1
|
Zhang H, Gao C, Yang D, Nie L, He K, Chen C, Li S, Huang G, Zhou L, Huang X, Wu D, Liu J, Huang Z, Wang J, Li W, Zhang Z, Yang X, Zou L. Urolithin a Improves Motor Dysfunction Induced by Copper Exposure in SOD1 G93A Transgenic Mice Via Activation of Mitophagy. Mol Neurobiol 2024:10.1007/s12035-024-04473-1. [PMID: 39292338 DOI: 10.1007/s12035-024-04473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease pathologically characterized by selective degeneration of motor neurons resulting in a catastrophic loss of motor function. The present study aimed to investigate the effect of copper (Cu) exposure on progression of ALS and explore the therapeutic effect and mechanism of Urolithin A (UA) on ALS. 0.13 PPM copper chloride drinking water was administrated in SOD1G93A transgenic mice at 6 weeks, UA at a dosage of 50 mg/kg/day was given for 6 weeks after a 7-week Cu exposure. Motor ability was assessed before terminal anesthesia. Muscle atrophy and fibrosis, motor neurons, astrocytes and microglia in the spinal cord were evaluated by H&E, Masson, Sirius Red, Nissl and Immunohistochemistry Staining. Proteomics analysis, Western blotting and ELISA were conducted to detect protein expression. Mitochondrial adenosine triphosphate (ATP) and malondialdehyde (MDA) levels were measured using an assay kit. Cu-exposure worsened motor function, promoted muscle fibrosis, loss of motor neurons, and astrocyte and microglial activation. It also induced abnormal changes in mitochondria-related biological processes, leading to a significant reduction in ATP levels and an increase in MDA levels. Upregulation of P62 and downregulation of Parkin, PINK1, and LAMP1 were revealed in SOD1G93A mice with Cu exposure. Administration of UA activated mitophagy, modulated mitochondria dysfunction, reduced neuroinflammation, and improved gastrocnemius muscle atrophy and motor dysfunction in SOD1G93A mice with Cu exposure. Mitophagy plays critical role in ALS exacerbated by Cu exposure. UA administration may be a promising treatment strategy for ALS.
Collapse
Affiliation(s)
- Huan Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Chuanyue Gao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
- Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Deguang Yang
- Department of Cardiology, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Heyuan, 517000, China
| | - Lulin Nie
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Kaiwu He
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Chongyang Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shangming Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guanqin Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Li Zhou
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xinfeng Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jie Wang
- Department of Neurology, Shenzhen People's Hospital (First Affiliated Hospital of Southern University of Science and Technology), Second Clinical College, Jinan University, Shenzhen, China
| | - Weihua Li
- Department of Medical Imaging, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Zhaohui Zhang
- School of Public Health, University of South China, Hunan Hengyang, 421001, China.
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Liangyu Zou
- Department of Neurology, Shenzhen People's Hospital (First Affiliated Hospital of Southern University of Science and Technology), Second Clinical College, Jinan University, Shenzhen, China.
| |
Collapse
|
2
|
Leventoux N, Morimoto S, Ishikawa M, Nakamura S, Ozawa F, Kobayashi R, Watanabe H, Supakul S, Okamoto S, Zhou Z, Kobayashi H, Kato C, Hirokawa Y, Aiba I, Takahashi S, Shibata S, Takao M, Yoshida M, Endo F, Yamanaka K, Kokubo Y, Okano H. Aberrant CHCHD2-associated mitochondriopathy in Kii ALS/PDC astrocytes. Acta Neuropathol 2024; 147:84. [PMID: 38750212 DOI: 10.1007/s00401-024-02734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.
Collapse
Affiliation(s)
- Nicolas Leventoux
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Fumiko Ozawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
| | - Sopak Supakul
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO, Higashinagoya National Hospital, Aichi, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Department of Neurology and Stroke, International Medical Centre, Saitama Medical University, Saitama, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Centre of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Centre, Mie University Graduate School of Regional Innovation Studies, Mie, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan.
