1
|
Mordyl B, Fajkis-Zajączkowska N, Szafrańska K, Siwek A, Głuch-Lutwin M, Żmudzki P, Jończyk J, Karcz T, Słoczyńska K, Pękala E, Pomierny B, Krzyżanowska W, Jurczyk J, Skórkowska A, Sałach A, Jastrzębska-Więsek M, Walczak M, Gawlik MT, Smolik M, Kolaczkowski M, Marcinkowska M. Preferential Synaptic Type of GABA-A Receptor Ligands Enhancing Neuronal Survival and Facilitating Functional Recovery After Ischemic Stroke. J Med Chem 2024; 67:21859-21889. [PMID: 39668673 DOI: 10.1021/acs.jmedchem.4c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Selective enhancement of synaptic GABA signaling mediated by GABA-A receptors has been previously reported to promote functional recovery after ischemic stroke, while tonic GABA signaling has been detrimental. To identify agents that enhance synaptic signaling, we synthesized GABA-A ligands based on three chemotypes with affinity values pKi= 6.44-8.32. Representative compounds showed a preference in functional responses toward synaptic type of GABA-A receptors, compared to the extrasynaptic ones. In a cellular ischemia model (OGD), selected compounds showed the potential to improve neuronal recovery. The selected lead, compound 4, demonstrated the ability to reduce mitochondrial dysfunction, regulate intracellular calcium levels, decrease caspase 3 levels, and promote neurite outgrowth in in vitro assays. In an animal model, compound 4 enhanced motor recovery and showed neuroprotective activity by reducing infarct volume and decreasing poststroke acidosis. These findings underscore the value of selective ligands modulating synaptic GABA-A receptors in promoting recovery from ischemic stroke.
Collapse
Affiliation(s)
- Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Nikola Fajkis-Zajączkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Katarzyna Szafrańska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., Krakow 31-530, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| | - Jakub Jończyk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Bartosz Pomierny
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Weronika Krzyżanowska
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Jakub Jurczyk
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., Krakow 31-530, Poland
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Alicja Skórkowska
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Aleksandra Sałach
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maciej Tadeusz Gawlik
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Smolik
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Marcin Kolaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| |
Collapse
|
2
|
Siwek A, Marcinkowska M, Głuch-Lutwin M, Mordyl B, Wolak M, Jastrzębska-Więsek M, Wilczyńska-Zawal N, Wyska E, Szafrańska K, Karcz T, Ostrowska O, Bucki A, Kołaczkowski M. Dual 5-HT 6/SERT ligands for mitigating neuropsychiatric symptoms of dementia exerting neuroprotection against amyloid-β toxicity, memory preservation, and antidepressant-like properties. Eur J Med Chem 2024; 275:116601. [PMID: 38901106 DOI: 10.1016/j.ejmech.2024.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
In light of the biological targets alterations in dementia patients suffering from neuropsychiatric symptoms, particularly in the 5-HT6 receptor and SERT transporters, this study aimed to develop dual-acting molecules targeting both these targets. By combining a 5-substituted indole with piperazine scaffolds, we synthesized molecules with nanomolar affinities for these sites, avoiding interaction with off-targets detrimental to dementia patients. Preliminary pharmacodynamic and ADMET assays let the identification of compound 15 as a lead molecule. In vitro studies showed that 15 provided neuroprotection against Aβ toxicity and reduced the levels of proapoptotic enzymes: caspase 3 and 7. In vivo, 15 reversed MK-801-induced memory deficits and exhibited antidepressant-like effects. Further studies showed that acute administration of compound 15 at a dose of 5 mg/kg increased BDNF levels, which are crucial for supporting neuronal survival and potentially slowing cognitive decline in dementia. These findings suggest 15's potential as a therapeutic for behavioral and psychological symptoms of dementia (BPSD), warranting further investigation.
