1
|
Gao X, Guan Y, Wang C, Jia M, Ahmad S, Nouman MF, Ai H. Specific interaction from different Aβ 42 peptide fragments to α7nAChR-A study of molecular dynamics simulation. J Mol Model 2024; 30:233. [PMID: 38937296 DOI: 10.1007/s00894-024-06032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
CONTEXT Existing researches confirmed that β amyloid (Aβ) has a high affinity for the α7 nicotinic acetylcholine receptor (α7nAChR), associating closely to Alzheimer's disease. The majority of related studies focused on the experimental reports on the neuroprotective role of Aβ fragment (Aβx), however, with a lack of investigation into the most suitable binding region and mechanism of action between Aβ fragment and α7nAChR. In the study, we employed four Aβ1-42 fragments Aβx, Aβ1-16, Aβ10-16, Aβ12-28, and Aβ30-42, of which the first three were confirmed to play neuroprotective roles upon directly binding, to interact with α7nAChR. METHODS The protein-ligand docking server of CABS-DOCK was employed to obtain the α7nAChR-Aβx complexes. Only the top α7nAChR-Aβx complexes were used to perform all-atom GROMACS dynamics simulation in combination with Charmm36 force field, by which α7nAChR-Aβx interactions' dynamic behavior and specific locations of these different Aβx fragments were identified. MM-PBSA calculations were also done to estimate the binding free energies and the different contributions from the residues in the Aβx. Two distinct results for the first three and fourth Aβx fragments in binding site, strength, key residue, and orientation, account for why the fourth fails to play a neuroprotective role at the molecular level.
Collapse
Affiliation(s)
- Xvzhi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Mengke Jia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Muhammad Fahad Nouman
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
2
|
Abdollahi Z, Nejabat M, Abnous K, Hadizadeh F. The therapeutic value of thiazole and thiazolidine derivatives in Alzheimer's disease: a systematic literature review. Res Pharm Sci 2024; 19:1-12. [PMID: 39006977 PMCID: PMC11244712 DOI: 10.4103/1735-5362.394816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/19/2023] [Accepted: 12/23/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Alzheimer's disease (AD) is a common neurodegenerative disease and the fifth leading cause of death among the elderly. The development of drugs for AD treatment is based on inhibiting cholinesterase (ChE) activity and inhibiting amyloid-beta peptide and tau protein aggregations. Many in vitro findings have demonstrated that thiazole-and thiazolidine-based compounds have a good inhibitory effect on ChE and other elements involved in the AD pathogenicity cascade. Experimental approach In the present review, we collected available documents to verify whether these synthetic compounds can be a step forward in developing new medications for AD. A systematic literature search was performed in major electronic databases in April 2021. Twenty-eight relevant in vitro and in vivo studies were found and used for data extraction. Findings/Results Findings demonstrated that thiazole-and thiazolidine-based compounds could ameliorate AD's pathologic condition by affecting various targets, including inhibition of ChE activity, amyloid-beta, and tau aggregation in addition to cyclin-dependent kinase 5/p25, beta-secretase-1, cyclooxygenase, and glycogen synthase kinase-3β. Conclusion and implications Due to multitarget effects at micromolar concentration, this review demonstrated that these synthetic compounds could be considered promising candidates for developing anti-Alzheimer drugs.
Collapse
Affiliation(s)
- Zahra Abdollahi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Gui Z, Wang J, Zhang Y, Wan B, Ke Z, Ren Z, Yang X, Lei M, Guo X, Liu X, Ouyang C, Wu N, Chen Q. Dapagliflozin improves diabetic cognitive impairment via indirectly modulating the mitochondria homeostasis of hippocampus in diabetic mice. Biofactors 2024; 50:145-160. [PMID: 37596888 DOI: 10.1002/biof.1998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/05/2023] [Indexed: 08/21/2023]
Abstract
Cognitive impairment is increasingly recognized as an important comorbidity of diabetes progression; however, the underlying molecular mechanism is unclear. Dapagliflozin, an inhibitor of sodium-glucose co-transporter 2 (SGLT2), has shown promising effects against diabetes in rodent experiments and human clinical assays. This study aimed to determine the underlying mechanism and examine the effect of dapagliflozin on diabetic cognitive impairment. To create an in vivo model of diabetic cognitive impairment, streptozotocin (STZ)-induced diabetic mice were used. Dapagliflozin was administered to mice for 8 weeks. The context fear condition and Morris water maze test was used to evaluate mice's behavioral change. Western blotting was used to evaluate protein expression. Hematoxylin and eosin (HE) and Nissl staining were applied to monitor morphological and structural changes. Congo red staining was performed to identify the formation of senile plaques. Mitochondria morphology was examined using a transmission electron microscope, and blood flow in the mouse cerebral cortex was measured using a laser Doppler imaging assay. Comparison to the diabetes mellitus (DM) group, the dapagliflozin group had lower glucose levels. Behavioral studies have shown that dapagliflozin can restore memory deficits in diabetic mice. The murky cell membrane edges and Nissl bodies more difficult to identify in the DM group were revealed by HE and Nissl staining, which were both improved by dapagliflozin treatment. Dapagliflozin inhibited the progression of Aβ generation and the reduced cerebral blood flow in the DM group was rescued. After dapagliflozin treatment, damaged mitochondria and lack of SGLT2 in the hippocampus and cortex of diabetic mice were repaired. Diabetes-induced cognitive dysfunction was attenuated by dapagliflozin and the effect was indirect rather than direct.