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
3
|
Zou C, Yang T, Huang X, Ren X, Yang C, Xu B, Liu J. Inhibition of autophagosome-lysosome fusion contributes to TDCIPP-induced Aβ1-42 production in N2a-APPswe cells. Heliyon 2024; 10:e26832. [PMID: 38628727 PMCID: PMC11019100 DOI: 10.1016/j.heliyon.2024.e26832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 04/19/2024] Open
Abstract
Alzheimer's disease is the most common form of dementia and is characterized by cognitive impairment. The disruption of autophagosome-lysosome function has been linked to the pathogenesis of Alzheimer's disease. Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphorus flame retardant that has the potential to cause neuronal damage. We found that TDCIPP significantly increased the expression of β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), presenilin-1 (PS1) and Aβ42. Proteomic studies with TMT labeling revealed changes in the profiles of N2a-APPswe cells after exposure to TDCIPP. Proteomic and bioinformatics analyses revealed that lysosomal proteins were dysregulated in N2a-APPswe cells after treatment with TDCIPP. The LC3, P62, CTSD, and LAMP1 levels were increased after TDCIPP exposure, and dysregulated protein expression was validated by Western blotting. The exposure to TDCIPP led to the accumulation of autophagosomes, and this phenomenon was enhanced in the presence of chloroquine (CQ). Our results revealed for the first time that TDCIPP could be a potential environmental risk factor for AD development. The inhibition of autophagosome-lysosome fusion may have a significant impact on the generation of Aβ1-42 in response to TDCIPP.
Collapse
Affiliation(s)
- Chunli Zou
- College of Public Health, Zunyi Medical University, Zunyi, 563000, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Tingting Yang
- College of Public Health, Zunyi Medical University, Zunyi, 563000, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Xinfeng Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Chen Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Benhong Xu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Jianjun Liu
- College of Public Health, Zunyi Medical University, Zunyi, 563000, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| |
Collapse
|
4
|
Zhang R, Gao C, Hu M, Wang X, Li S, An Z, Yang X, Xie Y. Synthesis and biological evaluation of the novel chrysin prodrug for non-alcoholic fatty liver disease treatment. Front Pharmacol 2024; 15:1336232. [PMID: 38708081 PMCID: PMC11066169 DOI: 10.3389/fphar.2024.1336232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Chrysin (5,7-dihydroxyflavone) is a natural flavonoid that has been reported as a potential treatment for non-alcoholic fatty liver disease (NAFLD). However, extensive phase II metabolism and poor aqueous solubility led to a decrease in the chrysin concentration in the blood after oral administration, limiting its pharmacological development in vivo. Methods: In the present study, we synthesized a novel chrysin derivative prodrug (C-1) to address this issue. We introduced a hydrophilic prodrug group at the 7-position hydroxyl group, which is prone to phase II metabolism, to improve water solubility and mask the metabolic site. Further, we evaluated the ameliorative effects of C-1 on NAFLD in vitro and in vivo by NAFLD model cells and db/db mice. Results: In vitro studies indicated that C-1 has the ability to ameliorate lipid accumulation, cellular damage, and oxidative stress in NAFLD model cells. In vivo experiments showed that oral administration of C-1 at a high dose (69.3 mg/kg) effectively ameliorated hyperlipidemia and liver injury and reduced body weight and liver weight in db/db mice, in addition to alleviating insulin resistance. Proteomic analysis showed that C-1 altered the protein expression profile in the liver and particularly improved the expression of proteins associated with catabolism and metabolism. Furthermore, in our preliminary pharmacokinetic study, C-1 showed favorable pharmacokinetic properties and significantly improved the oral bioavailability of chrysin. Conclusion: Our data demonstrated that C-1 may be a promising agent for NAFLD therapy.
