1
|
Cornelissen FMG, He Z, Ciputra E, de Haas RR, Beumer‐Chuwonpad A, Noske D, Vandertop WP, Piersma SR, Jiménez CR, Murre C, Westerman BA. The translatome of glioblastoma. Mol Oncol 2025; 19:716-740. [PMID: 39417309 PMCID: PMC11887679 DOI: 10.1002/1878-0261.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GB), the most common and aggressive brain tumor, demonstrates intrinsic resistance to current therapies, resulting in poor clinical outcomes. Cancer progression can be partially attributed to the deregulation of protein translation mechanisms that drive cancer cell growth. In this study, we present the translatome landscape of GB as a valuable data resource. Eight patient-derived GB sphere cultures (GSCs) were analyzed using ribosome profiling and messenger RNA (mRNA) sequencing. We investigated inter-cell-line differences through differential expression analysis at both the translatome and transcriptome levels. Translational changes post-radiotherapy were assessed at 30 and 60 min. The translation of non-coding RNAs (ncRNAs) was validated using in-house and public mass spectrometry (MS) data, whereas RNA expression was confirmed by quantitative PCR (qPCR). Our findings demonstrate that ribosome sequencing provides more detailed information than MS or transcriptional analyses. Transcriptional similarities among GSCs correlate with translational similarities, aligning with previously defined subtypes such as proneural and mesenchymal. Additionally, we identified a broad spectrum of open reading frame types in both coding and non-coding mRNA regions, including long non-coding RNAs (lncRNAs) and pseudogenes undergoing active translation. Translation of ncRNAs into peptides was independently confirmed by in-house data and external MS data. We also observed that translational regulation of histones (downregulated) and splicing factors (upregulated) occurs in response to radiotherapy. These data offer new insights into genome-wide protein synthesis, identifying translationally regulated genes and alternative translation initiation sites in GB under normal and radiotherapeutic conditions, providing a rich resource for GB research. Further functional validation of differentially expressed genes after radiotherapy is needed. Understanding translational control in GB can reveal mechanistic insights and identify currently unknown biomarkers, ultimately enhancing the diagnosis and treatment of this aggressive brain cancer.
Collapse
Affiliation(s)
- Fleur M. G. Cornelissen
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Zhaoren He
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
| | - Edward Ciputra
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Richard R. de Haas
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | | | - David Noske
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - W. Peter Vandertop
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Sander R. Piersma
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | - Connie R. Jiménez
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | - Cornelis Murre
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
| | - Bart A. Westerman
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| |
Collapse
|
2
|
Wu Z, Bonneil É, Belford M, Boeser C, Dunyach JJ, Thibault P. Targeted Mass Spectrometry Analyses of Somatic Mutations in Colorectal Cancer Specimens Using Differential Ion Mobility. J Proteome Res 2024; 23:644-652. [PMID: 38153093 DOI: 10.1021/acs.jproteome.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Identification of K-Ras and B-Raf mutations in colorectal cancer (CRC) is essential to predict patients' response to anti-EGFR therapy and formulate appropriate therapeutic strategies to improve prognosis and survival. Here, we combined parallel reaction monitoring (PRM) with high-field asymmetric waveform ion mobility (FAIMS) to enhance mass spectrometry sensitivity and improve the identification of low-abundance K-Ras and B-Raf mutations in biological samples without immunoaffinity enrichment. In targeted LC-MS/MS analyses, FAIMS reduced the occurrence of interfering ions and enhanced precursor ion purity, resulting in a 3-fold improvement in the detection limit for K-Ras and B-Raf mutated peptides. In addition, the ion mobility separation of isomeric peptides using FAIMS facilitated the unambiguous identification of K-Ras G12D and G13D peptides. The application of targeted LC-MS/MS analyses using FAIMS is demonstrated for the detection and quantitation of B-Raf V600E, K-Ras G12D, G13D, and G12V in CRC cell lines and primary specimens.