Collapse
Affiliation(s)
- Agata Siwek
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Monika Marcinkowska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Monika Głuch-Lutwin
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Barbara Mordyl
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Małgorzata Wolak
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | | | - Natalia Wilczyńska-Zawal
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Katarzyna Szafrańska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Tadeusz Karcz
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Olga Ostrowska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Adam Bucki
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Marcin Kołaczkowski
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland; Adamed Pharma S.A., Pienkow, 6A Mariana Adamkiewicza St., 05-152, Czosnów, Poland
| |
Collapse
|
3
|
Marcinkowska M, Fajkis-Zajączkowska N, Szafrańska K, Jończyk J, Siwek A, Mordyl B, Karcz T, Latacz G, Kolaczkowski M. 2-(4-Fluorophenyl)-1 H-benzo[ d]imidazole as a Promising Template for the Development of Metabolically Robust, α1β2γ2GABA-A Receptor-Positive Allosteric Modulators. ACS Chem Neurosci 2023; 14:1166-1180. [PMID: 36848624 PMCID: PMC10020958 DOI: 10.1021/acschemneuro.2c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Modulation of α1β2γ2GABA-A receptor subpopulation expressed in the basal ganglia region is a conceptually novel mode of pharmacological strategy that offers prospects to tackle a variety of neurological dysfunction. Although clinical findings provided compelling evidence for the validity of this strategy, the current chemical space of molecules able to modulate the α1/γ2 interface of the GABA-A receptor is limited to imidazo[1,2-a]pyridine derivatives that undergo rapid biotransformation. In response to a deficiency in the chemical repertoire of GABA-A receptors, we identified a series of 2-(4-fluorophenyl)-1H-benzo[d]imidazoles as positive allosteric modulators (PAMs) with improved metabolic stability and reduced potential for hepatotoxicity, where lead molecules 9 and 23 displayed interesting features in a preliminary investigation. We further disclose that the identified scaffold shows a preference for interaction with the α1/γ2 interface of the GABA-A receptor, delivering several PAMs of the GABA-A receptor. The present work provides useful chemical templates to further explore the therapeutic potential of GABA-A receptor ligands and enriches the chemical space of molecules suitable for the interaction with the α1/γ2 interface.
Collapse
Affiliation(s)
- Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Nikola Fajkis-Zajączkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Szafrańska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Jakub Jończyk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Marcin Kolaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| |
Collapse
|
4
|
Marcinkowska M, Mordyl B, Fajkis-Zajaczkowska N, Siwek A, Karcz T, Gawalska A, Bucki A, Żmudzki P, Partyka A, Jastrzębska-Więsek M, Pomierny B, Walczak M, Smolik M, Pytka K, Mika K, Kotańska M, Kolaczkowski M. Hybrid molecules combining GABA-A and serotonin 5-HT 6 receptors activity designed to tackle neuroinflammation associated with depression. Eur J Med Chem 2023; 247:115071. [PMID: 36603509 DOI: 10.1016/j.ejmech.2022.115071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
There is clear evidence that the presence of inflammatory factors and impaired GABA-ergic neurotransmission in depressed patients is associated with poor clinical outcome. We designed hybrid molecules, bearing the GABA molecule assembled with chemical fragments that interact with the serotonin 5-HT6 receptor. Such a combination aimed to curb neuroinflammation, remodel GABA-ergic signaling, and provide antidepressant-like activity. The most promising hybrid 3B exerted nanomolar affinity for 5-HT6 receptors and exerted agonistic properties on GABA-A receptors. Developability studies conferred that 3B exerted favorable drug-like properties and optimal brain penetration. In in vivo studies, 3B exerted robust antidepressant-like activity and proved to be highly effective in reducing levels of oxidative stress markers and the pro-inflammatory cytokine IL-6. The inetersting pharmacological profile of 3B makes it a promising candidate for further development for depression associated with neuroinflammation.
