1
|
Dell'isola GB, Verrotti A, Sciaccaluga M, Roberti R, Parnetti L, Russo E, Costa C. Evaluating bexicaserin for the treatment of developmental epileptic encephalopathies. Expert Opin Pharmacother 2024; 25:1121-1130. [PMID: 38916481 DOI: 10.1080/14656566.2024.2373350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Developmental epileptic encephalopathies (DEEs) pose significant challenges due to their refractory nature and limited treatment options. Despite advancements in genetic understanding, effective therapies targeting underlying pathophysiology are lacking. Serotoninergic dysfunction has been implicated in epilepsy, sparking interest in serotonin as a therapeutic target. AREA COVERED This article explores the potential of bexicaserin, a selective 5-HT2C receptor agonist, as an adjunctive antiseizure medication in DEEs. Bexicaserin is thought to modulate GABAergic neurotransmission, suppressing central hyperexcitability. Preclinical studies demonstrate its efficacy across various seizure models. Clinical trials, including the Pacific Study, reveal promising results in reducing motor seizures. However, challenges such as adverse effects and treatment discontinuation underscore the need for further investigation. EXPERT OPINION The efficacy of 5-HT2C serotoninergic agonists, validated in preclinical and clinical studies, highlights serotonin's role in DEEs. Bexicaserin offers new therapeutic possibilities, potentially synergizing with existing antiseizure medications. Polypharmacotherapy, targeting distinct pathways, may enhance therapeutic outcomes. Monitoring pharmacological interactions and addressing central nervous system comorbidities are crucial for optimizing treatment strategies. Further research is needed to elucidate bexicaserin's mechanisms and potential antiepileptogenic effects.
Collapse
Affiliation(s)
| | | | - Miriam Sciaccaluga
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Mauro Baschirotto Rare Disease Foundation BIRD Onlus, Longare, VI, Italy
| | - Roberta Roberti
- Science of Health Department, University Magna Grecia of Catanzaro, Catanzaro, Italy
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilio Russo
- Science of Health Department, University Magna Grecia of Catanzaro, Catanzaro, Italy
| | - Cinzia Costa
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Sanger GJ, Andrews PLR. Review article: An analysis of the pharmacological rationale for selecting drugs to inhibit vomiting or increase gastric emptying during treatment of gastroparesis. Aliment Pharmacol Ther 2023; 57:962-978. [PMID: 36919196 DOI: 10.1111/apt.17466] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Drugs which can inhibit nausea/vomiting and/or increase gastric emptying are used to treat gastroparesis, mostly 'off-label'. Within each category, they act at different targets and modulate different physiological mechanisms. AIMS Address the questions: In gastroparesis, why should blocking one pathway causing vomiting, be more appropriate than another? Why might increasing gastric emptying via one mechanism be more appropriate than another? METHODS Drugs used clinically were identified via consensus opinions and reviews, excluding the poorly characterised. Their pharmacology was defined, mapped to mechanisms influencing vomiting and gastric emptying, and rationale developed for therapeutic use. RESULTS Vomiting: Rationale for 5-HT3 , D2 , H1 or muscarinic antagonists, and mirtazapine, amitriptyline, nortriptyline, are poor. Arguments for inhibiting central consequences of vagal afferent transmission by NK1 antagonism are complicated by doubts over effects on nausea. Gastric emptying: Confusion emerges because of side-effects of drugs increasing gastric emptying: Metoclopramide (5-HT4 agonist, D2 and 5-HT3 antagonist; also blocks some emetic stimuli and causes tardive dyskinesia) and Erythromycin (high-efficacy motilin agonist, requiring low doses to minimise side-effects). Limited trials with selective 5-HT4 agonists indicate variable efficacy. CONCLUSIONS Several drug classes inhibiting vomiting have no scientific rationale. NK1 antagonism has rationale but complicated by limited efficacy against nausea. Studies must resolve variable efficacy of selective 5-HT4 agonists and apparent superiority over motilin agonists. Overall, lack of robust activity indicates a need for novel approaches targeting nausea (e.g., modulating gastric pacemaker or vagal activity, use of receptor agonists or new targets such as GDF15) and objective assessments of nausea.