Collapse
Affiliation(s)
- Ruiming Zhang
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chuanyue Gao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Mingxing Hu
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xingxing Wang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuoyuan Li
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yongmei Xie
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
5
|
Zou C, Yang T, Zhang J, Chen X, Zhao J, Wu D, Yang C, Liu P, Huang X, Liu J, Xu B. A quantitative proteomic study reveals oxidative stress and synapse-related proteins contributed to TDCIPP exposure induced neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116005. [PMID: 38262093 DOI: 10.1016/j.ecoenv.2024.116005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been consistently identified in various environmental media and biological specimens. Current understanding of the in vivo toxicities of TDCIPP is limited, especially for potential for neurotoxic and cognitive impairment effects. To better evaluate the potential adverse effect of the chemical on learning and memory, Sprague Dawley (SD) rats were administered TDCIPP via gavage at doses of 40, 120, and 360 mg/kg/day for a period of 90 days. Quantitative proteomic analysis, immunohistochemistry, and Western blotting were employed to assess alterations in proteins following exposure to TDCIPP. An open field test and the Morris Water Maze were used to assess anxiety and spatial learning memory capacity. Administration of TDCIPP induced anxiety and cognitive impairments in rats. Additionally, a noteworthy decrease in the number of neurons was observed in the hippocampal CA3 and dentate gyrus (DG) regions. Proteomic and bioinformatic analyses revealed dysregulation of numerous hippocampal proteins, particularly those associated with synapses (PKN1) or oxidative stress (GSTM4, NQO1, and BMAL1), which was further confirmed by Western blot analysis. In sum, the cognitive impairment of rats caused by TDCIPP exposure was associated with dysregulation of synaptic and oxidative stress-related proteins.
Collapse
Affiliation(s)
- Chunli Zou
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China; College of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Tingting Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China; College of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Jiuhong Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Jing Zhao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Chen Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Peiyi Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Xinfeng Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China.
| | - Benhong Xu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China.
| |
Collapse
|
6
|
Zheng C, Li W, Ali T, Peng Z, Liu J, Pan Z, Feng J, Li S. Ibrutinib Delays ALS Installation and Increases Survival of SOD1 G93A Mice by Modulating PI3K/mTOR/Akt Signaling. J Neuroimmune Pharmacol 2023; 18:383-396. [PMID: 37326908 DOI: 10.1007/s11481-023-10068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal multisystem degenerative disorder with minimal available therapeutic. However, some recent studies showed promising results of immunological-based treatment. Here, we aimed to evaluate the efficacy of ibrutinib against ALS-associated abnormalities by targeting inflammation and muscular atrophy. Ibrutinib was administrated orally to SOD1 G93A mice from 6 to 19 weeks for prophylactic administration and 13 to 19 weeks for therapeutic administration. Our results demonstrated that ibrutinib treatment significantly delayed ALS-like symptom onset in the SOD1 G93A mice, as shown by improved survival time and reduced behavioral impairments. Ibrutinib treatment significantly reduced muscular atrophy by increasing muscle/body weight and decreasing muscular necrosis. The ibrutinib treatment also considerably reduced pro-inflammatory cytokine production, IBA-1, and GFAP expression, possibly mediated by mTOR/Akt/Pi3k signaling in the medulla, motor cortex and spinal cord of the ALS mice. In conclusion, our study demonstrated that ibrutinib could delay ALS onset, increase survival time, and reduce ALS progression by targeting inflammation and muscular atrophy via mTOR/Akt/PI3K modulation.
Collapse
Affiliation(s)
- Chengyou Zheng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Weifen Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science, Center. No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Ziting Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jieli Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants (Basel) 2023; 12:1675. [PMID: 37759978 PMCID: PMC10525108 DOI: 10.3390/antiox12091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Superoxide dismutase (SOD) is a class of enzymes that restrict the biological oxidant cluster enzyme system in the body, which can effectively respond to cellular oxidative stress, lipid metabolism, inflammation, and oxidation. Published studies have shown that SOD enzymes (SODs) could maintain a dynamic balance between the production and scavenging of biological oxidants in the body and prevent the toxic effects of free radicals, and have been shown to be effective in anti-tumor, anti-radiation, and anti-aging studies. This research summarizes the types, biological functions, and regulatory mechanisms of SODs, as well as their applications in medicine, food production, and cosmetic production. SODs have proven to be a useful tool in fighting disease, and mimetics and conjugates that report SODs have been developed successively to improve the effectiveness of SODs. There are still obstacles to