1
|
Aarya, Sebastian A, P K, Sen Mojumdar S. Probing the Self-Aggregation of l-Tryptophan into Spherical Microstructures and Their Selective Interactions with Bilirubin. ACS APPLIED BIO MATERIALS 2025. [PMID: 39841508 DOI: 10.1021/acsabm.4c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The aggregation of proteins, peptides and amino acids has been a keen subject of interest owing to their implications in metabolic disorders. In this work, we investigated the self-aggregation of the unmodified aromatic amino acid l-tryptophan (Trp) into unusual spherical microstructures. Using fluorescence spectroscopy and field emission scanning electron microscopy (FE-SEM), we detail the time-dependent transformation of monomeric tryptophan into spherical aggregates with distinct fluorescence characteristics (λex = 345 nm, λem = 430 nm) compared to the monomer. Notably, the fluorescence intensity of these aggregates is selectively quenched in the presence of bilirubin, demonstrating exceptional sensitivity in the picomolar concentration range. The developed assay proved applicable and reliable for real sample analysis. Thermodynamic parameters derived from temperature-dependent fluorescence intensity measurements indicated that the aggregation process is spontaneous and driven by noncovalent interactions. Further evidence of bilirubin's strong association with the aggregates was obtained through competitive interaction studies with human serum albumin (HSA). This work offers insights into the aggregation behavior of single aromatic amino acids and their potential applications in detecting critical analytes.
Collapse
Affiliation(s)
- Aarya
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Anna Sebastian
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Kavya P
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Supratik Sen Mojumdar
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| |
Collapse
|
2
|
Devi R, Singh G, Singh A, Singh J, Kaur N, Singh N. Silver and Copper Nanoparticle-Loaded Self-Assembled Pseudo-Peptide Thiourea-Based Organic-Inorganic Hybrid Gel with Antibacterial and Superhydrophobic Properties for Antifouling Surfaces. ACS APPLIED BIO MATERIALS 2024; 7:4162-4174. [PMID: 38769764 DOI: 10.1021/acsabm.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The escalating threat of antimicrobial resistance has become a global health crisis. Therefore, there is a rising momentum in developing biomaterials with self-sanitizing capabilities and inherent antibacterial properties. Despite their promising antimicrobial properties, metal nanoparticles (MNPs) have several disadvantages, including increased toxicity as the particle size decreases, leading to oxidative stress and DNA damage that need consideration. One solution is surface functionalization with biocompatible organic ligands, which can improve nanoparticle dispersibility, reduce aggregation, and enable targeted delivery to microbial cells. The existing research predominantly concentrates on the advancement of peptide-based hydrogels for coating materials to prevent bacterial infection, with limited exploration of developing surface coatings using organogels. Herein, we have synthesized organogel-based coatings doped with MNPs that can offer superior hydrophobicity, oleophobicity, and high stability that are not easily achievable with hydrogels. The self-assembled gels displayed distinct morphologies, as revealed by scanning electron microscopy and atomic force microscopy. The cross-linked matrix helps in the controlled and sustained release of MNPs at the site of bacterial infection. The synthesized self-assembled gel@MNPs exhibited excellent antibacterial properties against harmful bacteria such as Escherichia coli and Staphylococcus aureus and reduced bacterial viability up to 95% within 4 h. Cytotoxicity testing against metazoan cells demonstrated that the gels doped with MNPs were nontoxic (IC50 > 100 μM) to mammalian cells. Furthermore, in this study, we coated the organogel@MNPs on cotton fabric and tested it against Gram +ve and Gram -ve bacteria. Additionally, the developed cotton fabric exhibited superhydrophobic properties and developed a barrier that limits the interaction between bacteria and the surface, making it difficult for bacteria to adhere and colonize, which holds potential as a valuable resource for self-cleaning coatings.