Collapse
Affiliation(s)
- Zhaoguan Wu
- Institute for Research in Immunology and Cancer (IRIC) Université de Montréal, Montréal H3T 1J4, Canada
- Department of Chemistry, Université de Montréal, MIL Campus, Montréal H2 V 0B3, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer (IRIC) Université de Montréal, Montréal H3T 1J4, Canada
| | - Michael Belford
- ThermoFisher Scientific, San Jose, California 95134, United States
| | - Cornelia Boeser
- ThermoFisher Scientific, San Jose, California 95134, United States
| | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC) Université de Montréal, Montréal H3T 1J4, Canada
- Department of Chemistry, Université de Montréal, MIL Campus, Montréal H2 V 0B3, Canada
| |
Collapse
|
3
|
Lin TT, Zhang T, Kitata RB, Liu T, Smith RD, Qian WJ, Shi T. Mass spectrometry-based targeted proteomics for analysis of protein mutations. MASS SPECTROMETRY REVIEWS 2023; 42:796-821. [PMID: 34719806 PMCID: PMC9054944 DOI: 10.1002/mas.21741] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 05/03/2023]
Abstract
Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.
Collapse
Affiliation(s)
- Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Reta B. Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
4
|
Babačić H, Galardi S, Umer HM, Hellström M, Uhrbom L, Maturi N, Cardinali D, Pellegatta S, Michienzi A, Trevisi G, Mangiola A, Lehtiö J, Ciafrè SA, Pernemalm M. Glioblastoma stem cells express non-canonical proteins and exclusive mesenchymal-like or non-mesenchymal-like protein signatures. Mol Oncol 2023; 17:238-260. [PMID: 36495079 PMCID: PMC9892829 DOI: 10.1002/1878-0261.13355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) cancer stem cells (GSCs) contribute to GBM's origin, recurrence, and resistance to treatment. However, the understanding of how mRNA expression patterns of GBM subtypes are reflected at global proteome level in GSCs is limited. To characterize protein expression in GSCs, we performed in-depth proteogenomic analysis of patient-derived GSCs by RNA-sequencing and mass-spectrometry. We quantified > 10 000 proteins in two independent GSC panels and propose a GSC-associated proteomic signature characterizing two distinct phenotypic conditions; one defined by proteins upregulated in proneural and classical GSCs (GPC-like), and another by proteins upregulated in mesenchymal GSCs (GM-like). The GM-like protein set in GBM tissue was associated with necrosis, recurrence, and worse overall survival. Through proteogenomics, we discovered 252 non-canonical peptides in the GSCs, i.e., protein sequences that are variant or derive from genome regions previously considered non-protein-coding, including variants of the heterogeneous ribonucleoproteins implicated in RNA splicing. In summary, GSCs express two protein sets that have an inverse association with clinical outcomes in GBM. The discovery of non-canonical protein sequences questions existing gene models and pinpoints new protein targets for research in GBM.