solving the membrane permeability of SODs and the persistence of enzyme action, which is still a hot spot and difficulty in mining the effect of SODs and promoting their application in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Mol P, Gopalakrishnan L, Chatterjee O, Mangalaparthi KK, Kumar M, Durgad SS, Nair B, Shankar SK, Mahadevan A, Prasad TSK. Proteomic Analysis of Adult Human Hippocampal Subfields Demonstrates Regional Heterogeneity in the Protein Expression. J Proteome Res 2022; 21:2293-2310. [PMID: 36039803 DOI: 10.1021/acs.jproteome.2c00143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background: Distinct hippocampal subfields are known to get affected during aging, psychiatric disorders, and various neurological and neurodegenerative conditions. To understand the biological processes associated with each subfield, it is important to understand its heterogeneity at the molecular level. To address this lacuna, we investigated the proteomic analysis of hippocampal subfields─the cornu ammonis sectors (CA1, CA2, CA3, CA4) and dentate gyrus (DG) from healthy adult human cohorts. Findings: Microdissection of hippocampal subfields from archived formalin-fixed paraffin-embedded tissue sections followed by TMT-based multiplexed proteomic analysis resulted in the identification of 5,593 proteins. Out of these, 890 proteins were found to be differentially abundant among the subfields. Further bioinformatics analysis suggested proteins related to gene splicing, transportation, myelination, structural activity, and learning processes to be differentially abundant in DG, CA4, CA3, CA2, and CA1, respectively. A subset of proteins was selected for immunohistochemistry-based validation in an independent set of hippocampal samples. Conclusions: We believe that our findings will effectively pave the way for further analysis of the hippocampal subdivisions and provide awareness of its subfield-specific association to various neurofunctional anomalies in the future. The current mass spectrometry data is deposited and publicly made available through ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029697.
Collapse
Affiliation(s)
- Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India.,Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Shwetha S Durgad
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Susarla K Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | | |
Collapse
|
9
|
A quantitative proteomic analysis reveals the potential roles of PRDX3 in neurite outgrowth in N2a-APPswe cells. Biochem Biophys Res Commun 2022; 604:144-150. [PMID: 35303681 DOI: 10.1016/j.bbrc.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid plaques and neurofibrillary tangles accompanied by progressive neurite loss. Mitochondria play pivotal roles in AD development. PRDX3 is a mitochondrial peroxide reductase critical for H2O2 scavenging and signal transduction. In this study, we found that PRDX3 knockdown (KD) in the N2a-APPswe cell line promoted retinoic acid (RA)-induced neurite outgrowth but did not reduce the viability of cells damaged by tert-butyl hydroperoxide (TBHP). We found that knocking down PRDX3 expression induced dysregulation of more than one hundred proteins, as determined by tandem mass tag (TMT)-labeled proteomics. A Gene Ontology (GO) analysis revealed that the dysregulated proteins were enriched in protein localization to the plasma membrane, the lipid catabolic process, and intermediate filament cytoskeleton organization. A STRING analysis showed close protein-protein interactions among dysregulated proteins. The expression of Annexin A1 (ANXA1), serine (Ser)-/threonine (Thr)-protein phosphatase 2A catalytic subunit alpha isoform (PP2A) and glutathione S-transferase Mu 2 (GSTM2) was significantly upregulated in PRDX3-KD N2a-APPswe cell lines, as verified by western blotting. Our study revealed, for the first time, that PRDX3 may play important roles in neurite outgrowth and AD development.
Collapse
|
10
|
Sun Y, Zhu B, Ling S, Yan B, Wang X, Jia S, Martyniuk CJ, Zhang W, Yang L, Zhou B. Decabromodiphenyl Ethane Mainly Affected the Muscle Contraction and Reproductive Endocrine System in Female Adult Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:470-479. [PMID: 34919388 DOI: 10.1021/acs.est.1c06679] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a widespread environmental pollutant. However, the target tissue and toxicity of DBDPE are still not clear. In the current study, female zebrafish were exposed to 1 and 100 nM DBDPE for 28 days. Chemical analysis revealed that DBDPE tended to accumulate in the brain other than the liver and gonad. Subsequently, tandem mass tag-based quantitative proteomics and parallel reaction monitoring verification were performed to screen the differentially expressed proteins in the brain. Bioinformatics analysis revealed that DBDPE mainly affected the biological process related to muscle contraction and estrogenic response. Therefore, the neurotoxicity and reproductive disruptions were validated via multilevel toxicological endpoints. Specifically, locomotor behavioral changes proved the potency of neurotoxicity, which may be caused by disturbance of muscular proteins and calcium homeostasis; decreases of sex hormone levels and transcriptional changes of genes related to the hypothalamic-pituitary-gonad-liver axis confirmed reproductive disruptions upon DBDPE exposure. In summary, our results suggested that DBDPE primarily accumulated in the brain and evoked neurotoxicity and reproductive disruptions in female zebrafish. These findings can provide important clues for a further mechanism study and risk assessment of DBDPE.