Collapse
Affiliation(s)
- Renu Devi
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Anoop Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Jagdish Singh
- Bioprocess Technology Laboratory, Department of Biotechnology, Mata Gujri College Fatehgarh Sahib, Fatehgarh Sahib, Punjab 140406, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University Chandigarh, Chandigarh 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
3
|
Jaiswal A, Patel M, Naseer A, Kumari S, Revi N, Rengan A, Jain A, Nazir A, Gour N, Verma S. Amyloid Mimicking Assemblies Formed by Glutamine, Glutamic Acid, and Aspartic Acid. ACS Chem Neurosci 2024; 15:2253-2264. [PMID: 38768265 DOI: 10.1021/acschemneuro.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
The aggregation of amino acids into amyloid-like structures is a critical phenomenon for understanding the pathophysiology of various diseases, including inborn errors of metabolism (IEMs) associated with amino acid imbalances. Previous studies have primarily focused on self-assembly of aromatic amino acids, leading to a limited understanding of nonaromatic, polar amino acids in this context. To bridge this gap, our study investigates the self-assembly and aggregation behavior of specific nonaromatic charged and uncharged polar amino acids l-glutamine (Gln), l-aspartic acid (Asp), and l-glutamic acid (Glu), which have not been reported widely in the context of amyloid aggregation. Upon aging these amino acids under controlled conditions, we observed the formation of uniform, distinct aggregates, with Gln forming fibrillar gel-like structures and Glu exhibiting fibrous globular morphologies. Computational simulations validated these findings, identifying Gln as the most potent in forming stable aggregates, followed by Glu and Asp. These simulations elucidated the driving forces behind the distinct morphologies and stabilities of the aggregates. Thioflavin T assays were employed to confirm the amyloid-like nature of these aggregates, suggesting their potential cytotoxic impact. To assess toxicity, we performed in vitro studies on neural cell lines and in vivo experiments in Caenorhabditis elegans (C. elegans), which demonstrated measurable cytotoxic effects, corroborated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and heat shock survival assays. Importantly, this study fills a critical gap in our understanding on the role of nonaromatic amino acids in amyloidogenesis and its implications for IEMs. Our findings provide a foundation for future investigations into the mechanisms of diseases associated with amino acid accumulation and offer potential avenues for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ankita Jaiswal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Monisha Patel
- School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Anam Naseer
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Simran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India
| | - Neeraja Revi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502285, India
| | - Aravind Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502285, India
| | - Alok Jain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nidhi Gour
- School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
4
|
Gupta MN, Uversky VN. Reexamining the diverse functions of arginine in biochemistry. Biochem Biophys Res Commun 2024; 705:149731. [PMID: 38432110 DOI: 10.1016/j.bbrc.2024.149731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Arginine in a free-state and as part of peptides and proteins shows distinct tendency to form clusters. In free-form, it has been found useful in cryoprotection, as a drug excipient for both solid and liquid formulations, as an aggregation suppressor, and an eluent in protein chromatography. In many cases, the mechanisms by which arginine acts in all these applications is either debatable or at least continues to attract interest. It is quite possible that arginine clusters may be involved in many such applications. Furthermore, it is possible that such clusters are likely to behave as intrinsically disordered polypeptides. These considerations may help in understanding the roles of arginine in diverse applications and may even lead to better strategies for using arginine in different situations.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya Str., 7, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
5
|
Patel M, Jaiswal A, Naseer A, Tripathi A, Joshi A, Minocha T, Kautu A, Gupta S, Joshi KB, Pandey MK, Kumar R, Dubey KD, Nazir A, Verma S, Gour N. Amyloidogenic Propensity of Metabolites in the Uric Acid Pathway and Urea Cycle Critically Impacts the Etiology of Metabolic Disorders. ACS Chem Neurosci 2024; 15:916-931. [PMID: 38369717 DOI: 10.1021/acschemneuro.3c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Novel insights into the etiology of metabolic disorders have recently been uncovered through the study of metabolite amyloids. In particular, inborn errors of metabolism (IEMs), including gout, Lesch-Nyhan syndrome (LNS), xanthinuria, citrullinemia, and hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, are attributed to the dysfunction of the urea cycle and uric acid pathway. In this study, we endeavored to understand and mechanistically characterize the aggregative property exhibited by the principal metabolites of the urea cycle and uric acid pathway, specifically hypoxanthine, xanthine, citrulline, and ornithine. Employing scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), we studied the aggregation profiles of the metabolites. Insights obtained through molecular dynamics (MD) simulation underscore the vital roles of π-π stacking and hydrogen bonding interactions in the self-assembly process, and thioflavin T (ThT) assays further corroborate the amyloid nature of these metabolites. The in vitro MTT assay revealed the cytotoxic trait of these assemblies, a finding that was substantiated by in vivo assays employing the Caenorhabditis elegans (C. elegans) model, which revealed that the toxic effects were more pronounced and dose-specific in the case of metabolites that had aged via longer preincubation. We hence report a compelling phenomenon wherein these metabolites not only aggregate but transform into a soft, ordered assembly over time, eventually crystallizing upon extended incubation, leading to pathological implications. Our study suggests that the amyloidogenic nature of the involved metabolites could be a common etiological link in IEMs, potentially providing a unified perspective to study their pathophysiology, thus offering exciting insights into the development of targeted interventions for these metabolic disorders.
