1
|
Smolobochkin A, Gazizov A, Sidlyaruk N, Akylbekov N, Zhapparbergenov R, Burilov A. Cyclic Imines and Their Salts as Universal Precursors in the Synthesis of Nitrogen-Containing Alkaloids. Int J Mol Sci 2024; 26:288. [PMID: 39796143 PMCID: PMC11719575 DOI: 10.3390/ijms26010288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Alkaloids are predominantly nitrogen-containing heterocyclic compounds that are usually isolated from plants, and sometimes from insects or animals. Alkaloids are one of the most important types of natural products due to their diverse biological activities and potential applications in modern medicine. Cyclic imines were chosen as starting compounds for the synthesis of alkaloids due to their high synthetic potential. Thus, this review summarizes the achievements in the synthesis of various alkaloids from cyclic imines, paying special attention to stereoselective methods used for their preparation. Information on the biological activity of some alkaloids, their application and occurrence in natural objects is presented. Synthesis methods are classified based on the type of alkaloid obtained.
Collapse
Affiliation(s)
- Andrey Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (N.S.); (A.B.)
| | - Almir Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (N.S.); (A.B.)
| | - Nikita Sidlyaruk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (N.S.); (A.B.)
| | - Nurgali Akylbekov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan;
| | - Rakhmetulla Zhapparbergenov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan;
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (N.S.); (A.B.)
| |
Collapse
|
2
|
Li L, Xu N, He Y, Tang M, Yang B, Du J, Chen L, Mao X, Song B, Hua Z, Tang B, Lee SMY. Dehydroervatamine as a promising novel TREM2 agonist, attenuates neuroinflammation. Neurotherapeutics 2024:e00479. [PMID: 39609160 DOI: 10.1016/j.neurot.2024.e00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Microglia play a dual role in neuroinflammatory disorders that affect millions of people worldwide. These specialized cells are responsible for the critical clearance of debris and toxic proteins through endocytosis. However, activated microglia can secrete pro-inflammatory mediators, potentially exacerbating neuroinflammation and harming adjacent neurons. TREM2, a cell surface receptor expressed by microglia, is implicated in the modulation of neuroinflammatory responses. In this study, we investigated if and how Dehydroervatamine (DHE), a natural alkaloid, reduced the inflammatory phenotype of microglia and suppressed neuroinflammation. Our findings revealed that DHE was directly bound to and activated TREM2. Moreover, DHE effectively suppressed the production of pro-inflammatory cytokines, restored mitochondrial function, and inhibited NLRP3 inflammasome activation via activating the TREM2/DAP12 signaling pathway in LPS-stimulated BV2 microglial cells. Notably, silencing TREM2 abolished the suppression effect of DHE on the neuroinflammatory response, mitochondrial dysfunction, and NF-κB/NLRP3 pathways in vitro. Additionally, DHE pretreatment exhibited remarkable neuroprotective effects, as evidenced by increased neuronal viability and reduced apoptotic cell numbers in SH-SY5Y neuroblastoma cells co-cultured with LPS-stimulated BV2 microglia. Furthermore, in our zebrafish model, DHE pretreatment effectively alleviated behavioral impairments, reduced neutrophil aggregation, and suppressed neuroinflammation in the brain by regulating TREM2/NF-κB/NLRP3 pathways after intraventricular LPS injection. These findings provide novel insights into the potent protective effects of DHE as a promising novel TREM2 agonist against LPS-induced neuroinflammation, revealing its potential therapeutic role in the treatment of central nervous system diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yulin He
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Mingsui Tang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Binrui Yang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co, Ltd, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co, Ltd, Shanghai, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co, Ltd, Shanghai, China
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhou Hua
- Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao ln-Depth Cooperation Zone in Hengqin, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Benqin Tang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Ocean Resource, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
3
|
Xie S, Liang Y, Song Y, Li T, Jia J. Repurposing Anidulafungin for Alzheimer's Disease via Fragment-Based Drug Discovery. ACS Chem Neurosci 2024; 15:2995-3008. [PMID: 39096284 PMCID: PMC11342299 DOI: 10.1021/acschemneuro.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
The misfolding and aggregation of beta-amyloid (Aβ) peptides have been implicated as key pathogenic events in the early stages of Alzheimer's disease (AD). Inhibiting Aβ aggregation represents a potential disease-modifying therapeutic approach to AD treatment. Previous studies have identified various molecules that inhibit Aβ aggregation, some of which share common chemical substructures (fragments) that may be key to their inhibitory activity. Employing fragment-based drug discovery (FBDD) methods may facilitate the identification of these fragments, which can subsequently be used to screen new inhibitors and provide leads for further drug development. In this study, we used an in silico FBDD approach to identify 17 fragment clusters that are significantly enriched among Aβ aggregation inhibitors. These fragments were then used to screen anti-infective agents, a promising drug class for repurposing against amyloid aggregation. This screening process identified 16 anti-infective drugs, 5 of which were chosen for further investigation. Among the 5 candidates, anidulafungin, an antifungal compound, showed high efficacy in inhibiting Aβ aggregation in vitro. Kinetic analysis revealed that anidulafungin selectively blocks the primary nucleation step of Aβ aggregation, substantially delaying Aβ fibril formation. Cell viability assays demonstrated that anidulafungin can reduce the toxicity of oligomeric Aβ on BV2 microglia cells. Molecular docking simulations predicted that anidulafungin interacted with various Aβ species, including monomers, oligomers, and fibrils, potentially explaining its activity against Aβ aggregation and toxicity. This study suggests that anidulafungin is a potential drug to be repurposed for AD, and FBDD is a promising approach for discovering drugs to combat Aβ aggregation.
Collapse
Affiliation(s)
- Siqi Xie
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Yumei Liang
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Yang Song
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Tingting Li
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Jianping Jia
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
- Beijing
Key Laboratory of Geriatric Cognitive Disorders, Beijing 100053, P. R. China
- Clinical
Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing 100053, P. R. China
- Center
of Alzheimer’s Disease, Beijing Institute of Brain Disorders,
Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, P. R. China
- Key
Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, P. R. China
| |
Collapse
|
4
|
Yan XW, Du SY, Wang XT, Zhu KK, Fang L. New monoterpenoid indole alkaloids from the stems of Tabernaemontana bovina Lour (Apocynaceae). Nat Prod Res 2024; 38:2447-2452. [PMID: 36787196 DOI: 10.1080/14786419.2023.2180503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Two new monoterpenoid indole alkaloids, named taberibogines E and F (1 and 2), together with three known ones (3-5) were isolated from the stems of Tabernaemontana bovina Lour (Apocynaceae). Their structures including absolute configurations were elucidated from a combination of NMR and HRESIMS data and NMR calculations as well as DP4+ probability analyses. Compounds 1 and 2 exhibited inhibitory effects on LPS-induced nitric oxide (NO) production in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Xue-Wei Yan
- School of Biological Science and Technology, University of Jinan, Jinan, China
- Key Laboratory of Natural Pharmaceutical Chemistry, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Si-Yu Du
- School of Biological Science and Technology, University of Jinan, Jinan, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Tong Wang
- PingYi County Traditional Chinese Medicine, Linyi, China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan, China
- Key Laboratory of Natural Pharmaceutical Chemistry, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Zhang D, Zhang J, Ma Z, Wu Q, Liu M, Fan T, Ding L, Ren D, Wen A, Wang J. Luteoloside inhibits Aβ1-42 fibrillogenesis, disintegrates preformed fibrils, and alleviates amyloid-induced cytotoxicity. Biophys Chem 2024; 306:107171. [PMID: 38194817 DOI: 10.1016/j.bpc.2023.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Abnormal aggregation and fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aβ aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aβ1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-β-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aβ1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aβ1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aβ1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aβ, and promote further exploration of the therapeutic strategy against AD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qianwen Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Danjun Ren
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
6
|
Chen Y, Zhan C, Li X, Pan T, Yao Y, Tan Y, Wei G. Five similar anthocyanidin molecules display distinct disruptive effects and mechanisms of action on Aβ 1-42 protofibril: A molecular dynamic simulation study. Int J Biol Macromol 2024; 256:128467. [PMID: 38035959 DOI: 10.1016/j.ijbiomac.2023.128467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Alzheimer's disease (AD) is associated with the deposition of amyloid-β (Aβ) fibrillary aggregates. Disaggregation of Aβ fibrils is considered as one of the promising AD treatments. Recent experimental studies showed that anthocyanidins, one type of flavonoids abundant in fruits/vegetables, can disaggregate Aβ fibrillary aggregates. However, their relative disruptive capacities and underlying mechanisms are largely unknown. Herein, we investigated the detailed interactions between five most common anthocyanidins (cyanidin, aurantinidin, peonidin, delphinidin, and pelargonidin) and Aβ protofibril (an intermediate of Aβ fibrillization) by performing microsecond molecular dynamic simulations. We found that all five anthocyanidins can destroy F4-L34-V36 hydrophobic core and K28-A42 salt bridge, leading to Aβ protofibril destabilization. Aurantinidin exhibits the strongest damage to Aβ protofibril (with the most severe disruption on K28-A42 salt bridges), followed by cyanidin (with the most destructive effect on F4-L34-V36 core). Detailed analyses reveal that the protofibril-destruction capacities of anthocyanidins are subtly modulated by the interplay of anthocyanidin-protofibril hydrogen bonding, hydrophobic, aromatic stacking interactions, which are dictated by the number or location of hydroxyl/methyl groups of anthocyanidins. These findings provide important mechanistic insights into Aβ protofibril disaggregation by anthocyanidins, and suggest that aurantinidin/cyanidin may serve as promising starting-points for the development of new drug candidates against AD.