Collapse
Affiliation(s)
- Yumiao Sun
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biran Zhu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Siyuan Ling
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biao Yan
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulin Wang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhao Jia
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611 United States
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Yang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
11
|
Yu H, Liu Y, He T, Zhang Y, He J, Li M, Jiang B, Gao Y, Chen C, Ke D, Liu J, He B, Yang X, Wang J. Platelet biomarkers identifying mild cognitive impairment in type 2 diabetes patients. Aging Cell 2021; 20:e13469. [PMID: 34528736 PMCID: PMC8520722 DOI: 10.1111/acel.13469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/09/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an independent risk factor of Alzheimer's disease (AD). Therefore, identifying periphery biomarkers correlated with mild cognitive impairment (MCI) is of importance for early diagnosis of AD. Here, we performed platelet proteomics in T2DM patients with MCI (T2DM‐MCI) and without MCI (T2DM‐nMCI). Pearson analysis of the omics data with MMSE (mini‐mental state examination), Aβ1‐42/Aβ1‐40 (β‐amyloid), and rGSK‐3β(T/S9) (total to Serine‐9‐phosphorylated glycogen synthase kinase‐3β) revealed that mitophagy/autophagy‐, insulin signaling‐, and glycolysis/gluconeogenesis pathways‐related proteins were most significantly involved. Among them, only the increase of optineurin, an autophagy‐related protein, was simultaneously correlated with the reduced MMSE score, and the increased Aβ1‐42/Aβ1‐40 and rGSK‐3β(T/S9), and the optineurin alone could discriminate T2DM‐MCI from T2DM‐nMCI. Combination of the elevated platelet optineurin and rGSK‐3β(T/S9) enhanced the MCI‐discriminating efficiency with AUC of 0.927, specificity of 86.7%, sensitivity of 85.3%, and accuracy of 0.859, which is promising for predicting cognitive decline in T2DM patients.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Pathophysiology Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Yanchao Liu
- Department of Pathophysiology Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Department of Neurosurgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ting He
- Department of Pathophysiology Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yao Zhang
- Key Laboratory of Ministry of Education for Neurological Disorders Li Yuan Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jiahua He
- School of Physics Huazhong University of Science and Technology Wuhan Hubei China
| | - Mengzhu Li
- Department of Neurosurgery Wuhan Central Hospital Affiliated to Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Bijun Jiang
- Department of Physiology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Yang Gao
- Department of Pathophysiology Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Chongyang Chen
- Department of Pathophysiology Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Dan Ke
- Department of Pathophysiology Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Benrong He
- Department of Pathophysiology Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Jian‐Zhi Wang
- Department of Pathophysiology Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| |
Collapse
|
12
|
Adipose tissue-derived neurotrophic factor 3 regulates sympathetic innervation and thermogenesis in adipose tissue. Nat Commun 2021; 12:5362. [PMID: 34508100 PMCID: PMC8433218 DOI: 10.1038/s41467-021-25766-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
Activation of brown fat thermogenesis increases energy expenditure and alleviates obesity. Sympathetic nervous system (SNS) is important in brown/beige adipocyte thermogenesis. Here we discover a fat-derived "adipokine" neurotrophic factor neurotrophin 3 (NT-3) and its receptor Tropomyosin receptor kinase C (TRKC) as key regulators of SNS growth and innervation in adipose tissue. NT-3 is highly expressed in brown/beige adipocytes, and potently stimulates sympathetic neuron neurite growth. NT-3/TRKC regulates a plethora of pathways in neuronal axonal growth and elongation. Adipose tissue sympathetic innervation is significantly increased in mice with adipocyte-specific NT-3 overexpression, but profoundly reduced in mice with TRKC haploinsufficiency (TRKC +/-). Increasing NT-3 via pharmacological or genetic approach promotes beige adipocyte development, enhances cold-induced thermogenesis and protects against diet-induced obesity (DIO); whereas TRKC + /- or SNS TRKC deficient mice are cold intolerant and prone to DIO. Thus, NT-3 is a fat-derived neurotrophic factor that regulates SNS innervation, energy metabolism and obesity.