Collapse
Affiliation(s)
- Monisha Patel
- School of Science, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Ankita Jaiswal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anam Naseer
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ankita Tripathi
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Aayushi Joshi
- Department of Chemistry, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382009, India
| | - Tarun Minocha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Aanand Kautu
- Department of Chemistry, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Shilpi Gupta
- School of Science, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Manoj Kumar Pandey
- Department of Chemistry, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382009, India
| | - Randhir Kumar
- Department of Biosciences, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sandeep Verma
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Nidhi Gour
- School of Science, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| |
Collapse
|
6
|
Nandi S, Sarkar N. Interactions between Lipid Vesicle Membranes and Single Amino Acid Fibrils: Probable Origin of Specific Neurological Disorders. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1971-1987. [PMID: 38240221 DOI: 10.1021/acs.langmuir.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Amyloid fibrils are known to be responsible for several neurological disorders, like Alzheimer's disease (AD), Parkinson's disease (PD), etc. For decades, mostly proteins and peptide-based amyloid fibrils have been focused on, and the topic has acknowledged the rise, development, understanding of, and controversy, as well. However, the single amino acid based amyloid fibrils, responsible for several disorders, such as phenylketonuria, tyrosenimia type II, hypermethioninemia, etc., have gotten scientific attention lately. To understand the molecular level pathogenesis of such disorders originated due to the accumulation of single amino acid-based amyloid fibrils, interaction of these fibrils with phospholipid vesicle membranes is found to be an excellent cell-free in vitro setup. Based on such an in vitro setup, these fibrils show a generic mechanism of membrane insertion driven by electrostatic and hydrophobic effects inside the membrane that reduces the integral rigidity of the membrane. Alteration of such fundamental properties of the membrane, therefore, might be referred to as one of the prime pathological factors for the development of these neurological disorders. Hence, such interactions must be investigated in cellular and intracellular compartments to design suitable therapeutic modulators against fibrils.