Collapse
Affiliation(s)
- Yujie Chen
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chendi Zhan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tong Pan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yifei Yao
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yuan Tan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
7
|
Li X, Li X, Chen L, Deng Y, Zheng Z, Ming Y. Tabersonine Induces the Apoptosis of Human Hepatocellular Carcinoma In vitro and In vivo. Anticancer Agents Med Chem 2024; 24:764-772. [PMID: 38465429 PMCID: PMC11327752 DOI: 10.2174/0118715206286612240303172230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Tabersonine, a natural indole alkaloid derived from Apocynaceae plants, exhibits antiinflammatory and acetylcholinesterase inhibitory activities, among other pharmacological effects. However, its anti-tumor properties and the underlying molecular mechanisms remain underexplored. OBJECTIVE The present study aims to investigate the anti-tumor effects of tabersonine and its mechanisms in inducing apoptosis in hepatocellular carcinoma. METHODS The inhibitory effects of tabersonine on the viability and proliferation of liver cancer cells were evaluated using MTT assay and colony formation assay. AO/EB, Hoechst, and Annexin V-FITC/ PI staining techniques were employed to observe cell damage and apoptosis. JC-1 staining was used to detect changes in mitochondrial membrane potential. Western blot analysis was conducted to study the anti-tumor mechanism of tabersonine on liver cancer cells. Additionally, a xenograft model using mice hepatoma HepG2 cells was established to assess the anti-tumor potency of tabersonine in vivo. RESULTS AND DISCUSSION Our findings revealed that tabersonine significantly inhibited cell viability and proliferation, inducing apoptosis in liver cancer cells. Treatment with tabersonine inhibited Akt phosphorylation, reduced mitochondrial membrane potential, promoted cytochrome c release from mitochondria to the cytoplasm, and increased the ratio of Bax to Bcl-2. These findings suggested that tabersonine induces apoptosis in liver cancer cells through the mitochondrial pathway. Furthermore, tabersonine treatment activated the death receptor pathway of apoptosis. In vivo studies demonstrated that tabersonine significantly inhibited xenograft tumor growth. CONCLUSION Our study is the first to demonstrate that tabersonine induces apoptosis in HepG2 cells through both mitochondrial and death receptor apoptotic pathways, suggesting its potential as a therapeutic agent candidate for hepatic cancer.
Collapse
MESH Headings
- Apoptosis/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Animals
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Cell Proliferation/drug effects
- Mice
- Indole Alkaloids/pharmacology
- Indole Alkaloids/chemistry
- Cell Survival/drug effects
- Drug Screening Assays, Antitumor
- Dose-Response Relationship, Drug
- Molecular Structure
- Structure-Activity Relationship
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Membrane Potential, Mitochondrial/drug effects
- Mice, Inbred BALB C
- Mice, Nude
- Hep G2 Cells
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Xuan Li
- Department of Bioengineering and Biotechnology, Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xudan Li
- Fujian Provincial Key Laboratory of new target drugs (Xiamen University), School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361021, China
| | - Lianghua Chen
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| | - Yuan Deng
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| | - Zhizhong Zheng
- College of Life and Health Sciences, Fuzhou Institute of Technology, Fuzhou, 350506, China
| | - Yanlin Ming
- Department of Bioengineering and Biotechnology, Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| |
Collapse
|
8
|
Shen H, Dou Y, Wang X, Wang X, Kong F, Wang S. Guluronic acid can inhibit copper(II) and amyloid - β peptide coordination and reduce copper-related reactive oxygen species formation associated with Alzheimer's disease. J Inorg Biochem 2023; 245:112252. [PMID: 37207465 DOI: 10.1016/j.jinorgbio.2023.112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
Copper-related reactive oxygen species (ROS) formation can lead to neuropathologic degradation associated with Alzheimer's disease (AD) according to amyloid cascade hypothesis. A complexing agent that can selectively chelate with copper ions and capture copper ions from the complex formed by copper ions and amyloid-β (Cu - Aβ complex) may be available in reducing ROS formation. Herein, we described applications of guluronic acid (GA), a natural oligosaccharide complexing agent obtained from enzymatic hydrolysis of brown algae, in reducing copper-related ROS formation. UV-vis absorption spectra demonstrated the coordination between GA and Cu(II). Ascorbic acid consumption and coumarin-3-carboxylic acid fluorescence assays confirmed the viability of GA in reducing ROS formation in solutions containing other metal ions and Aβ. Fluorescence kinetics, DPPH radical clearance and high resolution X - ray photoelectron spectroscopy results revealed the reductivity of GA. Human liver hepatocellular carcinoma (HepG2) cell viability demonstrated the biocompatibility of GA at concentrations lower than 320 μM. Cytotoxic results of human neuroblastoma (SH-SY5Y) cells verified that GA can inhibit copper-related ROS damage in neuronal cells. Our findings, combined with the advantages of marine drugs, make GA a promising candidate in reducing copper-related ROS formation associated with AD therapy.
Collapse
Affiliation(s)
- Hangyu Shen
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Yun Dou
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Xiaoying Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Xiaohui Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Shoujuan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
9
|
Chen Y, Lin W, Chen P, Ye B, Luo W, Wang X, Huang W, Wu G, Liang G. Tabersonine alleviates obesity-induced cardiomyopathy by binding to Transforming growth factor activated kinase 1 (TAK1) and inhibiting TAK1-mediated inflammation. Phytother Res 2023; 37:860-871. [PMID: 36420902 DOI: 10.1002/ptr.7666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Obesity-induced cardiomyopathy (OIC) is an increasingly serious global disease caused by obesity. Chronic inflammation greatly contributes to the pathogenesis of OIC. This study aimed to explore the role and mechanism of tabersonine (Tab), a natural alkaloid with antiinflammatory activity, in the treatment of OIC. High fat diet (HFD)-induced obese mice were administered with Tab. The results showed that Tab significantly inhibit inflammation, myocardial fibrosis, and hypertrophy to prevent heart dysfunction, without the alteration of body weight and hyperlipidemia, in HFD-induced obese mice. H9c2 cells and primary cardiomyocytes stimulated by palmitic acid (PA) were used to explore the molecular mechanism and target of Tab. We examined the effect of Tab on key proteins involved in HFD/PA-induced inflammatory signaling pathway and found that Tab significantly inhibits TAK1 phosphorylation in cardiomyocytes. We further detected the direct interaction between Tab and TAK1 at the cellular, animal, and molecular levels. We found that Tab directly binds to TAK1 to inhibit TAK1 phosphorylation, which then blocks TAK1-TAB2 interaction and then NF-κB pro-inflammatory pathway in cultured cardiomyocytes. Our results indicate that Tab is a potential agent for the treatment of OIC, and TAK1 is an effective therapeutic target for this disease.
Collapse
Affiliation(s)
- Yanghao Chen
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wante Lin
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bozhi Ye
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weijian Huang
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Gaojun Wu
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guang Liang
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
10
|
Tang Y, Zhang D, Chang Y, Zheng J. Atrial Natriuretic Peptide Associated with Cardiovascular Diseases Inhibits Amyloid-β Aggregation via Cross-Seeding. ACS Chem Neurosci 2023; 14:312-322. [PMID: 36577130 DOI: 10.1021/acschemneuro.2c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Both cardiovascular diseases (CVDs) and Alzheimer's disease (AD) share some common risk factors (e.g., age, obesity, oxidative stress, inflammation, hypertension) that contribute to their overlapping pathogenesis, indicating a "head-to-heart" pathological connection between CVDs and AD. To explore this potential connection at the protein level, we study the potential cross-seeding (heterotypic interactions) between CVD-associated atrial natriuretic peptide (ANP) and AD-associated β-amyloid (Aβ). Collective aggregation and cell assays demonstrate the cross-seeding of ANP with different Aβ species including monomers, oligomers, and fibrils with high binding affinity (KD = 1.234-1.797 μM) in a dose-dependent manner. Such ANP-induced cross-seeding also modifies the Aβ aggregation pathway, fibril morphology, and cell deposition pattern by inhibiting Aβ fibrillization from small aggregates, disassembling preformed Aβ fibrils, and alleviating Aβ-associated cytotoxicity. Finally, using transgenic C. elegans worms that express the human muscle-specific Aβ1-42, ANP can also effectively delay Aβ-induced worm paralysis, decrease Aβ plaques in worm brains, and reduce reactive oxygen species (ROS) production, confirming its in vivo inhibition ability to prevent neurodevelopmental toxicity in worms. This work discovers not only a new cross-seeding system between the two disease-related proteins but also a new finding that ANP possesses a new biological function as an Aβ inhibitor in the nonaggregated state.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
11
|
Highly efficient synthesis of indoline via palladium catalyzed C–H amination of C(sp2)–H bond using tert-butyl peroxybenzoate as an oxidant. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Sampaio I, Quatroni FD, Pincela Lins PM, Nascimento AS, Zucolotto V. Modulation of beta-amyloid aggregation using ascorbic acid. Biochimie 2022; 200:36-43. [PMID: 35588896 DOI: 10.1016/j.biochi.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/18/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Studies have shown that the level of ascorbic acid (AA) is reduced in the brain of Alzheimer's disease (AD) patients. However, its effect on amyloid-β 1-42 (Aβ42) aggregation has not yet been elucidated. Here we investigated for the first time the effect of AA on Aβ42 aggregation using fluorescence assay, circular dichroism, atomic force microscopy, isothermal titration calorimetry, ligand docking, and molecular dynamics. Our results showed that the fibril content decreases in the growth phase when the peptides are co-incubated with AA. AA molecules bind to Aβ42 peptides with high binding affinity and a binding site for AA between the β-strands of Aβ42 oligomers prevents the stack of adjacent strands. We demonstrate the inhibitory effect of AA on the aggregation of Aβ42 and its molecular interactions, which can contribute to the development of an accessible therapy for AD and also to the design of novel drugs for other amyloidogenic diseases.