Collapse
Affiliation(s)
- Gareth J Sanger
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Paul L R Andrews
- Division of Biomedical Sciences, St George's University of London, London, UK
| |
Collapse
|
3
|
Doyle MR, Peng LN, Cao J, Rice KC, Newman AH, Collins GT. 3,4-Methylenedioxypyrovalerone High-Responder Phenotype as a Tool to Evaluate Candidate Medications for Stimulant Use Disorder. J Pharmacol Exp Ther 2023; 384:353-362. [PMID: 36627204 PMCID: PMC9976791 DOI: 10.1124/jpet.122.001419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Despite decades of research, there are no medications approved by the United States Food and Drug Administration to treat stimulant use disorders. Self-administration procedures are widely used to screen candidate medications for stimulant use disorder, although preclinical reductions in stimulant self-administration have not translated to meaningful reductions in stimulant use in humans. One possible reason for this discordance is that most preclinical studies evaluate candidate medications under conditions that promote predictable, and well-regulated patterns of drug-taking rather than the dysregulated and/or compulsive patterns of drug-taking characteristic of a stimulant use disorder. A subset of rats ("high-responders") that self-administer 3,4-methelyendioxypyrovalerone (MDPV), a monoamine uptake inhibitor, develop high levels of dysregulated drug-taking consistent with behaviors related to stimulant use disorders. Because MDPV acts on dopamine, serotonin (5-HT), and sigma receptor systems, the current studies compared the potency and effectiveness of a dopamine D3 receptor partial agonist (VK4-40) or antagonist (VK4-116), a sigma receptor antagonist (BD1063), a dopamine D2/D3/sigma receptor antagonist (haloperidol), and a 5-HT2C receptor agonist (CP-809,101) to reduce MDPV (0.0032-0.1 mg/kg/infusion) self-administration in high- and low-responding rats as well as rats self-administering cocaine (0.032-1 mg/kg/infusion). VK4-40, VK4-116, haloperidol, and CP-809,101 were equipotent and effective at reducing drug-taking in all three groups of rats, including the high-responders; however, VK4-116 and CP-809,101 were less potent at reducing drug-taking in female compared with male rats. Together, these studies suggest that drugs targeting dopamine D3 or 5-HT2C receptors can effectively reduce dysregulated patterns of stimulant use, highlighting their potential utility for treating stimulant use disorders. SIGNIFICANCE STATEMENT: There are no United States Food and Drug Administration-approved treatments for stimulant use disorder, perhaps in part because candidate medications are most often evaluated in preclinical models using male subjects with well-regulated drug-taking. In an attempt to better model aberrant drug taking, this study found compounds acting at dopamine D3 or 5-HT2C receptors can attenuate drug-taking in male and female rats that self-administered two different stimulants and exhibited either a high or low substance use disorder-like phenotype.
Collapse
Affiliation(s)
- Michelle R Doyle
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Lindsey N Peng
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Jianjing Cao
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Kenner C Rice
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Amy Hauck Newman
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Gregory T Collins
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| |
Collapse
|
4
|
Abstract
OPINION STATEMENT Olanzapine has become a major drug in the management of chemotherapy-induced nausea and vomiting as a prophylactic agent. In addition, a recent randomized trial has demonstrated its benefits in treating nausea and vomiting associated with advanced cancer. The added benefit to olanzapine is that it also stimulates appetite. As a result, since it treats multiple symptoms associated with advanced cancer, it is likely to become the antiemetic of choice in palliative care at least in the USA. The added benefit of treating insomnia and the avoidance of benzodiazepines should place olanzapine in at the top of the list of drugs to use for patients who do complain of insomnia. There is no good evidence that it potentiates the respiratory depression of opioids unlike benzodiazepines. The evidence is weak that olanzapine in as an adjuvant analgesic. Hopefully, future trials will explore this in greater depth. The benefits of adding olanzapine to potent opioids are that it may reduce craving, drug cues, and opioid misuse. Other symptoms like anxiety and depression may be addressed by the addition of olanzapine to standard antidepressants.
Collapse
Affiliation(s)
- Mellar P Davis
- Geisinger Medical Center, 100 N Academy Ave, Danville, PA, 17822, USA.
| | - Gareth J Sanger
- Blizard Institute and National Bowel Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England
| |
Collapse
|
5
|
Suppression of cocaine relapse-like behaviors upon pimavanserin and lorcaserin co-administration. Neuropharmacology 2020; 168:108009. [DOI: 10.1016/j.neuropharm.2020.108009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
|
6
|
Higgins GA, Fletcher PJ, Shanahan WR. Lorcaserin: A review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol Ther 2020; 205:107417. [DOI: 10.1016/j.pharmthera.2019.107417] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
7
|
Silenieks LB, Carroll NK, Van Niekerk A, Van Niekerk E, Taylor C, Upton N, Higgins GA. Evaluation of Selective 5-HT 2C Agonists in Acute Seizure Models. ACS Chem Neurosci 2019; 10:3284-3295. [PMID: 31082204 DOI: 10.1021/acschemneuro.8b00739] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The 5-HT releaser/reuptake inhibitor fenfluramine has been recently reported to provide benefit as an adjunctive treatment for Dravet and Lennox-Gastaut syndromes, two types of severe childhood epilepsy. Despite its enhancement of 5-HT function, many effects of fenfluramine have been demonstrated to be dependent on 5-HT2C receptor activation, suggesting that 5-HT2C receptor activation may have an anticonvulsant property. The present study was designed to evaluate fenfluramine and 5-HT agonists of varying 5-HT2C agonist selectivity, the relatively nonselective mCPP and Ro 60-0175, and the selective 5-HT2C agonists lorcaserin and CP-809101 across a variety of acute seizure tests conducted in adult rats and mice, which have been instrumental in identifying the majority of clinically efficacious antiepileptic drugs. Tests included the maximal electroshock seizure (MES), MES threshold, and 6 Hz electrical convulsive seizure models and the chemoconvulsant pentylenetetrazole test. The effect of mCPP, lorcaserin, and CP-809101 against electrically evoked seizures in amygdala kindled rats was also investigated. Overall, at doses known to interact with 5-HT2CR, there was no clear class-related effect of these agonists in any test. The only notable antiseizure effect of fenfluramine was inhibition of MES-induced tonic seizures in the rat. The current preclinical studies using the classical acute seizure tests and an amygdala kindling model do not identify a reliable antiseizure effect of fenfluramine, an agent now used in the treatment of human epilepsies, including Dravet syndrome and Lennox-Gastaut syndrome. Given the nature of these epilepsies, early life and/or genetic models may have better construct validity and be more appropriate for further study.