Collapse
Affiliation(s)
- Sourav Nandi
- Yale School of Medicine, Yale University, New Haven, Connecticut 06510, United States
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
7
|
Wang Y, Rencus-Lazar S, Zhou H, Yin Y, Jiang X, Cai K, Gazit E, Ji W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS NANO 2024; 18:1257-1288. [PMID: 38157317 DOI: 10.1021/acsnano.3c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
8
|
Argueta-Gonzalez H, Swenson CS, Skowron KJ, Heemstra JM. Elucidating Sequence-Assembly Relationships for Bilingual PNA Biopolymers. ACS OMEGA 2023; 8:37442-37450. [PMID: 37841192 PMCID: PMC10569013 DOI: 10.1021/acsomega.3c05528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Nucleic acids and proteins possess encoded "languages" that can be used for information storage or to direct function. However, each biopolymer is limited to encoding its respective "language." Using a peptide nucleic acid (PNA) scaffold, nucleobase and amino acid residues can be installed on a singular backbone, enabling a single biopolymer to encode both languages. Our laboratory previously reported the development of a "bilingual" PNA biopolymer that incorporates a sequence-specific nucleic acid code interspersed with hydrophobic (alanine) and hydrophilic (lysine) amino acid residues at defined positions to produce amphiphilic character. We observed the amphiphilic amino acid residues directing the biopolymer to undergo self-assembly into micelle-like structures, while the nucleic acid recognition was harnessed for disassembly. Herein, we report a series of bilingual PNA sequences having amino acid residues with varying lengths, functional group charges, hydrophobicities, and spacings to elucidate the effect of these parameters on micelle assembly and nucleic acid recognition. Negative charges in the hydrophilic block or increased bulkiness of the hydrophobic side chains led to assembly into similarly sized micelles; however, the negative charge additionally led to increased critical micelle concentration. Upon PNA sequence truncation to decrease the spacing between side chains, the biopolymers remained capable of self-assembling but formed smaller structures. Characterization of disassembly revealed that each variant retained sequence recognition capabilities and stimuli-responsive disassembly. Together, these data show that the amino acid and nucleic acid sequences of amphiphilic bilingual biopolymers can be customized to finely tune the assembly and disassembly properties, which has implications for applications such as the encapsulation and delivery of cargo for therapeutics.
Collapse
Affiliation(s)
| | - Colin S. Swenson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kornelia J. Skowron
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Jennifer M. Heemstra
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Levkovich SA, Gazit E, Laor Bar-Yosef D. The Metabolostasis Network and the Cellular Depository of Aggregation-Prone Metabolites. Angew Chem Int Ed Engl 2023; 62:e202217622. [PMID: 37266966 DOI: 10.1002/anie.202217622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/03/2023]
Abstract
The vital role of metabolites across all branches of life and their involvement in various disorders have been investigated for decades. Many metabolites are poorly soluble in water or in physiological buffers and tend to form supramolecular aggregates. On the other hand, in the cell, they should be preserved in a pool and be readily available for the execution of biochemical functions. We thus propose that a quality-control network, termed "metabolostasis", has evolved to regulate the storage and retrieval of aggregation-prone metabolites. Such a system should control metabolite concentration, subcellular localization, supramolecular arrangement, and interaction in dynamic environments, thus enabling normal cellular physiology, healthy development, and preventing disease onset. The paradigm-shifting concept of metabolostasis calls for a reevaluation of the traditional view of metabolite storage and dynamics in physiology and pathology and proposes unprecedented directions for therapeutic targets under conditions where metabolostasis is imbalanced.
Collapse
Affiliation(s)
- Shon A Levkovich
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, 6997801, Israel
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dana Laor Bar-Yosef
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
10
|
Naskar S, Gour N. Realization of Amyloid-like Aggregation as a Common Cause for Pathogenesis in Diseases. Life (Basel) 2023; 13:1523. [PMID: 37511898 PMCID: PMC10381831 DOI: 10.3390/life13071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloids were conventionally referred to as extracellular and intracellular accumulation of Aβ42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer's disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson's disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides. However, since the last decade, it has been discovered that other metabolites, like single amino acids, nucleobases, lipids, glucose derivatives, etc., have a propensity to form amyloid-like toxic assemblies. Several studies suggest direct implications of these metabolite assemblies in the patho-physiology of various inborn errors of metabolisms like phenylketonuria, tyrosinemia, cystinuria, and Gaucher's disease, to name a few. In this review, we present a comprehensive literature overview that suggests amyloid-like structure formation as a common phenomenon for disease progression and pathogenesis in multiple syndromes. The review is devoted to providing readers with a broad knowledge of the structure, mode of formation, propagation, and transmission of different extracellular amyloids and their implications in the pathogenesis of diseases. We strongly believe a review on this topic is urgently required to create awareness about the understanding of the fundamental molecular mechanism behind the origin of diseases from an amyloid perspective and possibly look for a common therapeutic strategy for the treatment of these maladies by designing generic amyloid inhibitors.