Collapse
Affiliation(s)
- Isabella Sampaio
- GNano - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Felipe Domingues Quatroni
- GNano - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Paula Maria Pincela Lins
- GNano - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Alessandro S Nascimento
- Molecular Biotechnology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- GNano - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Wang Y, Xie Y, Wang A, Wang J, Wu X, Wu Y, Fu Y, Sun H. Insights into interactions between food polyphenols and proteins: an updated overview. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yang Xie
- Pharmaceutical Engineering Center Chongqing Medical and Pharmaceutical College Chongqing China
| | - Aidong Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Xiaoran Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yan Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| |
Collapse
|
14
|
Hao S, Yang Y, Han A, Chen J, Luo X, Fang G, Liu J, Wang S. Glycosides and Their Corresponding Small Molecules Inhibit Aggregation and Alleviate Cytotoxicity of Aβ40. ACS Chem Neurosci 2022; 13:766-775. [PMID: 35230090 DOI: 10.1021/acschemneuro.1c00729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are the class of naturally synthesized compounds in the secondary metabolism of plants, which are widely distributed in fruits and vegetables. Their potential health treatment strategies have attracted wide attention in the scientific community. The abnormal aggregation of Aβ to form mature fibrils is pathologically related to Alzheimer's disease (AD). Therefore, inhibiting Aβ40 fibrillogenesis was considered to be the major method for the intervention and therapy of AD. Glycosides, as a cluster of natural phenolic compounds, are widely distributed in Chinese herbs, fruits, and vegetables. The inhibitory effect of glycosides (phloridzin, salidroside, polydatin, geniposide, and gastrodin) and their corresponding small molecules (phloretin, 4-hydroxyphenyl ethanol, resveratrol, genipin, and 4-hydroxybenzyl alcohol) on Aβ40 aggregation and fibrils prolongation, disaggregation against mature fibrils, and the resulting cytotoxicity were studied by systematical biochemical, cell biology and molecular docking techniques, respectively. As a result, all inhibitors were observed against Aβ40 aggregation and fibrils prolongation and disaggregated mature Aβ40 fibrils in a dose-dependent manner. Besides, the cell validity experiments also showed that all inhibitors could effectively alleviate the cytotoxicity induced by Aβ40 aggregates, and the glycoside groups played important roles in this inhibiting process. Finally, molecular docking was performed to study the interactions between these inhibitors and Aβ40. Docking showed that all inhibitors were bound to the similar region of Aβ40, and glycoside group formed hydrogen bonds with the pivotal residues Lys16. These results indicated that the glycoside groups could increase the inhibitory effects and reduce cytotoxicity. Glycosides have tremendous potential to be developed as an innovative type of aggregation inhibitor to control and treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaoyu Luo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
15
|
Zhao S, Sirasani G, Andrade RB. Aspidosperma and Strychnos alkaloids: Chemistry and biology. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:1-143. [PMID: 34565505 DOI: 10.1016/bs.alkal.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Of Nature's nearly 3000 unique monoterpene indole alkaloids derived from tryptophan, those members belonging to the Aspidosperma and Strychnos families continue to impact the fields of natural products (i.e., isolation, structure determination, biosynthesis) and organic chemistry (i.e., chemical synthesis, methodology development) among others. This review covers the biological activity (Section 2), biosynthesis (Section 3), and synthesis of both classical and novel Aspidosperma (Section 4), Strychnos (Section 5), and selected bis-indole (Section 6) alkaloids. Technological advancements in genetic sequencing and bioinformatics have deepened our understanding of how Nature assembles these intriguing molecules. The proliferation of innovative synthetic strategies and tactics for the synthesis of the alkaloids covered in this review, which include contributions from over fifty research groups from around the world, are a testament to the creative power and technical skills of synthetic organic chemists. To be sure, Nature-the Supreme molecular architect and source of a dazzling array of irresistible chemical logic puzzles-continues to inspire scientists across multiple disciplines and will certainly continue to do so for the foreseeable future.
Collapse
Affiliation(s)
- Senzhi Zhao
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| | | | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
17
|
Hügel HM, de Silva NH, Siddiqui A, Blanch E, Lingham A. Natural spirocyclic alkaloids and polyphenols as multi target dementia leads. Bioorg Med Chem 2021; 43:116270. [PMID: 34153839 DOI: 10.1016/j.bmc.2021.116270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023]
Abstract
The U rhynchophylla, U tomentosa, Isatis indigotica Fortune, Voacanga Africana, herbal constituents, fungal extracts from Aspergillus duricaulis culture media, include spirooxindoles, polyphenols or bridged spirocyclic alkaloids. Their constituents exhibit specific and synergistic multiple neuroprotective properties including inhibiting of Aβ fibril induced cytotoxicity, NMDA receptor inhibition in mice models of Alzheimer's disease (AD). The pioneering research from Woodward to Waldmann has advanced the synthesis of spirocyclic alkaloids. Furthermore, the elucidation of the genetic analysis, biochemical pathways that links strictosidine to the alkaloids akuammicine, stemmadenine, tabersonine, catharanthine, will now enable the biotechnological generation, also stimulate synthesis of related bridged spirocyclic alkaloids for medicinal investigations. From the value of spirocyclic structures as multi target dementia leads, we hypothesise that simpler Lipinski-like natural/synthetic alkaloid analogues may likewise be discovered that provide neurocognitive enhancing activities against dementia and AD.
Collapse
Affiliation(s)
- Helmut M Hügel
- Applied Chemistry & Environmental Science, School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia.
| | - Nilamuni H de Silva
- Applied Chemistry & Environmental Science, School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Aimen Siddiqui
- Applied Chemistry & Environmental Science, School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Ewan Blanch
- Applied Chemistry & Environmental Science, School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Anthony Lingham
- Applied Chemistry & Environmental Science, School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| |
Collapse
|
18
|
Panda SS, Jhanji N. Natural Products as Potential Anti-Alzheimer Agents. Curr Med Chem 2021; 27:5887-5917. [PMID: 31215372 DOI: 10.2174/0929867326666190618113613] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/20/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Medicinal plants have curative properties due to the presence of various complex chemical substances of different composition, which are found as secondary metabolites in one or more parts of the plant. The diverse secondary metabolites play an important role in the prevention and cure of various diseases including neurodegenerative diseases like Alzheimer's disease. Naturally occurring compounds such as flavonoids, polyphenols, alkaloids, and glycosides found in various parts of the plant and/or marine sources may potentially protect neurodegeneration as well as improve memory and cognitive function. Many natural compounds show anti-Alzheimer activity through specific pharmacological mechanisms like targeting β-amyloid, Beta-secretase 1 and Acetylcholinesterase. In this review, we have compiled more than 130 natural products with a broad diversity in the class of compounds, which were isolated from different sources showing anti- Alzheimer properties.
Collapse
Affiliation(s)
- Siva S Panda
- Department of Chemistry & Physics, Augusta University, Augusta, Georgia 30912, United States
| | - Nancy Jhanji
- Department of Chemistry & Physics, Augusta University, Augusta, Georgia 30912, United States
| |
Collapse
|
19
|
Chen Y, Wei G, Zhao J, Nussinov R, Ma B. Computational Investigation of Gantenerumab and Crenezumab Recognition of Aβ Fibrils in Alzheimer's Disease Brain Tissue. ACS Chem Neurosci 2020; 11:3233-3244. [PMID: 32991803 PMCID: PMC8921974 DOI: 10.1021/acschemneuro.0c00364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most devastating neurodegenerative diseases without effective therapies. Immunotherapies using antibodies to lower assembled Aβ provide a promising approach and have been widely studied. Anti-amyloid antibodies are often selective to amyloid conformation, and the lack of amyloid-antibody structural information limits our understanding of these antibodies' conformation selection. Gantenerumab and crenezumab are two anti-Aβ antibodies that bind multiple forms of Aβ with different Aβ epitope preferences. Here, using molecular dynamic (MD) simulations, we study the binding of these two antibodies to the Aβ1-40 fibril, whose conformation is derived from an AD patient's brain tissue. We find that gantenerumab recognizes the Aβ1-11 monomer fragment only at slightly lower pH than the physiological environment where His6 of Aβ1-11 is protonated. Both gantenerumab and crenezumab bind with integrated Aβ fibril rather than binding to monomers within the fibril. Gantenerumab preferentially binds to the N-terminal region of the Aβ1-40 fibril, and the binding is driven by aromatic interactions. Crenezumab can recognize the N-terminal region, as well as the cross-section of the Aβ1-40 fibril, indicating its multiple binding modes in Aβ fibril recognition. These results demonstrate conformation-dependent interactions of antibody-amyloid recognition.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (MOE), Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, P. R. China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (MOE), Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, P. R. China
| | - Jun Zhao
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Sagnou M, Mavroidi B, Kaminari A, Boukos N, Pelecanou M. Novel Isatin Thiosemicarbazone Derivatives as Potent Inhibitors of β-Amyloid Peptide Aggregation and Toxicity. ACS Chem Neurosci 2020; 11:2266-2276. [PMID: 32598129 DOI: 10.1021/acschemneuro.0c00208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Inhibition of β-amyloid peptide (Αβ) aggregation in Alzheimer's disease (AD) is among the therapeutic approaches against AD which still attracts scientific research interest. In the search for compounds that interact with Aβ and disrupt its typical aggregation course toward oligomeric or polymeric toxic assemblies, small organic molecules of natural origin, combining low molecular weight (necessary blood-brain barrier penetration) and low toxicity (necessary for pharmacological application), are greatly sought after. Isatin (1H-indoline-2,3-dione), a natural endogenous indole, and many of its derivatives exhibit a wide spectrum of neuropharmacological and chemotherapeutic properties. The synthesis and biological evaluation of four new isatins as inhibitors of Aβ aggregation is presented herein. In these derivatives, the N-phenyl thiosemicarbazide moiety is joined at the 3-oxo position of isatin through Schiff base formation, and substitutions are present at the indole nitrogen and position 5 of the isatin core. Biophysical studies employing circular dichroism, thioflavin T fluorescence assay, and transmission electron microscopy reveal the potential of the isatin thiosemicarbazones (ITSCs) to alter the course of Αβ aggregation, with two of the derivatives exhibiting outstanding inhibition of the aggregation process, preventing completely the formation of amyloid fibrils. Furthermore, in in vitro studies in primary neuronal cell cultures, the ITSCs were found to inhibit the Aβ-induced neurotoxicity and reactive oxygen species production at concentrations as low as 1 μM. Taken all together, the novel ITSCs can be considered as privileged structures for further development as potential AD therapeutics.