Collapse
Affiliation(s)
- Zichen Gui
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
- Hepatic Surgery Center; Hubei key laboratory of Hepato-Pancreato-Biliary Diseases; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Jiawen Wang
- Xianning Central hospital, First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yue Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Binbin Wan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Zhiqiang Ke
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Ninghua Wu
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
4
|
Liu X, Yu C, Su B, Zha D. Synthesis and properties of the kojic acid dimer and its potential for the treatment of Alzheimer's disease. RSC Med Chem 2023; 14:268-276. [PMID: 36846369 PMCID: PMC9945874 DOI: 10.1039/d2md00383j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The kojic acid dimer (KAD) is a metabolite derived from developing cottonseed when contaminated with aflatoxin. The KAD has been shown to exhibit bright greenish-yellow fluorescence, but little else is known about its biological activity. In this study, using kojic acid as a raw material, we developed a four-step synthetic route that achieved the gram-scale preparation of the KAD in approximately 25% total yield. The structure of the KAD was verified by single-crystal X-ray diffraction. The KAD showed good safety in a variety of cells and had a good protective effect in SH-SY5Y cells. At concentrations lower than 50 μM, the KAD was superior to vitamin C in ABTS+ free radical scavenging assay; the KAD resisted the production of reactive oxygen species induced by H2O2 as confirmed by fluorescence microscopy observation and flow cytometry analysis. Notably, the KAD could enhance the superoxide dismutase activity, which might be the mechanism of its antioxidant activity. The KAD also moderately inhibited the deposition of amyloid-β (Aβ) and selectively chelated Cu2+, Zn2+, Fe2+, Fe3+, and Al3+, which are related to the progress of Alzheimer's disease. Based on its good effects in terms of oxidative stress, neuroprotection, inhibition of Aβ deposition, and metal accumulation, the KAD shows potential for the multi-target treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xueyan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| | - Chuanyu Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Biling Su
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| |
Collapse
|
5
|
Galantamine Based Novel Acetylcholinesterase Enzyme Inhibitors: A Molecular Modeling Design Approach. Molecules 2023; 28:molecules28031035. [PMID: 36770702 PMCID: PMC9919016 DOI: 10.3390/molecules28031035] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Acetylcholinesterase (AChE) enzymes play an essential role in the development of Alzheimer's disease (AD). Its excessive activity causes several neuronal problems, particularly psychopathies and neuronal cell death. A bioactive pose on the hAChE B site of the human acetylcholinesterase (hAChE) enzyme employed in this investigation, which was obtained from the Protein Data Bank (PDB ID 4EY6), allowed for the prediction of the binding affinity and free binding energy between the protein and the ligand. Virtual screening was performed to obtain structures similar to Galantamine (GNT) with potential hAChE activity. The top 200 hit compounds were prioritized through the use of filters in ZincPharmer, with special features related to the pharmacophore. Critical analyses were carried out, such as hierarchical clustering analysis (HCA), ADME/Tox predictions, molecular docking, molecular simulation studies, synthetic accessibility (SA), lipophilicity, water solubility, and hot spots to confirm the stable binding of the two promising molecules (ZINC16951574-LMQC2, and ZINC08342556-LMQC5). The metabolism prediction, with metabolites M3-2, which is formed by Glutathionation reaction (Phase II), M1-2, and M2-2 formed from the reaction of S-oxidation and Aliphatic hydroxylation (Phase I), were both reactive but with no side effects. Theoretical synthetic routes and prediction of synthetic accessibility for the most promising compounds are also proposed. In conclusion, this study shows that in silico modeling can be used to create new drug candidate inhibitors for hAChE. The compounds ZINC16951574-LMQC2, and ZINC08342556-LMQC5 are particularly promising for oral administration because they have a favorable drug-likeness profile, excellent lipid solubility, high bioavailability, and adequate pharmacokinetics.