Collapse
Affiliation(s)
- Haris Babačić
- Department of Oncology and PathologyKarolinska Institute, Science for Life LaboratoryStockholmSweden
| | - Silvia Galardi
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
| | - Husen M. Umer
- Department of Oncology and PathologyKarolinska Institute, Science for Life LaboratoryStockholmSweden
| | - Mats Hellström
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | | | - Deborah Cardinali
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
| | - Serena Pellegatta
- Unit of Immunotherapy of Brain Tumors, Department of Molecular Neuro‐Oncology, Foundation IRCCSInstitute for Neurology Carlo BestaMilanItaly
| | | | - Gianluca Trevisi
- Neurosurgical UnitHospital Spirito Santo, Pescara, “G. D'Annunzio” UniversityChietiItaly
| | - Annunziato Mangiola
- Neurosurgical UnitHospital Spirito Santo, Pescara, “G. D'Annunzio” UniversityChietiItaly
| | - Janne Lehtiö
- Department of Oncology and PathologyKarolinska Institute, Science for Life LaboratoryStockholmSweden
| | - Silvia Anna Ciafrè
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
| | - Maria Pernemalm
- Department of Oncology and PathologyKarolinska Institute, Science for Life LaboratoryStockholmSweden
| |
Collapse
|
5
|
MEOX2 Regulates the Growth and Survival of Glioblastoma Stem Cells by Modulating Genes of the Glycolytic Pathway and Response to Hypoxia. Cancers (Basel) 2022; 14:cancers14092304. [PMID: 35565433 PMCID: PMC9099809 DOI: 10.3390/cancers14092304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma is the most common incurable primary brain tumor in adults, typically leading to death within 15 months of diagnosis. Although there is an ongoing debate in the scientific community about the precise cellular origin of this tumor, glioblastoma stem cells (GSCs), which are able to self-renew, yield a full tumor mass, and determine chemo- and radio-resistance, are recognized to have a pivotal role. Our research aims to understand the role of the mesenchyme homeobox 2 (MEOX2) transcription factor in GSCs where it is strongly and specifically expressed. We have found that MEOX2 is indeed important for the survival of these cells. In fact, when we reduce its expression in two different GSC lines, they undergo a massive death accompanied by the inhibition of key genes of the glycolytic metabolism, the main source of energy for these cells. Our results reveal a novel function for MEOX2 in glioblastoma and suggest a mechanism through which GSCs may survive even in unfavorable conditions. Abstract The most widely accepted hypothesis for the development of glioblastoma suggests that glioblastoma stem-like cells (GSCs) are crucially involved in tumor initiation and recurrence as well as in the occurrence of chemo- and radio-resistance. Mesenchyme homeobox 2 (MEOX2) is a transcription factor overexpressed in glioblastoma, whose expression is negatively correlated with patient survival. Starting from our observation that MEOX2 expression is strongly enhanced in six GSC lines, we performed shRNA-mediated knock-down experiments in two different GSC lines and found that MEOX2 depletion resulted in the inhibition of cell growth and sphere-forming ability and an increase in apoptotic cell death. By a deep transcriptome analysis, we identified a core group of genes modulated in response to MEOX2 knock-down. Among these genes, the repressed ones are largely enriched in genes involved in the hypoxic response and glycolytic pathway, two strictly related pathways that contribute to the resistance of high-grade gliomas to therapies. An in silico study of the regulatory regions of genes differentially expressed by MEOX2 knock-down revealed that they mainly consisted of GC-rich regions enriched for Sp1 and Klf4 binding motifs, two main regulators of metabolism in glioblastoma. Our results show, for the first time, the involvement of MEOX2 in the regulation of genes of GSC metabolism, which is essential for the survival and growth of these cells.
Collapse
|
6
|
Galdieri L, Jash A, Malkova O, Mao DD, DeSouza P, Chu YE, Salter A, Campian JL, Naegle KM, Brennan CW, Wakimoto H, Oh ST, Kim AH, Chheda MG. Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry. JCI Insight 2021; 6:128456. [PMID: 33400685 PMCID: PMC7934942 DOI: 10.1172/jci.insight.128456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/29/2020] [Indexed: 01/09/2023] Open
Abstract
Most patients with glioblastoma (GBM) die within 2 years. A major therapeutic goal is to target GBM stem cells (GSCs), a subpopulation of cells that contribute to treatment resistance and recurrence. Since their discovery in 2003, GSCs have been isolated using single-surface markers, such as CD15, CD44, CD133, and α6 integrin. It remains unknown how these single-surface marker-defined GSC populations compare with each other in terms of signaling and function and whether expression of different combinations of these markers is associated with different functional capacity. Using mass cytometry and fresh operating room specimens, we found 15 distinct GSC subpopulations in patients, and they differed in their MEK/ERK, WNT, and AKT pathway activation status. Once in culture, some subpopulations were lost and previously undetectable ones materialized. GSCs that highly expressed all 4 surface markers had the greatest self-renewal capacity, WNT inhibitor sensitivity, and in vivo tumorigenicity. This work highlights the potential signaling and phenotypic diversity of GSCs. Larger patient sample sizes and antibody panels are required to confirm these findings.