Collapse
Affiliation(s)
- Marina Sagnou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Archontia Kaminari
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| |
Collapse
|
21
|
Stefanescu R, Stanciu GD, Luca A, Paduraru L, Tamba BI. Secondary Metabolites from Plants Possessing Inhibitory Properties against Beta-Amyloid Aggregation as Revealed by Thioflavin-T Assay and Correlations with Investigations on Transgenic Mouse Models of Alzheimer's Disease. Biomolecules 2020; 10:E870. [PMID: 32517180 PMCID: PMC7355648 DOI: 10.3390/biom10060870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder for which there is a continuous search of drugs able to reduce or stop the cognitive decline. Beta-amyloid peptides are composed of 40 and 42 amino acids and are considered a major cause of neuronal toxicity. They are prone to aggregation, yielding oligomers and fibrils through the inter-molecular binding between the amino acid sequences (17-42) of multiple amyloid-beta molecules. Additionally, amyloid deposition causes cerebral amyloid angiopathy. The present study aims to identify, in the existing literature, natural plant derived products possessing inhibitory properties against aggregation. The studies searched proved the anti-aggregating effects by the thioflavin T assay and through behavioral, biochemical, and histological analysis carried out upon administration of natural chemical compounds to transgenic mouse models of Alzheimer's disease. According to our present study results, fifteen secondary metabolites from plants were identified which presented both evidence coming from the thioflavin T assay and transgenic mouse models developing Alzheimer's disease and six additional metabolites were mentioned due to their inhibitory effects against fibrillogenesis. Among them, epigallocatechin-3-gallate, luteolin, myricetin, and silibinin were proven to lower the aggregation to less than 40%.
Collapse
Affiliation(s)
- Raluca Stefanescu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.S.); (A.L.); (B.-I.T.)
| | - Gabriela Dumitriṭa Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.S.); (A.L.); (B.-I.T.)
| | - Andrei Luca
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.S.); (A.L.); (B.-I.T.)
- Department of Pneumology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Luminita Paduraru
- Division Neonatology, Department Mother & Child Care, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Bogdan-Ionel Tamba
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.S.); (A.L.); (B.-I.T.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
22
|
Nie RZ, Huo YQ, Yu B, Liu CJ, Zhou R, Bao HH, Tang SW. Molecular insights into the inhibitory mechanisms of gallate moiety on the Aβ 1-40 amyloid aggregation: A molecular dynamics simulation study. Int J Biol Macromol 2020; 156:40-50. [PMID: 32275992 DOI: 10.1016/j.ijbiomac.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is the most common form of neurodegenerative disease and the formation of Aβ amyloid aggregates has been widely demonstrated to be the principal cause of Alzheimer's disease. Our previous study and other studies suggested that the gallate moiety played an obligatory role in the inhibition process of naturally occurring polyphenols on Aβ amyloid fibrils formation. However, the detailed mechanisms were still unknown. Thus, in the present study, the gallic acid (GA) was specially selected and the molecular recognition mechanisms between GA molecules and Aβ1-40 monomer were examined and analyzed by molecular dynamics simulation. The in silico experiments revealed that GA significantly prevented the conformational changes of Aβ1-40 monomer with no β-sheet structure during the whole 100 ns. By analyzing the binding sites of GA molecules to Aβ1-40 monomer, we found that both hydrophilic and hydrophobic amino acid residues were participated in the binding of GA molecules to Aβ1-40 monomer. Moreover, results from the binding free energy analysis further demonstrated that the strength of polar interactions was significantly stronger than that of nonpolar interactions. We believed that our results could help to elucidate the underlying mechanisms of gallate moiety on the anti-amyloidogenic effects of polyphenols at the atomic level.
Collapse
Affiliation(s)
- Rong-Zu Nie
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Yin-Qiang Huo
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Bo Yu
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Chuan-Ju Liu
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Rui Zhou
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Hong-Hui Bao
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Shang-Wen Tang
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China.
| |
Collapse
|
23
|
Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem 2020; 192:112197. [PMID: 32172082 DOI: 10.1016/j.ejmech.2020.112197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Protein misfolding diseases (PMDs) are chronic and progressive, with no effective therapy so far. Aggregation and misfolding of amyloidogenic proteins are closely associated with the onset and progression of PMDs, such as amyloid-β (Aβ) in Alzheimer's disease, α-Synuclein (α-Syn) in Parkinson's disease and human islet amyloid polypeptide (hIAPP) in type 2 diabetes. Inhibiting toxic aggregation of amyloidogenic proteins is regarded as a promising therapeutic approach in PMDs. The past decade has witnessed the rapid progresses of this field, dozens of inhibitors have been screened and verified in vitro and in vivo, demonstrating inhibitory effects against the aggregation and misfolding of amyloidogenic proteins, together with beneficial effects. Natural products are major sources of small molecule amyloid inhibitors, a number of natural derived compounds have been identified with great bioactivities and translational prospects. Here, we review the non-polyphenolic natural inhibitors that potentially applicable for PMDs treatment, along with their working mechanisms. Future directions are proposed for the development and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yushuo Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430035, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
24
|
Fan Q, Liu Y, Wang X, Zhang Z, Fu Y, Liu L, Wang P, Ma H, Ma H, Seeram NP, Zheng J, Zhou F. Ginnalin A Inhibits Aggregation, Reverses Fibrillogenesis, and Alleviates Cytotoxicity of Amyloid β(1-42). ACS Chem Neurosci 2020; 11:638-647. [PMID: 31967782 DOI: 10.1021/acschemneuro.9b00673] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aggregation of misfolded amyloid beta (Aβ) peptides into neurotoxic oligomers and fibrils has been implicated as a key event in the etiopathogenesis of Alzheimer's disease (AD). Ginnalin A (GA), a polyphenolic compound isolated from the red maple (Acer rubrum), has been found to possess anticancer, antiglycation, and antioxidation properties. Using thioflavin T (ThT) fluorescence, surface plasmon resonance (SPR), and atomic force microscopy (AFM), we demonstrate that GA can also effectively inhibit Aβ aggregation by primarily binding to Aβ monomers in a dose-dependent manner. Furthermore, GA can bind to multiple sites of Aβ aggregates to disassemble preformed fibrils and convert them into small aggregates. Circular dichroism (CD) spectra showed that these small aggregates are much less abundant in β-sheets, while cell viability assay confirms that they are essentially innocuous. Molecular dynamics (MD) simulations revealed that GA preferentially contacts with the C- and N-terminal β-sheets and the U-turn region of Aβ(1-42) oligomers through hydrophobic interactions and hydrogen bonding. Compared with other natural compounds that have shown promise in anti-Aβ fibrillogenesis and ameliorating Aβ-induced cytotoxicity, GA is unique in that it exhibits a more efficient inhibition of Aβ aggregation at the very early stage through its strong interaction with Aβ monomers and exerts its inhibitory effect at a lower dosage.
Collapse
Affiliation(s)
- Qi Fan
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaoying Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Zhuang Zhang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yaru Fu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Luyao Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Hongmin Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
25
|
Jakubowski J, Orr AA, Le DA, Tamamis P. Interactions between Curcumin Derivatives and Amyloid-β Fibrils: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:289-305. [PMID: 31809572 PMCID: PMC7732148 DOI: 10.1021/acs.jcim.9b00561] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 12/24/2022]
Abstract
The aggregation of amyloid-β (Aβ) peptides into senile plaques is a hallmark of Alzheimer's disease (AD) and is hypothesized to be the primary cause of AD related neurodegeneration. Previous studies have shown the ability of curcumin to both inhibit the aggregation of Aβ peptides into oligomers or fibrils and reduce amyloids in vivo. Despite the promise of curcumin and its derivatives to serve as diagnostic, preventative, and potentially therapeutic AD molecules, the mechanism by which curcumin and its derivatives bind to and inhibit Aβ fibrils' formation remains elusive. Here, we investigated curcumin and a set of curcumin derivatives in complex with a hexamer peptide model of the Aβ1-42 fibril using nearly exhaustive docking, followed by multi-ns molecular dynamics simulations, to provide atomistic-detail insights into the molecules' binding and inhibitory properties. In the vast majority of the simulations, curcumin and its derivatives remain firmly bound in complex with the fibril through primarily three different principle binding modes, in which the molecules interact with residue domain 17LVFFA21, in line with previous experiments. In a small subset of these simulations, the molecules partly dissociate the outermost peptide of the Aβ1-42 fibril by disrupting β-sheets within the residue domain 12VHHQKLVFF20. A comparison between binding modes leading or not leading to partial dissociation of the outermost peptide suggests that the latter is attributed to a few subtle key structural and energetic interaction-based differences. Interestingly, partial dissociation appears to be either an outcome of high affinity interactions or a cause leading to high affinity interactions between the molecules and the fibril, which could partly serve as a compensation for the energy loss in the fibril due to partial dissociation. In conjunction with this, we suggest a potential inhibition mechanism of Αβ1-42 aggregation by the molecules, where the partially dissociated 16KLVFF20 domain of the outermost peptide could either remain unstructured or wrap around to form intramolecular interactions with the same peptide's 29GAIIG33 domain, while the molecules could additionally act as a patch against the external edge of the second outermost peptide's 16KLVFF20 domain. Thereby, individually or concurrently, these could prohibit fibril elongation.