Collapse
Affiliation(s)
- Monika Marcinkowska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Barbara Mordyl
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | | | - Agata Siwek
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Tadeusz Karcz
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Alicja Gawalska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Adam Bucki
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Paweł Żmudzki
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Anna Partyka
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | | | - Bartosz Pomierny
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Maria Walczak
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Magdalena Smolik
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Karolina Pytka
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Kamil Mika
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Magdalena Kotańska
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland
| | - Marcin Kolaczkowski
- Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688, Krakow, Poland; Adamed Pharma S.A., Pienkow, 6A Mariana Adamkiewicza St., 05-152, Czosnów, Poland
| |
Collapse
|
5
|
Molecular Features Triggered by Antipsychotic Medication in Brain Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:65-73. [DOI: 10.1007/978-3-030-97182-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Liao S, Xu H, Yang B, Wang J, Zhou X, Lin X, Liu Y. Gold-catalyzed oxidation of terminal alkynes to glyoxals and their reactions with 2-phenylimidazo[1,2- a]pyridines: one-pot synthesis of 1,2-diones. Org Biomol Chem 2021; 19:8735-8739. [PMID: 34476433 DOI: 10.1039/d1ob01507a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel one-pot protocol for the convenient and efficient synthesis of (2-phenylimidazo[1,2-a]pyridin-3-yl)alkane-1,2-diones (3) in good yields (32-88%) from 2-phenylimidazo[1,2-a]pyridines (1) and terminal alkynes (2) has been established with a wide range of substrate scope. A tandem reaction sequence containing gold-catalyzed double oxidations of terminal alkynes to generate glyoxals, nucleophilic addition of 2-phenylimidazo[1,2-a]pyridines to glyoxals to yield α-hydroxyl ketones, and oxygenation of the α-hydroxyl ketones to afford the final products 3 under air atmosphere is involved in this method. Simple operation, mild reaction conditions, and widely available substrates make this strategy more affordable.
Collapse
Affiliation(s)
- Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Huayan Xu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
7
|
Ling Y, Hao ZY, Liang D, Zhang CL, Liu YF, Wang Y. The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design. Drug Des Devel Ther 2021; 15:4289-4338. [PMID: 34675489 PMCID: PMC8520849 DOI: 10.2147/dddt.s329547] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Pyridine-based ring systems are one of the most extensively used heterocycles in the field of drug design, primarily due to their profound effect on pharmacological activity, which has led to the discovery of numerous broad-spectrum therapeutic agents. In the US FDA database, there are 95 approved pharmaceuticals that stem from pyridine or dihydropyridine, including isoniazid and ethionamide (tuberculosis), delavirdine (HIV/AIDS), abiraterone acetate (prostate cancer), tacrine (Alzheimer's), ciclopirox (ringworm and athlete's foot), crizotinib (cancer), nifedipine (Raynaud's syndrome and premature birth), piroxicam (NSAID for arthritis), nilvadipine (hypertension), roflumilast (COPD), pyridostigmine (myasthenia gravis), and many more. Their remarkable therapeutic applications have encouraged researchers to prepare a larger number of biologically active compounds decorated with pyridine or dihydropyridine, expandeing the scope of finding a cure for other ailments. It is thus anticipated that myriad new pharmaceuticals containing the two heterocycles will be available in the forthcoming decade. This review examines the prospects of highly potent bioactive molecules to emphasize the advantages of using pyridine and dihydropyridine in drug design. We cover the most recent developments from 2010 to date, highlighting the ever-expanding role of both scaffolds in the field of medicinal chemistry and drug development.