Collapse
Affiliation(s)
- Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| |
Collapse
|
11
|
Stagi L, Farris R, de Villiers Engelbrecht L, Mocci F, Maria Carbonaro C, Innocenzi P. At the root of l-lysine emission in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121717. [PMID: 35944345 DOI: 10.1016/j.saa.2022.121717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
l-lysine is an essential amino acid whose peculiar optical properties in aqueous solutions are still in search of a comprehensive explanation. In crystalline form l-lysine does not emit, but when in an aqueous solution, as the concentration increases, emits in the blue. The origin of such fluorescence is not yet clear. In the present article, we have combined quantum mechanics and classical simulations with experimental techniques to demonstrate that optical absorption and excitation-dependent fluorescence are directly correlated with the formation of aggregates, their dimensions and intermolecular interactions. The nature of the aggregates has been studied as a function of the pH and concentration of the amino acid. At low concentrations, fluorescence intensity increases linearly with molarity, while at high concentrations a new condition is established in which emitting and non-emitting molecular species coexist. The l-lysine aggregation and the formation of intermolecular H-bonding are at the ground of the emission in the blue range.
Collapse
Affiliation(s)
- Luigi Stagi
- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari. Via Vienna 2. 07100 Sassari. Italy
| | - Riccardo Farris
- Department of Chemical and Geological Sciences, University of Cagliari. Sp 8, km 0.700, 09042 Monserrato, CA, Italy
| | - Leon de Villiers Engelbrecht
- Department of Chemical and Geological Sciences, University of Cagliari. Sp 8, km 0.700, 09042 Monserrato, CA, Italy
| | - Francesca Mocci
- Department of Chemical and Geological Sciences, University of Cagliari. Sp 8, km 0.700, 09042 Monserrato, CA, Italy
| | - Carlo Maria Carbonaro
- Department of Physics, University of Cagliari. Sp 8, km 0.700, 09042 Monserrato, CA, Italy
| | - Plinio Innocenzi
- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| |
Collapse
|
12
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
13
|
Wang Y, Yin Y, Rencus-Lazar S, Cai K, Gazit E, Ji W. Minimalistic Metabolite‐Based Building Blocks for Supramolecular Functional Materials. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuehui Wang
- Chongqing University College of Bioengineering CHINA
| | - Yuanyuan Yin
- Stomatological Hospital of Chongqing Medical University: Chongqing Medical University Stomatological Hospital Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education CHINA
| | - Sigal Rencus-Lazar
- Tel Aviv University The Shmunis School of Molecular Cell Biology and Biotechnology ISRAEL
| | - Kaiyong Cai
- Chongqing University College of Bioengineering CHINA
| | - Ehud Gazit
- Tel Aviv University The Shmunis School of Molecular Cell Biology and Biotechnology ISRAEL
| | - Wei Ji
- Chongqing University College of Bioengineering Shazheng Street 174 400044 Chongqing CHINA
| |
Collapse
|
14
|
Kesharwani K, Singh R, Kumar N, Singh N, Gupta P, Joshi KB. Mercury-instructed assembly (MiA): architecting clathrin triskelion-inspired highly functional C3-symmetric triskelion nanotorus functional structures into microtorus structures. NANOSCALE 2022; 14:10200-10210. [PMID: 35796347 DOI: 10.1039/d2nr01524b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To detect heavy metal toxicity using self-assembled nanostructures, a clathrin triskelion-inspired highly functional C3-symmetric trimerized biotinylated di-tryptophan peptide was used. This triskelion peptide is known to self-assemble into nanotorus-like structures and can therefore act as a nanocage for various analytes. In this work, in addition to spectroscopy, force and electron microscopy were successfully used to detect the effect of toxic metal ions such as zinc, cadmium, and mercury by exploiting the change in the nanotorus morphology. Different concentrations of mercury led to the expansion of nanotorus structures into microtori. Therefore, we provide a unique application of heavy metal toxicity by utilizing "material nanoarchitectonics" to architect nanotorus structures into higher-order microtorus structures, as instructed by mercury. Such a strategy can make heavy metal sensing easier for materials scientists and open new avenues for biomedical/environmental science applications.