Collapse
|
6
|
Monteiro KLC, Dos Santos Alcântara MG, Freire NML, Brandão EM, do Nascimento VL, Dos Santos Viana LM, de Aquino TM, da Silva-Júnior EF. BACE-1 Inhibitors Targeting Alzheimer's Disease. Curr Alzheimer Res 2023; 20:131-148. [PMID: 37309767 DOI: 10.2174/1567205020666230612155953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The accumulation of amyloid-β (Aβ) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of β-secretase (β-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aβ peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aβ generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Marcone Gomes Dos Santos Alcântara
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Nathalia Monteiro Lins Freire
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Esaú Marques Brandão
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Vanessa Lima do Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Líbni Maísa Dos Santos Viana
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
7
|
Shen LW, Zhang YP, You Y, Zhao JQ, Wang ZH, Yuan WC. Inverse Electron-Demand Aza-Diels-Alder Reaction of α,β-Unsaturated Thioesters with In Situ-Generated 1,2-Diaza-1,3-dienes for the Synthesis of 1,3,4-Thiadiazines. J Org Chem 2022; 87:4232-4240. [PMID: 35212520 DOI: 10.1021/acs.joc.1c03072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly regioselective inverse electron-demand aza-Diels-Alder reaction of α,β-unsaturated thioesters with 1,2-diaza-1,3-dienes generated in situ from α-halogeno hydrazones was developed. With α,β-unsaturated thioesters as C═S dienophiles, the developed protocol enables the formation of diverse 3,6-dihydro-2H-1,3,4-thiadiazine derivatives in excellent yields. In the presence of lithium aluminum hydride, 3,6-dihydro-2H-1,3,4-thiadiazine derivatives could be further transformed into 5,6-dihydro-4H-1,3,4-thiadiazines in good yields.
Collapse
Affiliation(s)
- Li-Wen Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
8
|
Jilloju SC, Jilloju PC, Jatavath M, Rao MA. Characterization and molecular docking studies of substituted 3-(2-benzylidenehydrazinyl)-6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines synthesized via a one-pot, three-component reaction. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Investigations on substituted (2-aminothiazol-5-yl)(imidazo[1,2-a]pyridin-3-yl)methanones for the treatment of Alzheimer's disease. Bioorg Med Chem 2021; 36:116091. [PMID: 33676335 DOI: 10.1016/j.bmc.2021.116091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease majorly affecting old age populations. Various factors that affect the progression of the disease include, amyloid plaque formation, neurofibrillary tangles, inflammation, oxidative stress, etc. Herein we report of a new series of substituted (2-aminothiazol-5-yl)(imidazo[1,2-a]pyridin-3-yl)methanones. The designed compounds were synthesized and characterized by spectral data. In vivo anti-inflammatory activity was carried out for screening of anti-inflammatory potential of synthesized compounds. All the compounds were tested for acute inflammatory activity by using carrageenan induced acute inflammation model. Compounds 10b, 10c, and 10o had shown promising acute anti-inflammatory activity and they were further tested for formalin induced chronic inflammation model. Compound 10c showed both acute and chronic anti-inflammatory activity. Compound 10c also showed promising results in AlCl3 induced AD model. Studies on various behavioral parameters suggested improved amnesic performance of compound 10c treated rats. Compound 10c treated rats also exhibited excellent antioxidant and neuroprotective effect with inherent gastrointestinal safety.
Collapse
|
10
|
Multitarget Therapeutic Strategies for Alzheimer's Disease: Review on Emerging Target Combinations. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5120230. [PMID: 32714977 PMCID: PMC7354643 DOI: 10.1155/2020/5120230] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases represent nowadays one of the major health problems. Despite the efforts made to unveil the mechanism leading to neurodegeneration, it is still not entirely clear what triggers this phenomenon and what allows its progression. Nevertheless, it is accepted that neurodegeneration is a consequence of several detrimental processes, such as protein aggregation, oxidative stress, and neuroinflammation, finally resulting in the loss of neuronal functions. Starting from these evidences, there has been a wide search for novel agents able to address more than a single event at the same time, the so-called multitarget-directed ligands (MTDLs). These compounds originated from the combination of different pharmacophoric elements which endowed them with the ability to interfere with different enzymatic and/or receptor systems, or to exert neuroprotective effects by modulating proteins and metal homeostasis. MTDLs have been the focus of the latest strategies to discover a new treatment for Alzheimer's disease (AD), which is considered the most common form of dementia characterized by neurodegeneration and cognitive dysfunctions. This review is aimed at collecting the latest and most interesting target combinations for the treatment of AD, with a detailed discussion on new agents with favorable in vitro properties and on optimized structures that have already been assessed in vivo in animal models of dementia.