Collapse
Affiliation(s)
- Yong Ling
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Zhi-You Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
| | - Chun-Lei Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yan Wang
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Zheng X, Wang C, Zhai N, Luo X, Liu G, Ju X. In Silico Screening of Novel α1-GABA A Receptor PAMs towards Schizophrenia Based on Combined Modeling Studies of Imidazo [1,2-a]-Pyridines. Int J Mol Sci 2021; 22:9645. [PMID: 34502550 PMCID: PMC8431797 DOI: 10.3390/ijms22179645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/01/2023] Open
Abstract
The ionotropic GABAA receptor (GABAAR) has been proven to be an important target of atypical antipsychotics. A novel series of imidazo [1,2-a]-pyridine derivatives, as selective positive allosteric modulators (PAMs) of α1-containing GABAARs with potent antipsychotic activities, have been reported recently. To better clarify the pharmacological essentiality of these PAMs and explore novel antipsychotics hits, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking, pharmacophore modeling, and molecular dynamics (MD) were performed on 33 imidazo [1,2-a]-pyridines. The constructed 3D-QSAR models exhibited good predictive abilities. The dockings results and MD simulations demonstrated that hydrogen bonds, π-π stackings, and hydrophobic interactions play essential roles in the binding of these novel PAMs in the GABAAR binding pocket. Four hit compounds (DS01-04) were then screened out by the combination of the constructed models and computations, including the pharmacophore model, Topomer Search, molecular dockings, ADME/T predictions, and MD simulations. The compounds DS03 and DS04, with higher docking scores and better predicted activities, were also found to be relatively stable in the binding pocket by MD simulations. These results might provide a significant theoretical direction or information for the rational design and development of novel α1-GABAAR PAMs with antipsychotic activities.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
| | - Chenchen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
| | - Na Zhai
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (C.W.); (N.Z.); (X.L.)
| |
Collapse
|
9
|
Sari S, Barut B, Marcinkowska M, Sabuncuoğlu S, Avci A, Koçak Aslan E, Özel A, Siwek A. Potential of nafimidone derivatives against co-morbidities of epilepsy: In vitro, in vivo, and in silico investigations. Drug Dev Res 2021; 83:184-193. [PMID: 34291476 DOI: 10.1002/ddr.21858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/12/2022]
Abstract
Nafimidone is known for its clinical antiepileptic effects and alcohol derivatives of nafimidone were reported be potent anticonvulsants. These compounds are structurally similar to miconazole, which is known to inhibit cholinesterases, protect neurons, and ameliorate cognitive decline. Herein, we aimed to reveal the potential of three nafimidone alcohol esters (5 g, 5i, and 5 k), which were previously reported for their anticonvulsant effects, against co-morbidities of epilepsy such as inflammatory and neuropathic pain, cognitive and behavioral deficits, and neuron death, and understand their roles in related pathways such as γ-butyric acid type A (GABAA ) receptor and cholinesterases using in vitro, in vivo and in silico methods. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for cytotoxicity evaluation, hippocampal slice culture assay for neuroprotection, formalin test for acute and inflammatory pain, sciatic ligation for neuropathic pain, Morris water maze and open field locomotor tasks for cognitive and behavioral deficits, radioligand binding for GABAA receptor affinity, spectrophotometric methods for cholinesterase inhibition in vitro, and molecular docking in silico. The compounds were non-toxic to fibroblast cells. 5 k was neuroprotective against kainic acid-induced neuron death. 5i reduced pain response of mice in both the acute and the inflammatory phases. 5i improved survival upon status epilepticus. The compounds showed no affinity to GABAA receptor but inhibited acetylcholinesterase, 5 k also inhibited butyrylcholinesterase. The compounds were predicted to interact mainly with the peripheric anionic site of cholinesterase enzymes. The title compounds showed neuroprotective, analgesic, and cholinesterase inhibitory effects, thus they bear promise against certain co-morbidities of epilepsy with neurological insults.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Monika Marcinkowska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ahmet Avci
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ebru Koçak Aslan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Arzu Özel
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Agata Siwek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
10
|
Khan E. Pyridine Derivatives as Biologically Active Precursors; Organics and Selected Coordination Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100332] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ezzat Khan