Collapse
Affiliation(s)
| | | | - Doan A. Le
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Phanourios Tamamis
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
26
|
Gorantla NV, Das R, Mulani FA, Thulasiram HV, Chinnathambi S. Neem Derivatives Inhibits Tau Aggregation. J Alzheimers Dis Rep 2019; 3:169-178. [PMID: 31259310 PMCID: PMC6597962 DOI: 10.3233/adr-190118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tau is a phosphoprotein with natively unfolded conformation that functions to stabilize microtubules in axons. Alzheimer’s disease pathology triggers several modifications in tau, which causes it to lose its affinity towards microtubule, thus, leading to microtubule disassembly and loss of axonal integrity. This elicit accumulation of tau as paired helical filaments is followed by stable neurofibrillary tangles formation. A large number of small molecules have been isolated from Azadirachta indica with varied medicinal applications. The intermediate and final limonoids, nimbin and salannin respectively, isolated from Azadirachta indica, were screened against tau aggregation. ThS and ANS fluorescence assay showed the role of intermediate and final limonoids in preventing heparin induced cross-β sheet formation and also decreased hydrophobicity, which are characteristic nature of tau aggregation. Transmission electron microscopy studies revealed that limonoids restricted the aggregation of tau to fibrils; in turn, limonoids led to the formation of short and fragile aggregates. Both the limonoids were non-toxic to HEK293T cells thus, substantiating limonoids as a potential lead in overcoming Alzheimer’s disease.
Collapse
Affiliation(s)
- Nalini V Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, India
| | - Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, India
| | - Fayaj A Mulani
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, India
| | - Hirekodathakallu V Thulasiram
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, India
| |
Collapse
|
27
|
Saikia J, Pandey G, Sasidharan S, Antony F, Nemade HB, Kumar S, Chaudhary N, Ramakrishnan V. Electric Field Disruption of Amyloid Aggregation: Potential Noninvasive Therapy for Alzheimer's Disease. ACS Chem Neurosci 2019; 10:2250-2262. [PMID: 30707008 DOI: 10.1021/acschemneuro.8b00490] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aggregation of β-amyloid peptides is a key event in the formative stages of Alzheimer's disease. Promoting folding and inhibiting aggregation was reported as an effective strategy in reducing Aβ-elicited toxicity. This study experimentally investigates the influence of the external electric field (EF) and magnetic field (MF) of varying strengths on the in vitro fibrillogenesis of hydrophobic core sequence, Aβ16-22, and its parent peptide, Aβ1-42. Biophysical methods such as ThT fluorescence, static light scattering, circular dichroism, and infrared spectroscopy suggest that EF has a stabilizing effect on the secondary structure, initiating a conformational switch of Aβ16-22 and Aβ1-42 from β to non-β conformation. This observation was further corroborated by dynamic light scattering and transmission electron microscopic studies. To mimic in vivo conditions, we repeated ThT fluorescence assay with Aβ1-42 in human cerebrospinal fluid to verify EF-mediated modulation. The self-seeding of Aβ1-42 and cross-seeding with Aβ1-40 to verify that the autocatalytic amplification of self-assembly as a result of secondary nucleation also yields comparable results in EF-exposed and unexposed samples. Aβ-elicited toxicity of EF-treated samples in two neuroblastoma cell lines (SH-SY5Y and IMR-32) and human embryonic kidney cell line (HEK293) were found to be 15-38% less toxic than the EF untreated ones under identical conditions. Experiments with fluorescent labeled Aβ1-42 to correlate reduced cytotoxicity and cell internalization suggest a comparatively smaller uptake of the EF-treated peptides. Our results provide a scientific roadmap for future noninvasive, therapeutic solutions for the treatment of Alzheimer's disease.
Collapse
|
28
|
|
29
|
Zhao J, Gao W, Yang Z, Li H, Gao Z. Nitration of amyloid-β peptide (1–42) as a protective mechanism for the amyloid-β peptide (1–42) against copper ion toxicity. J Inorg Biochem 2019; 190:15-23. [DOI: 10.1016/j.jinorgbio.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
|
30
|
Zheng Y, Xu L, Yang J, Peng X, Wang H, Yu N, Hua Y, Zhao J, He J, Hong T. The effects of fluorescent labels on Aβ42
aggregation detected by fluorescence correlation spectroscopy. Biopolymers 2018; 109:e23237. [DOI: 10.1002/bip.23237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Yanpeng Zheng
- School of Sciences; Beijing Jiaotong University; Beijing China
| | - Lingwan Xu
- School of Sciences; Beijing Jiaotong University; Beijing China
| | - Jingfa Yang
- Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Xianglei Peng
- School of Sciences; Beijing Jiaotong University; Beijing China
| | - He Wang
- School of Sciences; Beijing Jiaotong University; Beijing China
| | - Na Yu
- School of Sciences; Beijing Jiaotong University; Beijing China
- Shandong Xinchuang Biological Technology Co., Ltd.; Jinan China
| | - Ying Hua
- School of Sciences; Beijing Jiaotong University; Beijing China
| | - Jiang Zhao
- Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Jinsheng He
- School of Sciences; Beijing Jiaotong University; Beijing China
| | - Tao Hong
- School of Sciences; Beijing Jiaotong University; Beijing China
- Institute for Viral Disease Control and Prevention; Chinese Centre for Disease Control and Prevention; Beijing China
| |
Collapse
|
31
|
Zhang D, Li X, Hu Y, Jiang H, Wu Y, Ding Y, Yu K, He H, Xu J, Sun L, Qian F. Tabersonine attenuates lipopolysaccharide-induced acute lung injury via suppressing TRAF6 ubiquitination. Biochem Pharmacol 2018; 154:183-192. [DOI: 10.1016/j.bcp.2018.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
|
32
|
Nguyen PH, del Castillo-Frias MP, Berthoumieux O, Faller P, Doig AJ, Derreumaux P. Amyloid-β/Drug Interactions from Computer Simulations and Cell-Based Assays. J Alzheimers Dis 2018; 64:S659-S672. [DOI: 10.3233/jad-179902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| | - Maria P. del Castillo-Frias
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Olivia Berthoumieux
- CNRS, LCC (Laboratoire de Chimie de Coordination), Toulouse Cedex 4, France et Université de Toulouse, UPS, INPT, Toulouse Cedex 4, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, Strasbourg, France
| | - Andrew J. Doig
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| |
Collapse
|
33
|
Brännström K, Islam T, Gharibyan AL, Iakovleva I, Nilsson L, Lee CC, Sandblad L, Pamrén A, Olofsson A. The Properties of Amyloid-β Fibrils Are Determined by their Path of Formation. J Mol Biol 2018; 430:1940-1949. [PMID: 29751013 DOI: 10.1016/j.jmb.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/23/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
Fibril formation of the amyloid-β peptide (Aβ) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aβ are observed in vivo, but Aβ1-40 and Aβ1-42 are the dominant forms. The fibril architectures of Aβ1-40 and Aβ1-42 differ and Aβ1-42 assemblies are generally considered more pathogenic. We show here that monomeric Aβ1-42 can be cross-templated and incorporated into the ends of Aβ1-40 fibrils, while incorporation of Aβ1-40 monomers into Aβ1-42 fibrils is very poor. We also show that via cross-templating incorporated Aβ monomers acquire the properties of the parental fibrils. The suppressed ability of Aβ1-40 to incorporate into the ends of Aβ1-42 fibrils and the capacity of Aβ1-42 monomers to adopt the properties of Aβ1-40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aβ1-42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aβ1-40 from adopting the fibrillar properties of Aβ1-42 and exposes that the transfer of properties between amyloid-β fibrils are determined by their path of formation.
Collapse
Affiliation(s)
- Kristoffer Brännström
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Tohidul Islam
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Anna L Gharibyan
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Irina Iakovleva
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Lina Nilsson
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Cheng Choo Lee
- Umeå University, Umeå Core Facility for Electron Microscopy (UCEM), Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Linda Sandblad
- Umeå University, Umeå Core Facility for Electron Microscopy (UCEM), Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Annelie Pamrén
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Anders Olofsson
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden.
| |
Collapse
|
34
|
Carqueijeiro I, Dugé de Bernonville T, Lanoue A, Dang TT, Teijaro CN, Paetz C, Billet K, Mosquera A, Oudin A, Besseau S, Papon N, Glévarec G, Atehortùa L, Clastre M, Giglioli-Guivarc'h N, Schneider B, St-Pierre B, Andrade RB, O'Connor SE, Courdavault V. A BAHD acyltransferase catalyzing 19-O-acetylation of tabersonine derivatives in roots of Catharanthus roseus enables combinatorial synthesis of monoterpene indole alkaloids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:469-484. [PMID: 29438577 DOI: 10.1111/tpj.13868] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/13/2017] [Accepted: 02/05/2018] [Indexed: 05/19/2023]
Abstract
While the characterization of the biosynthetic pathway of monoterpene indole alkaloids (MIAs) in leaves of Catharanthus roseus is now reaching completion, only two enzymes from the root counterpart dedicated to tabersonine metabolism have been identified to date, namely tabersonine 19-hydroxylase (T19H) and minovincine 19-O-acetyltransferase (MAT). Albeit the recombinant MAT catalyzes MIA acetylation at low efficiency in vitro, we demonstrated that MAT was inactive when expressed in yeast and in planta, suggesting an alternative function for this enzyme. Therefore, through transcriptomic analysis of periwinkle adventitious roots, several other BAHD acyltransferase candidates were identified based on the correlation of their expression profile with T19H and found to localize in small genomic clusters. Only one, named tabersonine derivative 19-O-acetyltransferase (TAT) was able to acetylate the 19-hydroxytabersonine derivatives from roots, such as minovincinine and hörhammericine, following expression in yeast. Kinetic studies also showed that the recombinant TAT was specific for root MIAs and displayed an up to 200-fold higher catalytic efficiency than MAT. In addition, gene expression analysis, protein subcellular localization and heterologous expression in Nicotiana benthamiana were in agreement with the prominent role of TAT in acetylation of root-specific MIAs, thereby redefining the molecular determinants of the root MIA biosynthetic pathway. Finally, identification of TAT provided a convenient tool for metabolic engineering of MIAs in yeast enabling efficiently mixing different biosynthetic modules spatially separated in the whole plant. This combinatorial synthesis associating several enzymes from Catharanthus roseus resulted in the conversion of tabersonine in tailor-made MIAs bearing both leaf and root-type decorations.