Collapse
|
13
|
Xu B, Lei Y, Ren X, Yin F, Wu W, Sun Y, Wang X, Sun Q, Yang X, Wang X, Zhang R, Li Z, Fang S, Liu J. SOD1 is a Possible Predictor of COVID-19 Progression as Revealed by Plasma Proteomics. ACS OMEGA 2021; 6:16826-16836. [PMID: 34250342 PMCID: PMC8247781 DOI: 10.1021/acsomega.1c01375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/10/2021] [Indexed: 05/12/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a worldwide health emergency. Patients infected with SARS-CoV-2 present with diverse symptoms related to the severity of the disease. Determining the proteomic changes associated with these diverse symptoms and in different stages of infection is beneficial for clinical diagnosis and management. Here, we performed a tandem mass tag-labeling proteomic study on the plasma of healthy controls and COVID-19 patients, including those with asymptomatic infection (NS), mild syndrome, and severe syndrome in the early phase and the later phase. Although the number of patients included in each group is low, our comparative proteomic analysis revealed that complement and coagulation cascades, cholesterol metabolism, and glycolysis-related proteins were affected after infection with SARS-CoV-2. Compared to healthy controls, ELISA analysis confirmed that SOD1, PRDX2, and LDHA levels were increased in the patients with severe symptoms. Both gene set enrichment analysis and receiver operator characteristic analysis indicated that SOD1 could be a pivotal indicator for the severity of COVID-19. Our results indicated that plasma proteome changes differed based on the symptoms and disease stages and SOD1 could be a predictor protein for indicating COVID-19 progression. These results may also provide a new understanding for COVID-19 diagnosis and treatment.
Collapse
Affiliation(s)
- Benhong Xu
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuxuan Lei
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
- School
of Public Health (Shenzhen), Sun Yat-sen
University, Guangzhou 510275, China
| | - Xiaohu Ren
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Feng Yin
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518101, China
| | - Weihua Wu
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ying Sun
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaohui Wang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qian Sun
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xifei Yang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xin Wang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Renli Zhang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zigang Li
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518101, China
| | - Shisong Fang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianjun Liu
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
14
|
Wu D, Gao D, Yu H, Pi G, Xiong R, Lei H, Wang X, Liu E, Ye J, Yu H, Gao Y, He T, Jiang T, Sun F, Su J, Song G, Peng W, Yang Y, Wang J. Medial septum tau accumulation induces spatial memory deficit via disrupting medial septum-hippocampus cholinergic pathway. Clin Transl Med 2021; 11:e428. [PMID: 34185417 PMCID: PMC8161512 DOI: 10.1002/ctm2.428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Tau accumulation and cholinergic impairment are characteristic pathologies in Alzheimer's disease (AD). However, the causal role of tau accumulation in cholinergic lesion is elusive. Here, we observed an aberrant tau accumulation in the medial septum (MS) of 3xTg and 5xFAD mice, especially in their cholinergic neurons. Overexpressing hTau in mouse MS (MShTau ) for 6 months but not 3 months induced spatial memory impairment without changing object recognition and anxiety-like behavior, indicating a specific and time-dependent effect of MS-hTau accumulation on spatial cognitive functions. With increasing hTau accumulation, the MShTau mice showed a time-dependent cholinergic neuron loss with reduced cholinergic projections to the hippocampus. Intraperitoneal administration of donepezil, a cholinesterase inhibitor, for 1 month ameliorated the MS-hTau-induced spatial memory deficits with preservation of MS-hippocampal cholinergic pathway and removal of tau load; and the beneficial effects of donepezil was more prominent at low dose. Proteomics revealed that MS-hTau accumulation deregulated multiple signaling pathways with numerous differentially expressed proteins (DEPs). Among them, the vacuolar protein sorting-associated protein 37D (VP37D), an autophagy-related protein, was significantly reduced in MShTau mice; the reduction of VP37D was restored by donepezil, and the effect was more significant at low dose than high dose. These novel evidences reveal a causal role of tau accumulation in linking MS cholinergic lesion to hippocampus-dependent spatial cognitive damages as seen in the AD patients, and the new tau-removal and autophagy-promoting effects of donepezil may extend its application beyond simple symptom amelioration to potential disease modification.