- Department of Chemistry University of Malakand, Chakdara 18800, Lower Dir Khyber Pakhtunkhwa Pakistan
- Department of Chemistry, College of Science University of Bahrain Sakhir 32038 Bahrain
| |
Collapse
|
11
|
Zhang Y, Wang K, Yu Z. Drug Development in Channelopathies: Allosteric Modulation of Ligand-Gated and Voltage-Gated Ion Channels. J Med Chem 2020; 63:15258-15278. [PMID: 33253554 DOI: 10.1021/acs.jmedchem.0c01304] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ion channels have been characterized as promising drug targets for treatment of numerous human diseases. Functions of ion channels can be fine-tuned by allosteric modulators, which interact with channels and modulate their activities by binding to sites spatially discrete from those of orthosteric ligands. Positive and negative allosteric modulators have presented a plethora of potential therapeutic advantages over traditionally orthosteric agonists and antagonists in terms of selectivity and safety. This thematic review highlights the discovery of representative allosteric modulators for ligand-gated and voltage-gated ion channels, discussing in particular their identifications, locations, and therapeutic uses in the treatment of a range of channelopathies. Additionally, structures and functions of selected ion channels are briefly described to aid in the rational design of channel modulators. Overall, allosteric modulation represents an innovative targeting approach, and the corresponding modulators provide an abundant but challenging landscape for novel therapeutics targeting ligand-gated and voltage-gated ion channels.
Collapse
Affiliation(s)
- Yanyun Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ke Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiyi Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
12
|
Fajkis N, Marcinkowska M, Gryzło B, Krupa A, Kolaczkowski M. Study on a Three-Step Rapid Assembly of Zolpidem and Its Fluorinated Analogues Employing Microwave-Assisted Chemistry. Molecules 2020; 25:molecules25143161. [PMID: 32664332 PMCID: PMC7397218 DOI: 10.3390/molecules25143161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
We developed an efficient microwave-assisted three-step synthesis of zolpidem and its fluorinated analogues 1–3. The procedure relays on the utilization of easily accessible and inexpensive starting materials. Our protocol shows superior performance in terms of yield and purity of products, compared to conventional heating systems. Notably, the total time needed for reaction accomplishment is significantly lower comparing to oil bath heating systems. Finally, we have performed a detailed study on the preparation of zolpidem tartrate salt I, and we assessed its particle-sizes using a polarizing microscope. Our goal was to select the appropriate method that generates the acceptable particle-size, since the solid-size directly influences solubility in biological fluids and further bioavailability. We believe that the disclosed procedure will help to produce a lab-scale quantity of zolpidem and its fluorinated derivatives 1–3, as well as zolpidem tartrate salt I, with suitable fine-particle size for further biological experimentation.
Collapse
|
13
|
Sofi FA, Dubey G, Sharma R, Das P, Bharatam PV. Palladium-catalyzed aminocarbonylation of 2-phenyimidazo[1,2-a] pyridines using chloroform as carbon monoxide source and their mechanistic studies. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019; 26:4885-4913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
15
|
Metabolic stability and its role in the discovery of new chemical entities. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:345-361. [PMID: 31259741 DOI: 10.2478/acph-2019-0024] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2018] [Indexed: 01/19/2023]
Abstract
Determination of metabolic profiles of new chemical entities is a key step in the process of drug discovery, since it influences pharmacokinetic characteristics of therapeutic compounds. One of the main challenges of medicinal chemistry is not only to design compounds demonstrating beneficial activity, but also molecules exhibiting favourable pharmacokinetic parameters. Chemical compounds can be divided into those which are metabolized relatively fast and those which undergo slow biotransformation. Rapid biotransformation reduces exposure to the maternal compound and may lead to the generation of active, non-active or toxic metabolites. In contrast, high metabolic stability may promote interactions between drugs and lead to parent compound toxicity. In the present paper, issues of compound metabolic stability will be discussed, with special emphasis on its significance, in vitro metabolic stability testing, dilemmas regarding in vitro-in vivo extrapolation of the results and some aspects relating to different preclinical species used in in vitro metabolic stability assessment of compounds.
Collapse
|