Collapse
Affiliation(s)
- Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr.HarisinghGourVishwavidyalaya (A Central University), Sagar, M.P., 470003, India.
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr.HarisinghGourVishwavidyalaya (A Central University), Sagar, M.P., 470003, India.
| | - Nikunj Kumar
- Computational Chemistry Center, Department of Chemistry, Indian Institute of Technology, Roorkee-247667.
| | - Narendra Singh
- Department of Chemistry, Indian Institute of Technology of Kanpur, U.P. 208016, India
| | - Puneet Gupta
- Computational Chemistry Center, Department of Chemistry, Indian Institute of Technology, Roorkee-247667.
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr.HarisinghGourVishwavidyalaya (A Central University), Sagar, M.P., 470003, India.
| |
Collapse
|
15
|
Alsalhi MS, Royall PG, Chan KLA. Mechanistic study of the solubilization effect of basic amino acids on a poorly water-soluble drug. RSC Adv 2022; 12:19040-19053. [PMID: 35865577 PMCID: PMC9240925 DOI: 10.1039/d2ra02870k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Amino acids have shown promising abilities to form complexes with poorly water-soluble drugs and improve their physicochemical properties for a better dissolution profile through molecular interactions. Salt formation via ionization between acidic drugs and basic amino acids is known as the major contributor to solubility enhancement. However, the mechanism of solubility enhancement due to non-ionic interactions, which is less pH-dependent, remains unclear. The aim of this study is to evaluate non-ionic interactions between a model acidic drug, indomethacin (IND), and basic amino acids, arginine, lysine and histidine, in water. At low concentrations of amino acids, IND-arginine and IND-lysine complexes have shown a linear relationship (AL-type phase solubility diagram) between IND solubility and amino acid concentration, producing ∼1 : 1 stoichiometry of drug-amino acid complexes as expected due to the strong electrostatic interactions. However, IND-histidine complexes have shown a nonlinear relationship with lower improvement in IND solubility due to the weaker electrostatic interactions when compared to arginine and lysine. Interestingly, the results have also shown that at high arginine concentrations, the linearity was lost between IND solubility and amino acid concentration with a negative diversion from linearity, following the type-AN phase solubility. This is indicative that the electrostatic interaction is being interrupted by non-electrostatic interactions, as seen with histidine. The IND-lysine complex, on the other hand, showed a complex curvature phase solubility diagram (type BS) as lysine self-assembles and polymerizes at higher concentrations. The freeze-dried drug-amino acid solids were further characterized using thermal analysis and infrared spectroscopy, with results showing the involvement of weak non-ionic interactions. This study shows that the solubility improvement of an insoluble drug in the presence of basic amino acids was due to both non-ionic and ionic interactions.
Collapse
Affiliation(s)
| | - Paul G Royall
- Institute of Pharmaceutical Science, King's College London SE1 9NH UK
| | | |
Collapse
|
16
|
Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites 2022; 12:metabo12060527. [PMID: 35736461 PMCID: PMC9231173 DOI: 10.3390/metabo12060527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
In inborn errors of metabolism, such as amino acid breakdown disorders, loss of function mutations in metabolic enzymes within the catabolism pathway lead to an accumulation of the catabolic intermediate that is the substrate of the mutated enzyme. In patients of such disorders, dietarily restricting the amino acid(s) to prevent the formation of these catabolic intermediates has a therapeutic or even entirely preventative effect. This demonstrates that the pathology is due to a toxic accumulation of enzyme substrates rather than the loss of downstream products. Here, we provide an overview of amino acid metabolic disorders from the perspective of the ‘toxic metabolites’ themselves, including their mechanism of toxicity and whether they are involved in the pathology of other disease contexts as well. In the research literature, there is often evidence that such metabolites play a contributing role in multiple other nonhereditary (and more common) disease conditions, and these studies can provide important mechanistic insights into understanding the metabolite-induced pathology of the inborn disorder. Furthermore, therapeutic strategies developed for the inborn disorder may be applicable to these nonhereditary disease conditions, as they involve the same toxic metabolite. We provide an in-depth illustration of this cross-informing concept in two metabolic disorders, methylmalonic acidemia and hyperammonemia, where the pathological metabolites methylmalonic acid and ammonia are implicated in other disease contexts, such as aging, neurodegeneration, and cancer, and thus there are opportunities to apply mechanistic or therapeutic insights from one disease context towards the other. Additionally, we expand our scope to other metabolic disorders, such as homocystinuria and nonketotic hyperglycinemia, to propose how these concepts can be applied broadly across different inborn errors of metabolism and various nonhereditary disease conditions.