Collapse
Affiliation(s)
- Dongqin Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Di Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haitao Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guilin Pi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Enjie Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinwang Ye
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huilin Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tao Jiang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jingfen Su
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guoda Song
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenju Peng
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jian‐Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
15
|
Li X, Li T, Hong XY, Liu JJ, Yang XF, Liu GP. Acer Truncatum Seed Oil Alleviates Learning and Memory Impairments of Aging Mice. Front Cell Dev Biol 2021; 9:680386. [PMID: 34055809 PMCID: PMC8160100 DOI: 10.3389/fcell.2021.680386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Aging, characterized by a time-dependent functional decline of physiological integrity, is the major independent risk factor for many neurodegeneration diseases. Therefore, it’s necessary to look for natural food supplements to extend the healthy lifespan of aging people. We here treated normal aging mice with acer truncatum seed oil, and found that the seed oil significantly improved the learning and memory ability. Proteomics revealed that the seed oil administration changed many proteins expression involving in biological processes, including complement and coagulation cascades, inflammatory response pathway and innate immune response. BDNF/TrkB signaling pathway was also activated by acer truncatum seed oil treatment. And the seed oil administration increased the expression of postsynaptic related proteins including PSD95, GluA1, and NMDAR1, and decreased the mRNA level of inflammatory factors containing IL-1β, TNF-α, and IL-6. These findings suggest that acer truncatum seed oil holds a promise as a therapeutic food supplement for delaying aging with multiple mechanisms.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Yue Hong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jian Jun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xi Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Gong Ping Liu
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
16
|
Yu H, Liu Y, He B, He T, Chen C, He J, Yang X, Wang J. Platelet biomarkers for a descending cognitive function: A proteomic approach. Aging Cell 2021; 20:e13358. [PMID: 33942972 PMCID: PMC8135080 DOI: 10.1111/acel.13358] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
Memory loss is the most common clinical sign in Alzheimer's disease (AD); thus, searching for peripheral biomarkers to predict cognitive decline is promising for early diagnosis of AD. As platelets share similarities to neuron biology, it may serve as a peripheral matrix for biomarkers of neurological disorders. Here, we conducted a comprehensive and in-depth platelet proteomic analysis using TMT-LC-MS/MS in the populations with mild cognitive impairment (MCI, MMSE = 18-23), severe cognitive impairments (AD, MMSE = 2-17), and the age-/sex-matched normal cognition controls (MMSE = 29-30). A total of 360 differential proteins were detected in MCI and AD patients compared with the controls. These differential proteins were involved in multiple KEGG pathways, including AD, AMP-activated protein kinase (AMPK) pathway, telomerase RNA localization, platelet activation, and complement activation. By correlation analysis with MMSE score, three positively correlated pathways and two negatively correlated pathways were identified to be closely related to cognitive decline in MCI and AD patients. Partial least squares discriminant analysis (PLS-DA) showed that changes of nine proteins, including PHB, UQCRH, CD63, GP1BA, FINC, RAP1A, ITPR1/2, and ADAM10 could effectively distinguish the cognitively impaired patients from the controls. Further machine learning analysis revealed that a combination of four decreased platelet proteins, that is, PHB, UQCRH, GP1BA, and FINC, was most promising for predicting cognitive decline in MCI and AD patients. Taken together, our data provide a set of platelet biomarkers for predicting cognitive decline which may be applied for the early screening of AD.
Collapse
Affiliation(s)
- Haitao Yu
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Yanchao Liu
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Benrong He
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ting He
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Chongyang Chen
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Jiahua He
- School of Physics Huazhong University of Science and Technology Wuhan Hubei China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen Shenzhen Center for Disease Control and Prevention Shenzhen China
| | - Jian‐Zhi Wang
- Key Laboratory of Ministry of Education for Neurological Disorders School of Basic Medicine Department of Pathophysiology Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| |
Collapse
|