Collapse
Affiliation(s)
| | | | - Olga Malkova
- Center for Human Immunology and Immunotherapy Programs, and
| | - Diane D Mao
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Yunli E Chu
- Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amber Salter
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jian L Campian
- Department of Medicine.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kristen M Naegle
- Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephen T Oh
- Center for Human Immunology and Immunotherapy Programs, and.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Milan G Chheda
- Department of Medicine.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Sun Z, Wang L, Zhou Y, Dong L, Ma W, Lv L, Zhang J, Wang X. Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol 2020; 40:767-784. [PMID: 31853695 PMCID: PMC11448788 DOI: 10.1007/s10571-019-00771-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023]
Abstract
Exosomes contain plenty of bioactive information, playing an important role in intercellular communication by transfer their bioactive molecular contents to recipient cells. Glioblastoma stem cells (GSCs) and non-GSC glioma cells coexist in GBM microenvironment; GSC-released exosomes contain intracellular signaling molecules, which may affect the biological phenotypes of recipient cells. However, whether GSC exosomes could affect the biological phenotype of non-GSC glioma cells has not yet been defined. To explore whether GSC exosomes could reprogramme non-GSC glioma cells into GSCs and its possible mechanism involved, non-GSC glioma cells were treated with GSCs released exosomes; the potential mechanisms of action were studied with RNA interference, Notch inhibitors and Western blot analysis. The proliferation, neurosphere formation, invasive capacities, and tumorigenicity of non-GSC glioma cells were increased significantly after GSC exosome treatment; Notch1 signaling pathway was activated in GSCs; Notch1 protein was highly enriched in GSC exosomes; Notch1 signaling pathway and stemness-related protein expressions were increased in GSC exosome treated non-GSC glioma cells and these cell generated tumor tissues; Notch1 protein expression in GSCs and their exosomes, and the neurosphere formation of GSCs were decreased by Notch1 RNA interference; Notch1 signaling pathway protein and stemness protein expressions were decreased in GSC exosome treated non-GSC glioma cells by Notch1 RNA interference and Notch inhibitors. The findings in this study indicated that GSC exosomes act as information carriers, mediated non-GSC glioma cell dedifferentiation into GSCs by delivering Notch1 protein through Notch1 signaling activation, and enhanced stemness and tumorigenicity of non-GSC glioma cells.
Collapse
Affiliation(s)
- Zhen Sun
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Li Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Yueling Zhou
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Lihua Dong
- Human Anatomy Department, School of Preclinical and Forensic Medcine, Sichuan University, Chengdu, 610041, China
| | - Weichao Ma
- Neurosurgery Department, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Lv
- Neurosurgery Department, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Xiujie Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China.
| |
Collapse
|
8
|
Tan Z, Zhu J, Stemmer PM, Sun L, Yang Z, Schultz K, Gaffrey MJ, Cesnik AJ, Yi X, Hao X, Shortreed MR, Shi T, Lubman DM. Comprehensive Detection of Single Amino Acid Variants and Evaluation of Their Deleterious Potential in a PANC-1 Cell Line. J Proteome Res 2020; 19:1635-1646. [PMID: 32058723 DOI: 10.1021/acs.jproteome.9b00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Identifying single amino acid variants (SAAVs) in cancer is critical for precision oncology. Several advanced algorithms are now available to identify SAAVs, but attempts to combine different algorithms and optimize them on large data sets to achieve a more comprehensive coverage of SAAVs have not been implemented. Herein, we report an expanded detection of SAAVs in the PANC-1 cell line using three different strategies, which results in the identification of 540 SAAVs in the mass spectrometry data. Among the set of 540 SAAVs, 79 are evaluated as deleterious SAAVs based on analysis using the novel AssVar software in which one of the driver mutations found in each protein of KRAS, TP53, and SLC37A4 is further validated using independent selected reaction monitoring (SRM) analysis. Our study represents the most comprehensive discovery of SAAVs to date and the first large-scale detection of deleterious SAAVs in the PANC-1 cell line. This work may serve as the basis for future research in pancreatic cancer and personal immunotherapy and treatment.