Collapse
|
17
|
Kshtriya V, Koshti B, Mehmood T, Singh R, Joshi KB, Bandyopadhyay S, Boukhvalov DW, Reddy JP, Gour N. A new aggregation induced emission enhancement (AIEE) dye which self-assembles to panchromatic fluorescent flowers and has application in sensing dichromate ions. SOFT MATTER 2022; 18:3019-3030. [PMID: 35355041 DOI: 10.1039/d2sm00154c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report for the very first time the crystal structure and self-assembly of a new aggregation-induced emission enhancement (AIEE) dye 4-(5-methoxythiazolo[4,5-b]pyridin-2-yl)-N,N-dimethylaniline (TPA) and its application in sensing dichromate ions. TPA reveals cyan blue emission under UV and visible light. The self-assembly properties of TPA were studied extensively by scanning electron microscopy (SEM) which revealed the formation of beautiful flower-like morphologies. These structures revealed both green and red fluorescence under FITC and rhodamine filters respectively when observed through fluorescence microscopy connoting the panchromatic emission properties of TPA from blue to red. The interactions which cause self-assembled structure formation in TPA were also validated theoretically using density functional theory (DFT) calculations. Crystal and molecular structure analysis of TPA was carried out via single-crystal X-ray diffraction to visualize the intermolecular interactions occurring in the solid-state and to study the structure-photophysical property relationship in the aggregated state. The photophysical properties of TPA were also studied extensively by UV-visible and fluorescence spectroscopy and its quantum yield and fluorescence lifetime were calculated by time-correlated single-photon counting (TCSPC). Interestingly, TPA could efficiently sense dichromate (Cr2O72-) ions in an acidic medium and an interesting morphological transition from a fluorescent flower to non-fluorescent disassembled structures could also be observed. The limit of detection of TPA for Cr2O72- ions was found to be as low as 5.5 nM, suggesting its exceptional sensitivity. More importantly, TPA could selectively sense Cr2O72- ions in real water samples even in the presence of other metal ions routinely present in polluted water, hence making it practically useful for water quality monitoring.
Collapse
Affiliation(s)
- Vivekshinh Kshtriya
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India.
| | - Bharti Koshti
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India.
| | - Tahir Mehmood
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India.
| | - Ramesh Singh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sujoy Bandyopadhyay
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India.
| | - Danil W Boukhvalov
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, P. R. China
- Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg, Russia
| | - J Prakasha Reddy
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India.
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India.
| |
Collapse
|
18
|
Koshti B, Kshtriya V, Naskar S, Narode H, Gour N. Controlled aggregation properties of single amino acids modified with protecting groups. NEW J CHEM 2022. [DOI: 10.1039/d1nj05172e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The self-assembling properties of single amino acids modified with protecting groups under controlled conditions of temperature and concentration are illustrated.
Collapse
Affiliation(s)
- Bharti Koshti
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Vivekshinh Kshtriya
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Hanuman Narode
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| |
Collapse
|
19
|
Kshtriya V, Koshti B, Gangrade A, Haque A, Singh R, Joshi KB, Bhatia D, Gour N. Self-assembly of a benzothiazolone conjugate into panchromatic fluorescent fibres and their application in cellular imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj03269k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report self assembly of a benzothiazolone conjugate (CBT) into fluorescent panchromatic fibres and their application as a panchromatic dye in bioimaging.
Collapse
Affiliation(s)
- Vivekshinh Kshtriya
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Bharti Koshti
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Ankit Gangrade
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Ashadul Haque
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Ramesh Singh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| |
Collapse
|