Collapse
Affiliation(s)
- Leonardo B. Silenieks
- Intervivo Solutions Inc, Toronto, ON M5A 4K2, Canada
- Vivocore, Toronto, ON N1M 2W4, Canada
| | | | | | | | | | - Neil Upton
- Transpharmation Ltd, London NW10NH, United Kingdom
| | - Guy A. Higgins
- Intervivo Solutions Inc, Toronto, ON M5A 4K2, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON ON M5S, Canada
| |
Collapse
|
8
|
Price AE, Anastasio NC, Stutz SJ, Hommel JD, Cunningham KA. Serotonin 5-HT 2C Receptor Activation Suppresses Binge Intake and the Reinforcing and Motivational Properties of High-Fat Food. Front Pharmacol 2018; 9:821. [PMID: 30100875 PMCID: PMC6072841 DOI: 10.3389/fphar.2018.00821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023] Open
Abstract
Binge eating disorder (BED) is characterized by dysfunctional hedonic food intake and reward-related processes. Activation of the serotonin (5-HT) 5-HT2C receptor (5-HT2CR) suppresses both food intake and reward-related behaviors and is thus poised to regulate BED. This study assessed the effects of 5-HT2CR activation via the selective 5-HT2CR agonist WAY163909 on binge eating-related behaviors in adult male Sprague-Dawley rats. Low doses of WAY163909 (1.0, 2.0 mg/kg) suppressed high-fat food (HFF) binge intake, but not standard food non-binge intake. WAY163909 (1.0 mg/kg) also attenuated operant responding for self-administered HFF pellets on fixed and progressive ratio schedules of reinforcement, indicating that 5-HT2CR activation suppresses the reinforcing and motivational properties of HFF, respectively. These findings suggest that activation of the 5-HT2CR may be effective at suppressing binge eating in patients with BED via suppression of the reinforcing and motivational properties of HFF. This work supports future studies targeting the 5-HT2CR in the treatment of BED.
Collapse
Affiliation(s)
- Amanda E. Price
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
| | - Noelle C. Anastasio
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sonja J. Stutz
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
| | - Jonathan D. Hommel
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
9
|
Higgins GA, Zeeb FD, Fletcher PJ. Role of impulsivity and reward in the anti-obesity actions of 5-HT 2C receptor agonists. J Psychopharmacol 2017; 31:1403-1418. [PMID: 29072522 DOI: 10.1177/0269881117735797] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The selective 5-HT2C receptor agonist lorcaserin entered clinical obesity trials with the prevalent view that satiety was a primary mechanism of action. Subsequent Phase II and III trials demonstrated efficacy in terms of weight loss, although the overall effect size (~3% placebo-corrected change) is considered modest. Lorcaserin has been approved by the FDA for the treatment of obesity with lifestyle modification, but since its introduction in 2013 its sales are in decline, probably due to its overall modest effect. However, in some individuals, lorcaserin has a much more clinically significant effect (i.e. >10% placebo-corrected change), although what common features, if any, define these high responders is presently unknown. In the present article we highlight the evidence that alternative mechanisms to satiety may contribute to the anti-obesity effect of lorcaserin, namely effects on constructs of primary and conditioned reward and impulsivity. This may better inform the clinical evaluation of lorcaserin (and any future 5-HT2C receptor agonists) to subgroups of obese subjects characterized by overeating due to maladaptive impulsivity and reward mechanisms. One such population might be individuals diagnosed with binge eating disorder.
Collapse
Affiliation(s)
- Guy A Higgins
- 1 InterVivo Solutions Inc., Toronto, Canada.,2 Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Fiona D Zeeb
- 3 Centre for Addiction and Mental Health, Toronto, Canada.,4 Department of Psychology & Psychiatry, University of Toronto, Toronto, Canada
| | - Paul J Fletcher
- 3 Centre for Addiction and Mental Health, Toronto, Canada.,4 Department of Psychology & Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|