Collapse
Affiliation(s)
- Inês Carqueijeiro
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | | | - Arnaud Lanoue
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Thu-Thuy Dang
- Department of Biological Chemistry, The John Innes Centre, Norwich, NR4 7UH, UK
| | - Christiana N Teijaro
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Christian Paetz
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Kevin Billet
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Angela Mosquera
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, Medellin, Colombia
| | - Audrey Oudin
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Sébastien Besseau
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Nicolas Papon
- EA3142 'Groupe d'Etude des Interactions Hôte-Pathogène', Université d'Angers, Angers, France
| | - Gaëlle Glévarec
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Lucía Atehortùa
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, Medellin, Colombia
| | - Marc Clastre
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | | | - Bernd Schneider
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Benoit St-Pierre
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Sarah E O'Connor
- Department of Biological Chemistry, The John Innes Centre, Norwich, NR4 7UH, UK
| | - Vincent Courdavault
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| |
Collapse
|
35
|
De Lorenzi E, Chiari M, Colombo R, Cretich M, Sola L, Vanna R, Gagni P, Bisceglia F, Morasso C, Lin JS, Lee M, McGeer PL, Barron AE. Evidence that the Human Innate Immune Peptide LL-37 may be a Binding Partner of Amyloid-β and Inhibitor of Fibril Assembly. J Alzheimers Dis 2018; 59:1213-1226. [PMID: 28731438 PMCID: PMC5611894 DOI: 10.3233/jad-170223] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Identifying physiologically relevant binding partners of amyloid-β (Aβ) that modulate in vivo fibril formation may yield new insights into Alzheimer's disease (AD) etiology. Human cathelicidin peptide, LL-37, is an innate immune effector and modulator, ubiquitous in human tissues and expressed in myriad cell types. OBJECTIVE We present in vitro experimental evidence and discuss findings supporting a novel hypothesis that LL-37 binds to Aβ42 and can modulate Aβ fibril formation. METHODS Specific interactions between LL-37 and Aβ (with Aβ in different aggregation states, assessed by capillary electrophoresis) were demonstrated by surface plasmon resonance imaging (SPRi). Morphological and structural changes were investigated by transmission electron microscopy (TEM) and circular dichroism (CD) spectroscopy. Neuroinflammatory and cytotoxic effects of LL-37 alone, Aβ42 alone, and LL-37/Aβ complexes were evaluated in human microglia and neuroblastoma cell lines (SH-SY5Y). RESULTS SPRi shows binding specificity between LL-37 and Aβ, while TEM shows that LL-37 inhibits Aβ42 fibril formation, particularly Aβ's ability to form long, straight fibrils characteristic of AD. CD reveals that LL-37 prevents Aβ42 from adopting its typical β-type secondary structure. Microglia-mediated toxicities of LL-37 and Aβ42 to neurons are greatly attenuated when the two peptides are co-incubated prior to addition. We discuss the complementary biophysical characteristics and AD-related biological activities of these two peptides. CONCLUSION Based on this body of evidence, we propose that LL-37 and Aβ42 may be natural binding partners, which implies that balanced (or unbalanced) spatiotemporal expression of the two peptides could impact AD initiation and progression.
Collapse
Affiliation(s)
| | - Marcella Chiari
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | | | - Marina Cretich
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | - Laura Sola
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | - Renzo Vanna
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Paola Gagni
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | | | - Carlo Morasso
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA, USA
| | - Moonhee Lee
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada
| | - Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
36
|
Jana AK, Batkulwar KB, Kulkarni MJ, Sengupta N. Glycation induces conformational changes in the amyloid-β peptide and enhances its aggregation propensity: molecular insights. Phys Chem Chem Phys 2018; 18:31446-31458. [PMID: 27827482 DOI: 10.1039/c6cp05041g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cytotoxicity of the amyloid beta (Aβ) peptide, implicated in the pathogenesis of Alzheimer's disease (AD), can be enhanced by its post-translational glycation, a series of non-enzymatic reactions with reducing sugars and reactive dicarbonyls. However, little is known about the underlying mechanisms that potentially enhance the cytotoxicity of the advanced glycation modified Aβ. In this work, fully atomistic molecular dynamics (MD) simulations are exploited to obtain direct molecular insights into the process of early Aβ self-assembly in the presence and absence of glycated lysine residues. Analyses of data exceeding cumulative timescales of 1 microsecond for each system reveal that glycation results in a stronger enthalpy of association between Aβ monomers and lower conformational entropy, in addition to a sharp overall increase in the beta-sheet content. Further analyses reveal that the enhanced interactions originate, in large part, due to markedly stronger, as well as new, inter-monomer salt bridging propensities in the glycated variety. Interestingly, these conformational and energetic effects are broadly reflected in preformed protofibrillar forms of Aβ small oligomers modified with glycation. Our combined results imply that glycation consolidates Aβ self-assembly regardless of its point of occurrence in the pathway. They provide a basis for further mechanistic studies and therapeutic endeavors that could potentially result in novel ways of combating AGE related AD progression.
Collapse
Affiliation(s)
- Asis K Jana
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India and Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kedar B Batkulwar
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - Mahesh J Kulkarni
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - Neelanjana Sengupta
- Dept. of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, W. Bengal, India.
| |
Collapse
|
37
|
Rajasekhar K, Govindaraju T. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer's disease. RSC Adv 2018; 8:23780-23804. [PMID: 35540246 PMCID: PMC9081849 DOI: 10.1039/c8ra03620a] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/04/2018] [Indexed: 01/04/2023] Open
Abstract
The diverse pathological mechanisms and their implications for the development of effective diagnostic and therapeutic interventions in Alzheimer's disease are presented with current progress, challenges and future prospects.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bengaluru 560064
- India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bengaluru 560064
- India
| |
Collapse
|
38
|
Jin Y, Sun Y, Lei J, Wei G. Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity. Phys Chem Chem Phys 2018; 20:17208-17217. [DOI: 10.1039/c8cp01631c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dihydrochalcone molecules destabilize Aβ17–42protofibrils by disrupting the N-terminal β1 region and the turn region through binding to the protofibril cavity.
Collapse
Affiliation(s)
- Yibo Jin
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Collaborative Innovation Center of Advanced Microstructures (Nanjing)
- Fudan University
| | - Yunxiang Sun
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Collaborative Innovation Center of Advanced Microstructures (Nanjing)
- Fudan University
| | - Jiangtao Lei
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Collaborative Innovation Center of Advanced Microstructures (Nanjing)
- Fudan University
| | - Guanghong Wei
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Collaborative Innovation Center of Advanced Microstructures (Nanjing)
- Fudan University
| |
Collapse
|
39
|
Abubaker AA, Vara D, Eggleston I, Canobbio I, Pula G. A novel flow cytometry assay using dihydroethidium as redox-sensitive probe reveals NADPH oxidase-dependent generation of superoxide anion in human platelets exposed to amyloid peptide β. Platelets 2017; 30:181-189. [PMID: 29206074 DOI: 10.1080/09537104.2017.1392497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) generation is critical in the regulation of platelets, which has important implications in the modulation of hemostasis and thrombosis. Nonetheless, despite several assays have been described and successfully utilized in the past, the analysis of ROS generation in human platelets remains challenging. Here we show that dihydroethidium (DHE) allows the characterization of redox responses upon platelet activation by physiological and pathological stimuli. In particular, the flow cytometry assay that we describe here allowed us to confirm that thrombin, collagen-related peptide (CRP) and arachidonic acid but not adenosine diphosphate (ADP) stimulate superoxide anion formation in a concentration-dependent manner. 0.1unit/ml thrombin, 3 μg/ml CRP and 30 μM arachidonic acid are commonly used to stimulate platelets in vitro and here were shown to stimulate a significant increase in superoxide anion formation. The ROS scavenger N-acetylcysteine (NAC) abolished superoxide anion generation in response to all tested stimuli, but the pan-NADPH oxidase (NOX) inhibitor VAS2870 only inhibited superoxide anion formation in response to thrombin and CRP. The involvement of NOXs in thrombin and CRP-dependent responses was confirmed by the inhibition of platelet aggregation induced by these stimuli by VAS2870, while platelet aggregation in response to arachidonic acid was insensitive to this inhibitor. In addition, the pathological platelet stimulus amyloid β (Aβ) 1-42 peptide induced superoxide anion formation in a concentration-dependent manner. Aβ peptide stimulated superoxide anion formation in a NOX-dependent manner, as proved by the use of VAS2870. Aβ 1-42 peptide displayed only moderate activity as an aggregation stimulus, but was able to significantly potentiate platelet aggregation in response to submaximal agonists concentrations, such as 0.03 unit/ml thrombin and 10 μM arachidonic acid. The inhibition of NOXs by 10 μM VAS2870 abolished Aβ-dependent potentiation of platelet aggregation in response to 10 μM arachidonic acid, suggesting that the pro-thrombotic activity of Aβ peptides depends on NOX activity. Similar experiments could not be performed with thrombin or collagen, as NOXs are required for the signaling induced by these stimuli. These findings shed some new light on the pro-thrombotic activity of Aβ peptides. In summary, here we describe a novel and reliable assay for the detection of superoxide anion in human platelets. This is particularly important for the investigation of the pathophysiological role of redox stress in platelets, a field of research of increasing importance, but hindered by the absence of a reliable and easily accessible ROS detection methodology applicable to platelets.