Collapse
|
11
|
Gutti G, Kakarla R, Kumar D, Beohar M, Ganeshpurkar A, Kumar A, Krishnamurthy S, Singh SK. Discovery of novel series of 2-substituted benzo[d]oxazol-5-amine derivatives as multi-target directed ligands for the treatment of Alzheimer's disease. Eur J Med Chem 2019; 182:111613. [PMID: 31437780 DOI: 10.1016/j.ejmech.2019.111613] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is associated with multifactorial neuropathological conditions, which include cholinergic deficit, amyloid-beta plaques formation, loss of neuronal plasticity and neuronal death. Treating such multifactorial conditions with a single target directed approach is considered to be inadequate. Accordingly, multi-target directed ligand (MTDL) strategy has been evolved as an auspicious approach for the treatment of AD. In light of that, a library of 2-substituted benzo[d]oxazol-5-amine derivatives (29-39; 86-107) was designed using the scaffold hopping guided MTDLs strategy, synthesized and evaluated through various in-vitro and in-vivo biological studies. The optimal compound 92 exhibited potent inhibitory activities against AChE (IC50 = 0.052 ± 0.010 μM), BuChE (IC50 = 1.085 ± 0.035 μM), and significant amyloid-beta aggregation (20 μM) inhibition. The compound possessed better blood-brain barrier permeability (Pe = 10.80 ± 0.055 × 10-6 cm s-1) in PAMPA assay and neuro protective properties (40 μM) on SH-SY5Y neuroblastoma cell lines. Furthermore, in-vivo behavioural studies were performed on Y-maze test (scopolamine-induced amnesia model) and Morris water maze test (Aβ1-42 induced ICV rat model). The compound 92, at a dose of 10 mg/kg oral administration, demonstrated a substantial improvement of the cognitive and special memory impairment. In summary, both in-vitro and in-vivo investigations evidenced that compound 92 was a potential lead for the discovery of safe and effective disease-modifying agents for AD.
Collapse
Affiliation(s)
- Gopichand Gutti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ramakrishna Kakarla
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Devendra Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Mahima Beohar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
12
|
Komendantova AS, Ivanova KA, Lyssenko KV, Volkova YA, Zavarzin IV. Facile Synthesis of Carboxamide-Substituted 1,3,4-Thiadiazines and 5,6-Dihydro-4H-1,3,4-Thiadiazin-5-Ols. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Pharmacological investigation of quinoxaline-bisthiazoles as multitarget-directed ligands for the treatment of Alzheimer's disease. Bioorg Chem 2019; 89:102992. [PMID: 31174042 DOI: 10.1016/j.bioorg.2019.102992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/07/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent disease of old age leading to dementia. Complex AD pathogenesis involves multiple factors viz. amyloid plaque formation, neurofibrillary tangles and inflammation. Herein we report of a new series of quinoxaline-bisthiazoles as multitarget-directed ligands (MTDLs) targeting BACE-1 and inflammation concurrently. Virtual screening of a library of novel quinoxaline-bisthiazoles was performed by docking studies. The most active molecules from the docking library were taken up for synthesis and characterized by spectral data. Compounds 8a-8n showed BACE-1 inhibition in micro molar range. One of the compounds, 8n showed BACE-1 inhibition at IC50 of 3 ± 0.07 µM. Rat paw edema inhibition in acute and chronic models of inflammation were obtained at 69 ± 0.45% and 55 ± 0.7%, respectively. Compound 8n also showed noteworthy results in AlCl3 induced AD model. The treated rats exhibited excellent antiamnesic, antiamyloid, antioxidant, and neuroprotective properties. Behavioural parameters suggested improved cognitive functions which further validates the testimony of present study. Moreover, compound 8n was found to have inherent gastrointestinal safety. This new string of quinoxaline-bisthiazoles were identified as effective lead for the generation of potent MTDLs and compound 8n was found to showcase qualities to tackle AD pathogenesis.
Collapse
|