Collapse
Affiliation(s)
- Zhijing Tan
- Department of Surgery, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianhui Zhu
- Department of Surgery, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Kendall Schultz
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matthew J Gaffrey
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Anthony J Cesnik
- Department of Genetics, Stanford University, Stanford, California 94305, United States
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Xiaohu Hao
- Shanghai Institutes for Biological Science, Chinese Academy of Science, Shanghai 200031, China
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Tujin Shi
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David M Lubman
- Department of Surgery, The University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Fernández-Irigoyen J, Corrales F, Santamaría E. The Human Brain Proteome Project: Biological and Technological Challenges. Methods Mol Biol 2019; 2044:3-23. [PMID: 31432403 DOI: 10.1007/978-1-4939-9706-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brain proteomics has become a method of choice that allows zooming-in where neuropathophysiological alterations are taking place, detecting protein mediators that might eventually be measured in cerebrospinal fluid (CSF) as potential neuropathologically derived biomarkers. Following this hypothesis, mass spectrometry-based neuroproteomics has emerged as a powerful approach to profile neural proteomes derived from brain structures and CSF in order to map the extensive protein catalog of the human brain. This chapter provides a historical perspective on the Human Brain Proteome Project (HBPP), some recommendation to the experimental design in neuroproteomic projects, and a brief description of relevant technological and computational innovations that are emerging in the neurobiology field thanks to the proteomics community. Importantly, this chapter highlights recent discoveries from the biology- and disease-oriented branch of the HBPP (B/D-HBPP) focused on spatiotemporal proteomic characterizations of mouse models of neurodegenerative diseases, elucidation of proteostatic networks in different types of dementia, the characterization of unresolved clinical phenotypes, and the discovery of novel biomarker candidates in CSF.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory,, Proteored-ISCIII, CIBERehd, Madrid, Spain
| | - Enrique Santamaría
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain.
| |
Collapse
|
10
|
Izdebska M, Hałas-Wiśniewska M, Zielińska W, Klimaszewska-Wiśniewska A, Grzanka D, Gagat M. Lidocaine induces protective autophagy in rat C6 glioma cell line. Int J Oncol 2018; 54:1099-1111. [PMID: 30569147 PMCID: PMC6365045 DOI: 10.3892/ijo.2018.4668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Malignant glioma is the most common type of brain cancer with poor prognosis. Surgical resection, chemotherapy and radiotherapy are the main therapeutic options; however, in addition to their insufficient efficacy, they are associated with the pain experienced by patients. To relieve pain, local anesthetics, such as lidocaine can be used. In the present study, the effects of lidocaine on the C6 rat glioma cell line were investigated. An MTT assay and Annexin V/propidium iodide analysis indicated the increase in the percentage of apoptotic and necrotic cells in response to lidocaine. Furthermore, light microscopy analysis on the ultrastructural level presented the occurrence of vacuole-like structures associated with autophagy, which was supported by the analysis of autophagy markers (microtubule-associated protein 1A/1B-light chain 3, acridine orange and Beclin-1). Additionally, reorganization of the cytoskeleton was observed following treatment with lidocaine, which serves an important role in the course of autophagy. To determine the nature of autophagy, an inhibitor, bafilomycin A1 was applied. This compound suppressed the fusion of autophagosomes with lysosomes and increased the percentage of apoptotic cells. These results demonstrated that lidocaine may induce cytoprotective autophagy and that manipulation of this process could be an alternative therapeutic strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Magdalena Izdebska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| |
Collapse
|
11
|