Collapse
Affiliation(s)
| | - Dina Vara
- b Institute of Biomedical & Clinical Science , University of Exeter Medical School , Exeter , UK
| | - Ian Eggleston
- a Department of Pharmacy and Pharmacology , University of Bath , Bath , UK
| | - Ilaria Canobbio
- c Department of Biology and Biotechnology , University of Pavia , Pavia , Italy
| | - Giordano Pula
- b Institute of Biomedical & Clinical Science , University of Exeter Medical School , Exeter , UK
| |
Collapse
|
40
|
Fan Y, Wu D, Yi X, Tang H, Wu L, Xia Y, Wang Z, Liu Q, Zhou Z, Wang J. TMPyP Inhibits Amyloid-β Aggregation and Alleviates Amyloid-Induced Cytotoxicity. ACS OMEGA 2017; 2:4188-4195. [PMID: 30023716 PMCID: PMC6044923 DOI: 10.1021/acsomega.7b00877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 05/27/2023]
Abstract
The aggregation or misfolding of amyloid-β (Aβ) is a major pathological hallmark of Alzheimer's disease (AD). The regulation of Aβ aggregation is thought to be an effective strategy for AD treatment. The capability of a water-soluble porphyrin, 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP), to inhibit Aβ aggregation and to lower Aβ-induced toxicity was demonstrated. As evidenced by surface plasmon resonance and circular dichroism, TMPyP can not only disrupt Aβ aggregation but also disassemble the preformed Aβ aggregates. The atomic force microscopy imaging proves that TMPyP inhibits the formation of both oligomers and fibrils. Molecular dynamic simulations provide an insight into the interaction between TMPyP and Aβ at the molecular level. The half-maximal inhibitory concentrations of TMPyP acting on the oligomers and fibrils were determined to be 0.6 and 0.43 μM, respectively. As a member of porphyrin family, TMPyP is of rather low cytotoxicity, and the cytotoxicity of the Aβ aggregates was also relieved upon coincubation with TMPyP. The excellent performance of TMPyP thus makes it a potential drug candidate for AD therapy.
Collapse
Affiliation(s)
- Yujuan Fan
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Daohong Wu
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Xinyao Yi
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Hailin Tang
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-Sen
University Cancer Center, Guangzhou 510060, Guangdong, P. R. China
| | - Ling Wu
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Yonghong Xia
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Zixiao Wang
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Qiuhua Liu
- School
of Chemistry and Chemical Engineering and Key Laboratory of Theoretical
Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Zaichun Zhou
- School
of Chemistry and Chemical Engineering and Key Laboratory of Theoretical
Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Jianxiu Wang
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
41
|
Wu J, Zhao J, Yang Z, Li H, Gao Z. Strong Inhibitory Effect of Heme on hIAPP Fibrillation. Chem Res Toxicol 2017; 30:1711-1719. [DOI: 10.1021/acs.chemrestox.7b00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinming Wu
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Jie Zhao
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Zhen Yang
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77004, United States
| | - Hailing Li
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Zhonghong Gao
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| |
Collapse
|
42
|
Sciacca MFM, Romanucci V, Zarrelli A, Monaco I, Lolicato F, Spinella N, Galati C, Grasso G, D’Urso L, Romeo M, Diomede L, Salmona M, Bongiorno C, Di Fabio G, La Rosa C, Milardi D. Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chem Neurosci 2017; 8:1767-1778. [PMID: 28562008 DOI: 10.1021/acschemneuro.7b00110] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The self-assembling of the amyloid β (Aβ) peptide into neurotoxic aggregates is considered a central event in the pathogenesis of Alzheimer's disease (AD). Based on the "amyloid hypothesis", many efforts have been devoted to designing molecules able to halt disease progression by inhibiting Aβ self-assembly. Here, we combine biophysical (ThT assays, TEM and AFM imaging), biochemical (WB and ESI-MS), and computational (all-atom molecular dynamics) techniques to investigate the capacity of four optically pure components of the natural product silymarin (silybin A, silybin B, 2,3-dehydrosilybin A, 2,3-dehydrosilybin B) to inhibit Aβ aggregation. Despite TEM analysis demonstrated that all the four investigated flavonoids prevent the formation of mature fibrils, ThT assays, WB and AFM investigations showed that only silybin B was able to halt the growth of small-sized protofibrils thus promoting the formation of large, amorphous aggregates. Molecular dynamics (MD) simulations indicated that silybin B interacts mainly with the C-terminal hydrophobic segment 35MVGGVV40 of Aβ40. Consequently to silybin B binding, the peptide conformation remains predominantly unstructured along all the simulations. By contrast, silybin A interacts preferentially with the segments 17LVFF20 and 27NKGAII32 of Aβ40 which shows a high tendency to form bend, turn, and β-sheet conformation in and around these two domains. Both 2,3-dehydrosilybin enantiomers bind preferentially the segment 17LVFF20 but lead to the formation of different small-sized, ThT-positive Aβ aggregates. Finally, in vivo studies in a transgenic Caenorhabditis elegans strain expressing human Aβ indicated that silybin B is the most effective of the four compounds in counteracting Aβ proteotoxicity. This study underscores the pivotal role of stereochemistry in determining the neuroprotective potential of silybins and points to silybin B as a promising lead compound for further development in anti-AD therapeutics.
Collapse
Affiliation(s)
- Michele. F. M. Sciacca
- Institute of Biostructures and
Bioimages—Catania, National Research Council, Via Paolo Gaifami 8, 95126 Catania, Italy
| | - Valeria Romanucci
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy
| | - Irene Monaco
- Institute of Biostructures and
Bioimages—Catania, National Research Council, Via Paolo Gaifami 8, 95126 Catania, Italy
| | - Fabio Lolicato
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Department of Physics, Tampere University of Technology, P.O.
Box 692, FI-33101 Tampere, Finland
| | | | - Clelia Galati
- STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy
| | - Giuseppe Grasso
- Dipartimento di Scienze
Chimiche, Università degli Studi di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Luisa D’Urso
- Dipartimento di Scienze
Chimiche, Università degli Studi di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Margherita Romeo
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - Luisa Diomede
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - Corrado Bongiorno
- Institute for Microelectronics
and Microsystems, National Research Council, Stradale Primosole 50, 95121 Catania, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy
| | - Carmelo La Rosa
- Dipartimento di Scienze
Chimiche, Università degli Studi di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Danilo Milardi
- Institute of Biostructures and
Bioimages—Catania, National Research Council, Via Paolo Gaifami 8, 95126 Catania, Italy
| |
Collapse
|
43
|
Inhibition of amyloid oligomerization into different supramolecular architectures by small molecules: mechanistic insights and design rules. Future Med Chem 2017; 9:797-810. [DOI: 10.4155/fmc-2017-0026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein misfolding and aggregation have been associated with several human disorders, including Alzheimer’s, Parkinson’s and Huntington’s diseases, as well as senile systemic amyloidosis and Type II diabetes. However, there is no current disease-modifying therapy available for the treatment of these disorders. In spite of extensive academic, pharmaceutical, medicinal and clinical research, a complete mechanistic model for this family of diseases is still lacking. In this review, we primarily discuss the different types of small molecular entities which have been used for the inhibition of the aggregation process of different amyloidogenic proteins under diseased conditions. These include small peptides, polyphenols, inositols, quinones and their derivatives, and metal chelator molecules. In recent years, these groups of molecules have been extensively studied using in vitro, in vivo and computational models to understand their mechanism of action and common structural features underlying the process of inhibition. A salient feature found to be instrumental in the process of inhibition is the balance between the aromatic unit that functions as the amyloid recognition unit and the hydrophilic amyloid breaker unit. The establishment of structure–function relationship for amyloid-modifying therapies by the various functional entities should serve as an important step toward the development of efficient therapeutics.
