromatography-mass spectrometry (LC-MS) to be mainly disaccharides and tetrasaccharides. Ulvan lyase provides an example of degrading ulvales into oligosaccharides. Arg265, His152 and Tyr249 were considered to serve as catalytic residues based on PsPL structural model analysis.
Collapse
Affiliation(s)
- Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education China +86-22-60602298 +86-22-60601958
- Tianjin Key Laboratory of Industrial Microbiology China
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Panpan Xu
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Qianqian Guo
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Xiaotao Cheng
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Dengke Gao
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Dengyue Sun
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Zhangliang Zhu
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education China +86-22-60602298 +86-22-60601958
- Tianjin Key Laboratory of Industrial Microbiology China
- College of Biotechnology, Tianjin University of Science and Technology China
- National Engineering Laboratory for Industrial Enzymes Tianjin 300457 People's Republic of China
| |
Collapse
|
50
|
He C, Muramatsu H, Kato SI, Ohnishi K. Characterization of an Alteromonas long-type ulvan lyase involved in the degradation of ulvan extracted from Ulva ohnoi. Biosci Biotechnol Biochem 2017; 81:2145-2151. [PMID: 28958183 DOI: 10.1080/09168451.2017.1379352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ulvan is a sulfated polysaccharide found in the cell wall of the green algae Ulva. We first isolated several ulvan-utilizing Alteromonas sp. from the feces of small marine animals. The strain with the highest ulvan-degrading activity, KUL17, was analyzed further. We identified a 55-kDa ulvan-degrading protein secreted by this strain and cloned the gene encoding for it. The deduced amino acid sequence indicated that the enzyme belongs to polysaccharide lyase family 24 and thus the protein was named ulvan lyase. The predicted molecular mass of this enzyme is 110 kDa, which is different from that of the identified protein. By deletion analysis, the catalytic domain was proven to be located on the N-terminal half of the protein. KUL17 contains two ulvan lyases, one long and one short, but the secreted and cleaved long ulvan lyase was demonstrated to be the major enzyme for ulvan degradation.
Collapse
Affiliation(s)
- Chuan He
- a The United Graduate School of Agricultural Sciences , Ehime University , Ehime , Japan
| | - Hisashi Muramatsu
- b Faculty of Agriculture and Marine Sciences , Kochi University , Kochi , Japan
| | - Shin-Ichiro Kato
- c Research Institute of Molecular Genetics , Kochi University , Kochi , Japan
| | - Kouhei Ohnishi
- c Research Institute of Molecular Genetics , Kochi University , Kochi , Japan
| |
Collapse
|