Tan Z, Yi X, Carruthers NJ, Stemmer PM, Lubman DM. Single Amino Acid Variant Discovery in Small Numbers of Cells. J Proteome Res 2018; 18:417-425. [PMID: 30404448 DOI: 10.1021/acs.jproteome.8b00694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have performed deep proteomic profiling down to as few as 9 Panc-1 cells using sample fractionation, TMT multiplexing, and a carrier/reference strategy. Off line fractionation of the TMT-labeled sample pooled with TMT-labeled carrier Panc-1 whole cell proteome was achieved using alkaline reversed phase spin columns. The fractionation in conjunction with the carrier/reference (C/R) proteome allowed us to detect 47 414 unique peptides derived from 6261 proteins, which provided a sufficient coverage to search for single amino acid variants (SAAVs) related to cancer. This high sample coverage is essential in order to detect a significant number of SAAVs. In order to verify genuine SAAVs versus false SAAVs, we used the SAVControl pipeline and found a total of 79 SAAVs from the 9-cell Panc-1 sample and 174 SAAVs from the 5000-cell Panc-1 C/R proteome. The SAAVs as sorted into high confidence and low confidence SAAVs were checked manually. All the high confidence SAAVs were found to be genuine SAAVs, while half of the low confidence SAAVs were found to be false SAAVs mainly related to PTMs. We identified several cancer-related SAAVs including KRAS, which is an important oncoprotein in pancreatic cancer. In addition, we were able to detect sites involved in loss or gain of glycosylation due to the enhanced coverage available in these experiments where we can detect both sites of loss and gain of glycosylation.
Collapse
Affiliation(s)
- Zhijing Tan
- Department of Surgery , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xinpei Yi
- NCMIS, RCSDS, Academy of Mathematics and Systems Science , Chinese Academy of Sciences , Beijing 100190 , China.,School of Mathematical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences , Wayne State University , Detroit , Michigan 48202 , United States
| | - Paul M Stemmer
- Institute of Environmental Health Sciences , Wayne State University , Detroit , Michigan 48202 , United States
| | - David M Lubman
- Department of Surgery , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
12
|
Xiao Y, Cheng L, Xie HJ, Ju RJ, Wang X, Fu M, Liu JJ, Li XT. Vinorelbine cationic liposomes modified with wheat germ agglutinin for inhibiting tumor metastasis in treatment of brain glioma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S524-S537. [PMID: 30299160 DOI: 10.1080/21691401.2018.1501377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioma is the most common primary malignant brain tumor with a poor prognosis. The application of chemotherapeutic drugs is limited due to the existence of blood-brain barrier and serious side effects. Liposomes have been proven to be a stable and useful drug delivery system for tumors. In this paper, WGA (wheat germ agglutinin) modified vinorelbine cationic liposomes had been successfully constructed for treating glioma. In the liposomes, WGA was modified on the liposomal surface for crossing the blood-brain barrier and increasing the targeting effects, 3-(N-(N', N'-dimethylaminoethane) carbamoyl) cholesterol (DC-Chol) was used as cationic material and vinorelbine was encapsulated in the aqueous core of liposomes to inhibit tumor metastasis and kill tumor cells. Studies were performed on C6 cells in vitro and were verified in brain glioma-bearing mice in vivo. Results in vitro demonstrated that the targeting liposomes could induce C6 cells apoptosis, promote drugs across the blood-brain barrier, inhibit the metastasis of tumor cells and increase targeting effects to tumor cells. Meanwhile, action mechanism studies showed that the targeting liposomes could down-regulate PI3K, MMP-2, MMP-9 and FAK to inhibit tumor metastasis. Results in vivo exhibited that the targeting liposomes displayed an obvious antitumor efficacy by accumulating selectively in tumor site and exhibited low toxicity to blood system and major organs. Hence, WGA modified vinorelbine cationic liposomes might provide a safe and efficient therapy strategy for glioma.
Collapse
Affiliation(s)
- Yao Xiao
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Lan Cheng
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Hong-Jun Xie
- b Department of medicine, Tibet University , Lasa , China
| | - Rui-Jun Ju
- c Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Xin Wang
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Min Fu
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Jing-Jing Liu
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xue-Tao Li
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|