Collapse
|
44
|
Zhao J, Wu J, Yang Z, Li H, Gao Z. Nitration of Tyrosine Residue Y10 of Aβ 1-42 Significantly Inhibits Its Aggregation and Cytotoxicity. Chem Res Toxicol 2017; 30:1085-1092. [PMID: 28272880 DOI: 10.1021/acs.chemrestox.6b00447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid-β plaques and oxidative stress are the major hallmarks of Alzheimer's disease. Our previous study found that the heme-Aβ complex enhanced the catalytic effect of free heme on protein tyrosine nitration in the presence of hydrogen peroxide (H2O2) and nitrite (NO2-). Y10 in Aβ could be the first target to be nitrated. We also found that nitration of Aβ1-40 significantly decreased its aggregation. However, a contrary report showed that nitration of Aβ1-42 by peroxynitrite enhanced its aggregation. To rule out the interference of peroxynitrite caused Aβ oxidation, we used synthetic Y10 nitrated Aβ1-42 to study the influence of Y10 nitration on Aβ1-42's aggregation and cytotoxicity in this study. We confirmed that Aβ1-42 could be nitrated in the presence of H2O2, NO2-, and heme by dot blotting. CD spectroscopy showed an increase of β-sheet structure of Aβ1-42 and its mutants. The thioflavin T (ThT) flourescence assay revealed that both nitration and chlorination significantly inhibited Aβ1-42 fibril formation. TEM and AFM observations of Aβ peptide aggregates further confirmed that Y10 modification inhibited Aβ1-42 fibril formation. The cytotoxicity study of native and modified Aβ peptides on SH-SY5Y cells revealed that nitration of Aβ1-42 remarkably decreased the neurotoxicity of Aβ1-42. On the basis of these results, we hypothesized that nitration of Y10 may block the π-π stacking interactions of Aβ1-42 so that it inhibit its aggregation and neurotoxicity. More importantly, considerable evidence suggested that the levels of nitrite plus nitrate significantly decreased in the brain of AD patients. Thus, we believe that these findings would be helpful for further understanding the function of Aβ in AD.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Hua Zhong University of Science and Technology , Wuhan 430074, People's Republic of China
| | - Jinming Wu
- School of Chemistry and Chemical Engineering, Hua Zhong University of Science and Technology , Wuhan 430074, People's Republic of China
| | - Zhen Yang
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77004, United States
| | - Hailing Li
- School of Chemistry and Chemical Engineering, Hua Zhong University of Science and Technology , Wuhan 430074, People's Republic of China.,Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , Wuhan, 430074, People's Republic of China
| | - Zhonghong Gao
- School of Chemistry and Chemical Engineering, Hua Zhong University of Science and Technology , Wuhan 430074, People's Republic of China.,Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , Wuhan, 430074, People's Republic of China
| |
Collapse
|
45
|
Zhang M, Ren B, Chen H, Sun Y, Ma J, Jiang B, Zheng J. Molecular Simulations of Amyloid Structures, Toxicity, and Inhibition. Isr J Chem 2016. [DOI: 10.1002/ijch.201600075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Baiping Ren
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Hong Chen
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Jie Ma
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
- State Key Laboratory of Pollution Control and Resource Reuse School of Environmental Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Binbo Jiang
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
- College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| |
Collapse
|
46
|
Tu Y, Ma S, Liu F, Sun Y, Dong X. Hematoxylin Inhibits Amyloid β-Protein Fibrillation and Alleviates Amyloid-Induced Cytotoxicity. J Phys Chem B 2016; 120:11360-11368. [PMID: 27749059 DOI: 10.1021/acs.jpcb.6b06878] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation and aggregation of amyloid β-protein (Aβ) play an important role in the pathogenesis of Alzheimer's disease. There has been increased interest in finding new anti-amyloidogenic compounds to inhibit Aβ aggregation. Herein, thioflavin T fluorescent assay and transmission electron microscopy results showed that hematoxylin, a natural organic molecule extracted from Caesalpinia sappan, was a powerful inhibitor of Aβ42 fibrillogenesis. Circular dichroism studies revealed hematoxylin reduced the β-sheet content of Aβ42 and made it assemble into antiparallel arrangement, which induced Aβ42 to form off-pathway aggregates. As a result, hematoxylin greatly alleviated Aβ42-induced cytotoxicity. Molecular dynamics simulations revealed the detailed interactions between hematoxylin and Aβ42. Four binding sites of hematoxylin on Aβ42 hexamer were identified, including the N-terminal region, S8GY10 region, turn region, and C-terminal region. Notably, abundant hydroxyl groups made hematoxylin prefer to interact with Aβ42 via hydrogen bonds. This also contributed to the formation of π-π stacking and hydrophobic interactions. Taken together, the research proved that hematoxylin was a potential agent against Aβ fibrillogenesis and cytotoxicity.
Collapse
Affiliation(s)
- Yilong Tu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Shuai Ma
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Fufeng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China.,College of Biotechnology and National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology , Tianjin 300457, P. R. China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
47
|
Agrawal N, Skelton AA. 12-Crown-4 Ether Disrupts the Patient Brain-Derived Amyloid-β-Fibril Trimer: Insight from All-Atom Molecular Dynamics Simulations. ACS Chem Neurosci 2016; 7:1433-1441. [PMID: 27454141 DOI: 10.1021/acschemneuro.6b00185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recent experimental data elucidated that 12-crown-4 ether molecule can disrupt Aβ40 fibrils but the mechanism of disruption remains elusive. We have performed a series of all-atom molecular dynamics simulations to study the molecular mechanism of Aβ40 fibril disruption by 12-crown-4. In the present study we have used the Aβ40 fibril trimer as it is the smallest unit that maintains a stable U-shaped structure, and serves as the nucleus to form larger fibrils. Our study reveals that 12-crown-4 ether can enter into the hydrophobic core region and form competitive, hydrophobic interactions with key hydrophobic residues; these interactions break the intersheet hydrophobic interactions and lead to the opening of the U-shaped topology and a loss of β-sheet structure. Furthermore, we observed periods of time when 12-crown-4 was in the hydrophobic core and periods of time when it interacted with Lys28 (chain C), a "tug of war"; the 12-crown-4 binding with Lys28 destabilizes the salt-bridge between Asp23 and Lys28. In addition to the two aforementioned binding modes, the 12-crown-4 binds with Lys16, which is known to form a salt-bridge with Glu22 in antiparallel arranged Aβ fibrils. Our results are in good agreement with experimental results and suggest that molecules that have the ability to interact with both the hydrophobic core region and positively charged residues could serve as potential inhibitors of Aβ fibrils.
Collapse
Affiliation(s)
- Nikhil Agrawal
- School
of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Adam A. Skelton
- School
of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
48
|
Li H, Rahimi F, Bitan G. Modulation of Amyloid β-Protein (Aβ) Assembly by Homologous C-Terminal Fragments as a Strategy for Inhibiting Aβ Toxicity. ACS Chem Neurosci 2016; 7:845-56. [PMID: 27322435 DOI: 10.1021/acschemneuro.6b00154] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Self-assembly of amyloid β-protein (Aβ) into neurotoxic oligomers and fibrillar aggregates is a key process thought to be the proximal event leading to development of Alzheimer's disease (AD). Therefore, numerous attempts have been made to develop reagents that disrupt this process and prevent the formation of the toxic oligomers and aggregates. An attractive strategy for developing such reagents is to use peptides derived from Aβ based on the assumption that such peptides would bind to full-length Aβ, interfere with binding of additional full-length molecules, and thereby prevent formation of the toxic species. Guided by this rationale, most of the studies in the last two decades have focused on preventing formation of the core cross-β structure of Aβ amyloid fibrils using β-sheet-breaker peptides derived from the central hydrophobic cluster of Aβ. Though this approach is effective in inhibiting fibril formation, it is generally inefficient in preventing Aβ oligomerization. An alternative approach is to use peptides derived from the C-terminus of Aβ, which mediates both oligomerization and fibrillogenesis. This approach has been explored by several groups, including our own, and led to the discovery of several lead peptides with moderate to high inhibitory activity. Interestingly, the mechanisms of these inhibitory effects have been found to be diverse, and only in a small percentage of cases involved interference with β-sheet formation. Here, we review the strategy of using C-terminal fragments of Aβ as modulators of Aβ assembly and discuss the relevant challenges, therapeutic potential, and mechanisms of action of such fragments.
Collapse
Affiliation(s)
- Huiyuan Li
- West Virginia University, Morgantown, West Virginia 26506, United States
| | - Farid Rahimi
- Biomedical
Science and Biochemistry, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Gal Bitan
- Department
of Neurology, David Geffen School of Medicine, Brain Research Institute,
and Molecular Biology Institute, University of California at Los Angeles, Neuroscience Research Building 1, Room 451 635 Charles E. Young Drive
South, Los Angeles, California 90095-7334, United States
| |
Collapse
|
49
|
Bag S, Chaudhury S, Pramanik D, DasGupta S, Dasgupta S. Hydrophobic tail length plays a pivotal role in amyloid beta (25-35) fibril-surfactant interactions. Proteins 2016; 84:1213-23. [DOI: 10.1002/prot.25069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Sudipta Bag
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | | | - Dibyendu Pramanik
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Sunando DasGupta
- Department of Chemical Engineering; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Swagata Dasgupta
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| |
Collapse
|
50
|
Kaffy J, Brinet D, Soulier JL, Correia I, Tonali N, Fera KF, Iacone Y, Hoffmann ARF, Khemtémourian L, Crousse B, Taylor M, Allsop D, Taverna M, Lequin O, Ongeri S. Designed Glycopeptidomimetics Disrupt Protein-Protein Interactions Mediating Amyloid β-Peptide Aggregation and Restore Neuroblastoma Cell Viability. J Med Chem 2016; 59:2025-40. [PMID: 26789783 DOI: 10.1021/acs.jmedchem.5b01629] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
How anti-Alzheimer's drug candidates that reduce amyloid 1-42 peptide fibrillization interact with the most neurotoxic species is far from being understood. We report herein the capacity of sugar-based peptidomimetics to inhibit both Aβ1-42 early oligomerization and fibrillization. A wide range of bio- and physicochemical techniques, such as a new capillary electrophoresis method, nuclear magnetic resonance, and surface plasmon resonance, were used to identify how these new molecules can delay the aggregation of Aβ1-42. We demonstrate that these molecules interact with soluble oligomers in order to maintain the presence of nontoxic monomers and to prevent fibrillization. These compounds totally suppress the toxicity of Aβ1-42 toward SH-SY5Y neuroblastoma cells, even at substoichiometric concentrations. Furthermore, demonstration that the best molecule combines hydrophobic moieties, hydrogen bond donors and acceptors, ammonium groups, and a hydrophilic β-sheet breaker element provides valuable insight for the future structure-based design of inhibitors of Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Julia Kaffy
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Dimitri Brinet
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.,Protéines et Nanotechnologies en Sciences Séparatives, Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Jean-Louis Soulier
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Isabelle Correia
- Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure - PSL Research University, CNRS UMR 7203 LBM, 4 place Jussieu, 75252 Paris, Cedex 05, France
| | - Nicolo Tonali
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Katia Fabiana Fera
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Yasmine Iacone
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.,Protéines et Nanotechnologies en Sciences Séparatives, Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Anaïs R F Hoffmann
- Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure - PSL Research University, CNRS UMR 7203 LBM, 4 place Jussieu, 75252 Paris, Cedex 05, France
| | - Lucie Khemtémourian
- Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure - PSL Research University, CNRS UMR 7203 LBM, 4 place Jussieu, 75252 Paris, Cedex 05, France
| | - Benoit Crousse
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Mark Taylor
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University , Lancaster LA1 4YQ, U.K
| | - David Allsop
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University , Lancaster LA1 4YQ, U.K
| | - Myriam Taverna
- Protéines et Nanotechnologies en Sciences Séparatives, Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Olivier Lequin
- Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure - PSL Research University, CNRS UMR 7203 LBM, 4 place Jussieu, 75252 Paris, Cedex 05, France
| | - Sandrine Ongeri
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| |
Collapse
|